
Mounting and installation instructions

ecomatioo

ExtendedController R 360

CR0200

Safety instructions

This description is part of the unit. It contains texts and drawings concerning the correct handling of the controller and must be read before installation or use.

Observe the information of the description. Non-observance of the notes, operation which is not in accordance with use as prescribed below, wrong installation or handling can result in serious harm concerning the safety of persons and plant.

The instructions are for authorised persons according to the EMC and low voltage guidelines. The controllers must be installed and commissioned by a skilled electrician (programmer or service technician).

If the unit is not supplied by the mobile on-board system (12/24 V battery operation) it must be ensured that the external voltage is generated and supplied according to the criteria for safety extra-low voltage (SELV) as this is supplied without further measures to the connected controller, the sensors, and the actuators.

The wiring of all signals in connection with the SELV circuit of the unit must also comply with the SELV criteria (safe extra-low voltage, safe electrical separation from other electric circuits).

If the supplied SELV voltage has an external connection to ground (SELV becomes PELV) the responsibility lies with the user and the respective national regulations for installation must be complied with. All statements in these operating instructions refer to the unit the SELV voltage of which is not grounded.

The terminals may only be supplied with the signals indicated in the technical data or on the unit label and only the approved accessories of ifm electronic gmbh may be connected.

The unit can be operated within a wide temperature range according to the technical specification indicated below. Due to the additional self-heating the housing walls can have high perceptible temperatures when touched in hot environments.

In case of malfunctions or uncertainties please contact the manufacturer. Tampering with the unit can lead to considerable risks for the safety of persons and plant. It is not permitted and leads to the exclusion of any liability and warranty claims.

Contents

 Function and features Programming Programming choices Mounting Electrical connection Maintenance, repair and disposal 	page page page page page page	4 6 8
6. Declaration of conformity	page	10
Technical data (data sheets 16) Dimensions, mechanics, electronics Operating status (status LED) Test standards and regulations Characteristics of the inputs/outputs Wiring	page page page page page	12 12 13

1. Function and features

The freely programmable controllers of the "ExtendedController R 360" series are rated for use under difficult conditions (e.g. extended temperature range, strong vibration, intensive EMC interference).

They are thus suited for direct mounting into machines in mobile and rugged applications. Due to their specification the inputs and outputs are especially rated for this use. Integrated hardware and software functions (operating system) offer high protection of the machine.

The controllers can be used as CANopen master.

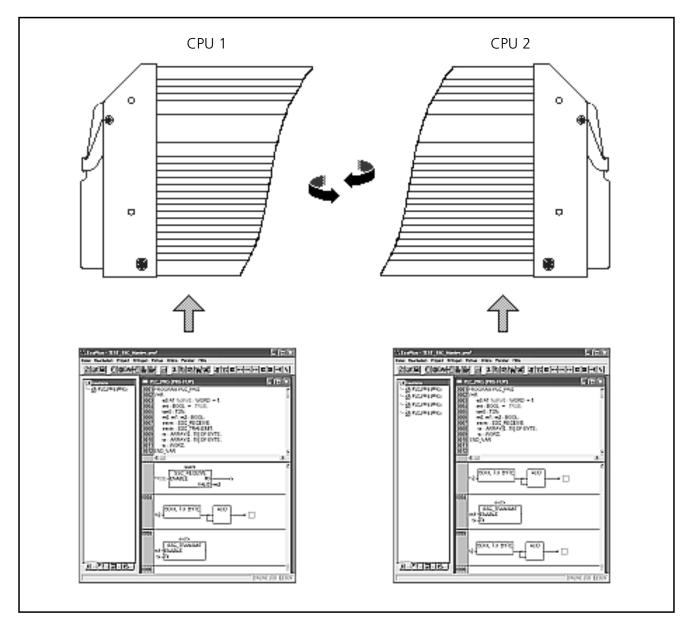
The controllers "ExtendedController R 360" are not approved for safety-relevant tasks in the field of safety of persons.

2. Programming

The application software can be easily created by the user with the ifm programming system CODESYS according to IEC 61131-3.

In addition to the programming system the complete system manual is required to program the controller.

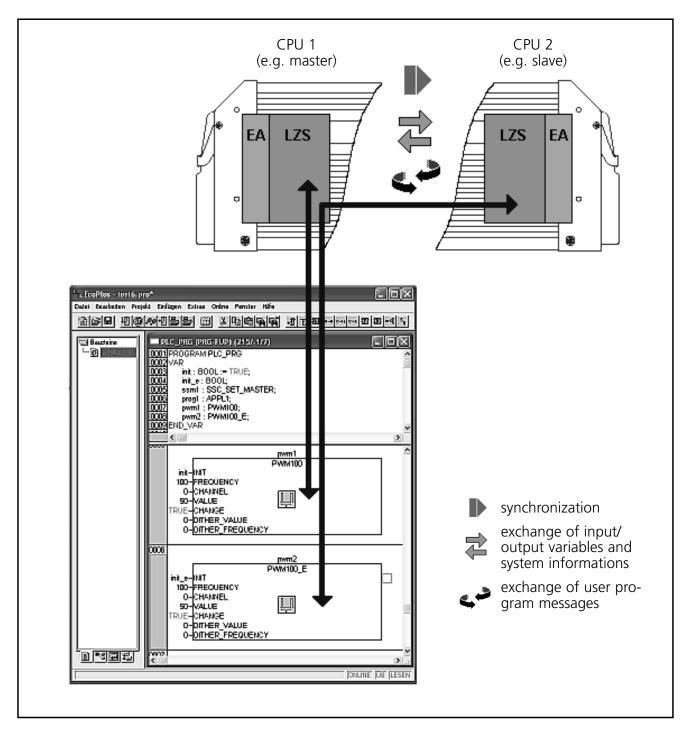
If this manual is not available, please contact one of the ifm branch offices overleaf for your free copy. The system manual (pdf format) can also be downloaded from the web.


www.ifm.com \rightarrow Data sheet direct \rightarrow CR0200 \rightarrow Additional data

The user is responsible for the safe functioning of the application programs which he creates himself. If necessary, he must additionally obtain an approval according to the corresponding national regulations by the corresponding testing and supervisory organisations.

2.1 Programming choices

Two independent and asynchronous user programs


The 2 control units are treated by the programmer as 2 separate controllers. An IEC program is loaded into each control unit. The programs work in parallel and asynchronously.

This provides the best solution for real time requirements due to the asynchrony and the possibly different cycle times.

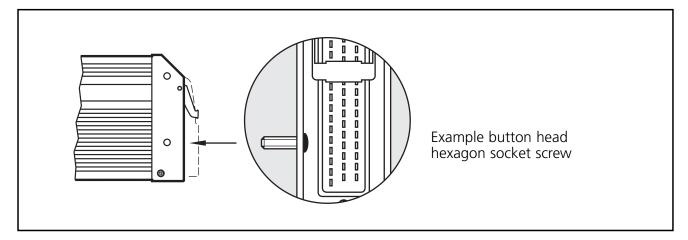
Internal communication between the 2 control units is ensured by a serial interface (2Mbps) by means of message exchanges between the user programs.

The controllers automatically determine which is the interface master and which is the slave.

One user program for both control units

The 2 control units are treated by the programmer as one controller. The IEC program is processed in sequence, i.e. without parallelism.

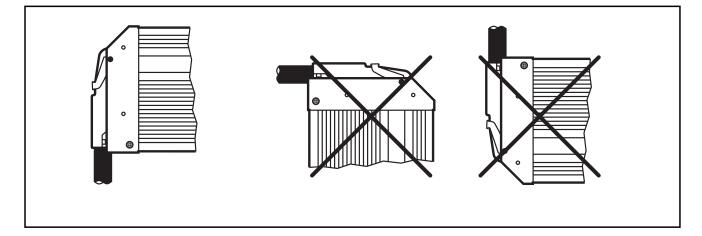
Assigned function blocks refer the program to the 2 control units. As shown in the figure above, the "PWM100" function block is executed in the master and the "PWM100_E" function block in the slave.


The functions are available in the "CR200_x.lib" library of ifm's CODESYS programming software.

3. Installation

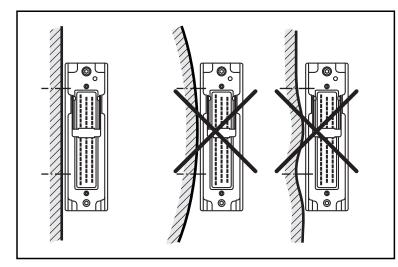
3.1 Fastening

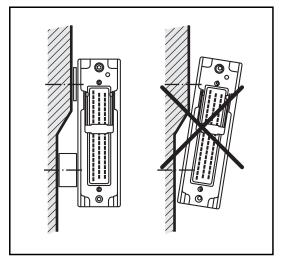
Fix the controller to a flat surface using 4 M5 screws. Tightening torque: 8 ± 2 Nm


Use screws with a low head to avoid that the connectors are damaged when placed and locked.

Screws to be used (examples)	Standard
Button head hexagon socket screws (M5 x L)	ISO 7380
Cylinder screws with hexagon socket and low head (M5 x L)	DIN 7984
Cutting screws for metric ISO thread with low head	DIN 7500
Screw material: steel or stainless steel	

3.2 Installation position

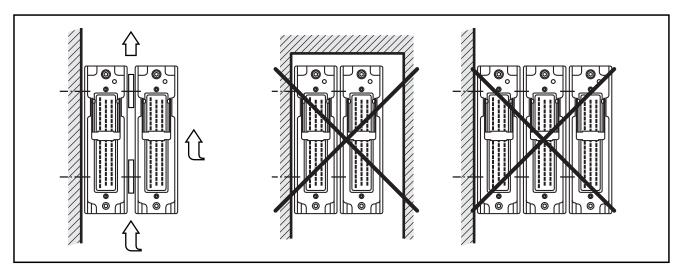

Align the controller in such a way that the cable entries of the connectors face downwards.



3.3 Mounting surface

The housing must not be exposed to any torsional forces or mechanical stress.

Use compensating elements if there is no flat mounting surface available.



3.4 Heat dissipation

Ensure sufficient heat dissipation as the internal heating of the electronics is conducted away via the housing..

In case of sandwich mounting of controllers use spacers.

4. Electrical connection

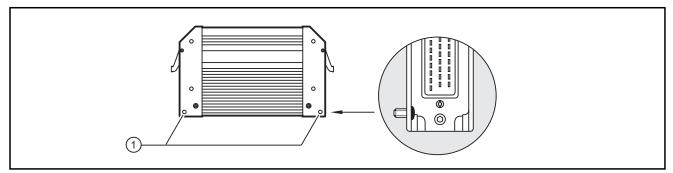
4.1 Wiring

Wiring see technical data.

Only connect the connector pins as shown in the pin layout. Unspecified connector pins remain unconnected.

Connect all supply cables and GND terminals (St and Ex connection side).

4.1.1 Assignment of the connectors


Note the device label.

Inversion of the connectors can lead to damage to a connected PC or notebook.

4.2 Ground connection

To ensure the protection of the device against electrical interference and the safe function of the device, the housing must be connected to the ground of the vehicle.

1: Drill holes for ground connection

Establish a connection between the device and the ground of the vehicle using M5 screws.

Screws to be used see mounting.

4.3 Fuses

The individual electric circuits must be protected in order to protect the whole system.

Designation	Potential	Pin no. *	Fuse
supply voltage sensors/module	VBB s	23	max. 2 A T
supply voltage outputs	VBB _O	05	max. 15 A
supply voltage via relais	VBB _R	34	max. 15 A

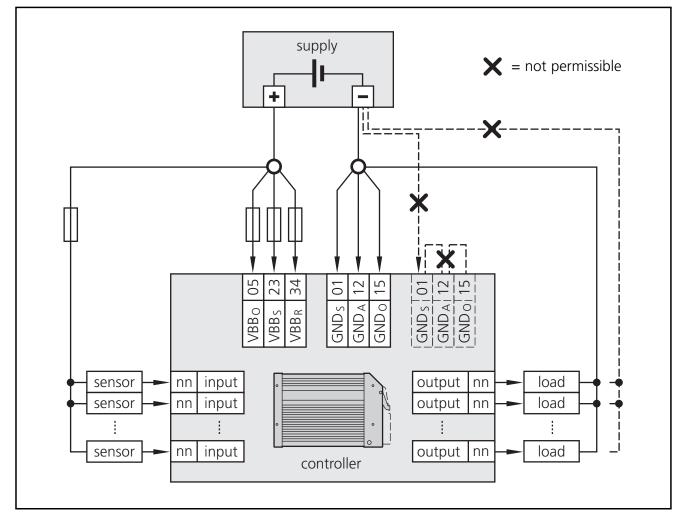
*) per control unit

4.4 Interaction between the inputs and outputs within one group of connections

In the applications the following must be observed as regards the use of the terminals as input <u>and</u> output:

Within one output group inputs and outputs should not be mixed. One output group is marked by a common VBB_X potential.

The background is a possible internal cross-connection of the outputs from the externally supplied inputs. This may occur unexpectedly if the supply to the outputs is switched off externally.


Should a mixture still be carried out for reasons of optimising the terminals, please inform yourself in detail about the situations described in the system manual and the restrictions resulting from this. Follow these instructions for your application and keep records of this.

4.5 Laying the supply and signal leads

As a basic principle all supply and signal leads to be laid separately. Supply and ground leads to the controller and to the sensors / actuators to be connected via a common neutral point.

Linking connections in the connector is not permitted and can lead to an incapacitation of men and machines.

5. Maintenance, repair and disposal

As the Controller does not contain any components which must be maintained by the user, the housing must not be opened. The repair of the controller may only be carried out by the manufacturer. The disposal must be carried out according to the corresponding national environmental regulations.

6. Declaration of conformity

Test standards and regulations (\rightarrow Technical data)

The EC declaration of conformity and approvals can be found at: www.ifm.com \rightarrow Data sheet direct \rightarrow Art. no. \rightarrow Approvals

CR0200

Mobile controller ExtendedController

2 control units with a total of 80 inputs/outputs

Programming according to IEC 61131-3

> **Operating voltage** 10...32 V DC

Technical data

Dimensions (H x W x D)

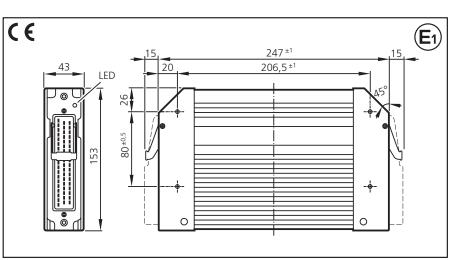
Housing / storage temperature

Input/output channels

possible configurations

Housing

Mounting


Connection

Weight

Protection

total

Inputs

Controller as black box system for the implementation of a central or decentralised system design

closed, screened metal housing with flange fastening

153 x 247 x 43 mm screw connection by means of 4 M5xL screws according to DIN 7500 or DIN 7984 mounting position horizontal or vertical to the mounting wall

2 x 55-pin connector, latched, protected against reverse polarity, type AMP or Framatome, AMP junior timer contacts, crimp connection 0.5/2.5 mm²

1.6 kg

-40...85 °C (depending on the load) / -40...85 °C

IP 67 (for inserted plug with individually sealed cores e.g. EC2084)

max. 2 x 40 (the total number which is available depends

on the wiring and configuration of the controller)

max. 2 x 40 (corr. to 0 outputs)

Number	Signal	Version	
2 x 8 or	digital analogue	for positive sensor signals, with diagnostic capability 010/32 V DC, 0/420 mA or ratiometric	B _L A
2 x 8	digital	for positive sensor signals	BL
2 x 4 or	digital frequency	for positive sensor signals, with diagnostic capability max. 50 kHz	B _L I _L
2 x 4 or	digital frequency	for positive/negative sensor signals, with diagnostic capability * max. 1 kHz	B _{L/H} I _L
2 x 8	digital	for positive/negative sensor signals, with diagnostic capability *	B _{L/H}
2 x 8	digital	for positive sensor signals, with diagnostic capability	BL

*) only positive sensor signals with diagnostic capability

Outputs

possible configurations

Abbreviat	ior	IS
А	=	analogue
Bн		binary High Side
BL		binary Low Side
FRQ/CYL		frequency inputs
I _H		pulse High Side
I _L		pulse Low Side
PWM		pulse width modulation
PWM	=	current-controlled output
%IWx	=	IEC address for analogue input
%IX0.xx	=	IEC address for binary input
		IEC address for binary output

max. 2 x 24 (corr. to 2 x 16 inputs)

Number	Signal	Version					
2 x 8 or or	digital PWM current-controlled	positive switching (High Side), with diagnostic capability PWM frequency 20250 Hz 0,14 A	B _H PWM PWM1				
2 x 8	digital	positive switching (High Side), with diagnostic capability	В _Н				
2 x 4 or	digital PWM	positive switching (High Side), with diagnostic capability PWM frequency 20250 Hz	B _H PWM				
2 x 4	digital	positive/negative switching (High/Low Side) with diagnostic capability (can also be used as H bridge)	B _{H/L} H bridge				

Ifm electronic gmbh • Friedrichstraße 1 • 45128 Essen We reserve the right to make technical alterations without prior notice.

CR0200 / page 1

18.09.2015

EXTENDEDCONTROLLER CR0200

CR0200		Tec	hnical data (per control unit)					
Operating voltage U _B		1032 V DC						
overvoltage			$36 \text{ V for } t \leq 10 \text{ s}$					
undervoltage detection switching-off in case of undervoltage			for $U_B \le 10 \text{ V}$ for $U_B \le 8 \text{ V}$					
Current consumption		≤ 160 m/	A (without external load at 24 V DC)					
CAN interface 1		CAN interface 2.0 B, ISO 11898						
Baud rate			1 Mbits/s (default setting 125 kbits/s)					
Communication profile			DS 301 version 4, CiA DS 401 version 1.4					
Node-ID (CANopen)			hex 7F (= dec. 127)					
CAN interface 2			N interface 2.0 A/B, ISO 11898					
Baud rate			1 Mbit/s (default setting 125 kbits/s)					
Communication profile			SAE J 1939 or free protocol					
Serial interface	0.6	11001	RS-232 C					
Baud rate Topology			38.4 / 57.6 kBit/s (default setting 57.6 kbits/s) nax. 2 participants); master-slave connection					
Protocol	P1	prec	defined ifm protocol (INTELHEX)					
Processor		CMOS microcontroller 16 bits C167CS						
			cycle frequency 20/40 MHz					
Device monitoring	undervoltage monitoring							
	watchdog function							
		Check	sum test for program and system xcess temperature monitoring					
Process monitoring concept			vo relays according to EN 954					
Tocess monitoring concept			or two groups of 12 outputs each					
Physical memory			Flash: 2 MByte					
···,		_	RAM: 256 kByte					
		F	Remanent memory: 32 kByte					
Memory allocation			See system manual					
		ifm.com → Da	it a sheet search \rightarrow CR0200 \rightarrow More information					
Status indication			three-colour LED (R/G/B)					
Operating states (Status-LED)								
	LED colour	Status	Description					
		off	no operating voltage					
	yellow	1 x on	initialisation or reset checks					
	green	5 Hz	no operating system loaded					
	green	2.0 Hz	Run					
	-	on	Stop					
	red	2.0 Hz	Run with error					
		on	fatal error or stop with error					

	Test standards and regulations							
Climatic test	Damp heat to EN 60068-2-30, test Db (≤ 95% rel. humidity, non-condensing) Salt mist test to EN 60068-2-52, test Kb, severity level 3 Degree of protection to EN 60529							
Mechanical resistance	Vibration to EN 60068-2-6, test Fc Shock to EN 60068-2-27, test Ea							
Immunity to conducted interference	to ISO 7637-2, pulses 2, 3a, 3b, severity level 4, function state A to ISO 7637-2, pulse 5, severity level 1, function state A to ISO 7637-2, pulse 1, severity level 4, function state C							
Immunity to interfering fields	to UN/ECE-R10 at 100 V/m (E1 type approval) and EN 61000-6-2 :2001 (CE)							
Interference emission	to UN/ECE-R10 (E1 type approval) and EN 61000-6-4 :2001 (CE)							
Tests for the approval for railway applications	to BN 411 002 (DIN EN 50155 clause 10.2)							
ifm electronic gmbh • Friedrichstraße 1 • 45128 Esse	en We reserve the right to make technical alterations without prior notice. CR0200 / page 2 18.09.2015							

CR0200	Characteristics of the inputs (per control unit)
Digital/analogue inputs (B _L , A) %IW0310 %IX0.0007 can be configured as	■ Voltage inputsinput voltage010/32 Vresolution12 bitsprecision± 1.0% FSinput resistance50/30 kΩinput frequency50 Hz
	 ■ Digital inputs for positive sensor signals, with diagnostic capability *) switch-on level 0.7 U_B switch-off level 0.4 U_B input resistance 30 kΩ input frequency 50 Hz
Digital inputs (B _L) %IX0.0811 %IX1.0003 can be configured as	
Digital inputs (B _L , I _L) %IX0.1215 can be configured as	■ Digital inputs for positive sensor signals, with diagnostic capability *) switch-on level 0.7 U _B switch-off level 0.4 U _B input resistance 2.86 k Ω input frequency 50 Hz
	■ Frequency inputs for positive sensor signals with diagnostic capability, evaluation with integrated comparator switch-on level 0.430.73 U _B switch-off level 0.29 U _B input resistance 2.86 k Ω input frequency max. 50 kHz
Digital inputs (B $_{L/H}$, I $_{L}$) %IX1.0407 can be configured as	$\label{eq:constraint} \begin{array}{ c c c } \blacksquare & \mbox{Digital inputs for positive/negative sensor signals, positive with diagnostic capability}^* \\ switch-on level & 0.7 \ U_B \\ switch-off level & 0.4 \ U_B \\ input resistance & 3.21 \ k\Omega \\ input frequency & 50 \ Hz \end{array}$
	■ Frequency inputs for positive sensor signals with diagnostic capability, evaluation with integrated comparator switch-on level $0.430.73 U_B$ switch-off level $0.29 U_B$ input resistance $3.21 k\Omega$ input frequency max. 1 kHz
Digital inputs (B _{L/H}) %IX1.0815 can be configured as	■ Digital inputs for positive/negative sensor signals, positive with diagnostic capability [*] switch-on level 0.7 U _B switch-off level 0.4 U _B input resistance 3.21 kΩ input frequency 50 Hz
Digital inputs (B _L) %IX2.0007 konfigurierbar als	■ Digital inputs for positive sensor signals, with diagnostic capability *) switch-on level 0.430.73 U _B switch-off level 0.29 U _B input resistance 3.21 k Ω input frequency 50 Hz
Test input	$\begin{tabular}{ c c c c c } \hline During the test mode (e.g. programming) the "TEST" connection must be connected to VBB_{S} (1032 V DC). \\ \hline For the "RUN" mode the test input must not be connected. \\ \hline input resistance & 3.21 k \Omega \end{tabular}$
*) NAMUR inputs	■ Digital inputs with diagnostic capability can be used as NAMUR inputs when used with an external resistor connection. supply voltage 525 V; e.g. ifm NAMUR sensors NT5001NN5002

CR0200	Characteristics of the outputs (per control unit)
Outputs (B _H , PWM, PWM ₁) %QX0.0007 can be configured as	■ Semiconductor outputs, with diagnostic capability positive switching (high side), short-circuit and overload protected switching voltage 1032 V DC switching current max. 4 A output frequency max. 100 Hz (depending on the load)
	 PWM outputs, diagnosis via current feedback PWM frequency max. 250 Hz mark-to-space ratio 199 % resolution depends on the PWM frequency load current max. 4 A
	Current-controlled outputs, diagnosis via current feedback load current $0,14$ A load resistance min. 3 Ω (at U _B = 12 V DC) min. 6 Ω (at U _B = 24 V DC)
	setting resolution 1 mA control resolution 5 mA accuracy ± 2% FS
Outputs (B _H) %QX0.0815 can be configured as	■ Semiconductor outputs, with diagnostic capability positive switching (high side), short-circuit and overload protected switching voltage 1032 V DC switching current max. 2 A output frequency max. 100 Hz (depending on the load)
Outputs (B _H , PWM) %QX1.00, 03, 04, 07 can be configured as	■ Semiconductor outputs, with diagnostic capability positive switching (high side), short-circuit and overload protected switching voltage 1032 V DC switching current max. 4 A output frequency max. 100 Hz (depending on the load)
	■ PWM outputs PWM frequency max. 250 Hz pulse ratio 199 % resolution depends on the PWM frequency load current max. 4 A
Outputs (B _{L/H}) %QX1.01, 02, 05, 06 can be configured as	 Semiconductor outputs, with diagnostic capability positive/negative switching (high/low side), short-circuit and overload protected switching voltage 1032 V DC switching current max. 4 A output frequency max. 100 Hz (depending on the load)
Overload protection (valid for all outputs)	max. 5 minutes (at 100%)
Internal relay outputs for electrically isolated deactivation of the outputs	Normally open contacts in series to 2 groups of 12 semiconductor outputs. Sustained forcing by means of hardware and additional controlling by means of user program.
	The relays must always be switched without load!
	total currentmax. 12 A per groupswitching current $0.115 A$ overload current $20 A$ number of operating cycles $\geq 10^{6}$ (without load)switching-time constant $\leq 3 ms$
Output Error	■ Semiconductor output, positive switching (high side) switching voltage 1032 V DC switching current max. 100 mA overload current 0.5 A switching function OFF (0 V) in case of an error
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	sen We reserve the right to make technical alterations without prior notice. CR0200 / page 4 18.09.2015

ifm electronic gmbh • Friedrichstraße 1 • 45128 Essen We reserve the right to make technical alterations without prior notice.

D.	JSSBELEGUNG / wiring		. ,.				-		CP
Pin	Potential	Bezeichnung / des					Bem	erkung / note	
23	VBB _S (1032 V DC)	Versorgung Sensore			nsors a	nd module			
)5	VBB _O (1032 V DC)		Versorgung Ausgänge / supply outputs						switched (1)
84	VBB _R (1032 V DC)	Versorgung über Re	lais / supply via re		relai	sgeschaltet / <i>relay</i>	switched (2)		
)1	GND s	Masse Sensoren une	d Modul / grouna	l sensors	s and r	nodule			
5	GNDo	Masse Ausgänge / c	round outputs						
2	GNDA	Masse Analogeingä		loaue o	utputs				
AN. R	S-232, ERROR, TEST		5.5	J					
Pin	Potential	Bezeichnung / des	cription				Rem	erkung / note	
4	CAN 1 H	CAN-Interface 1 (Hi					Den	ici kung / note	
32		CAN-Interface 1 (In	J .						
			,				C 4 F	14020	
26	CAN2 _H	CAN-Interface 2 (Hi	J .					J 1939	
5	CAN 2 L	CAN-Interface 2 (Lo	,				SAE	J 1939	
3	GND	Masse / ground (RS-							
6	RxD	RS-232 Interface (Pr	ogrammierung /	progran	nming)		Pin ()3, PC D-Sub (9 pi	in)
7	TxD	RS-232 Interface (Pr	ogrammierung /	progran	nming)		Pin ()2, PC D-Sub (9 pi	in)
3	ERROR	Fehlerausgang B _H /	error output B _H					·	
4	TEST	TEST-Eingang / test	,						
	JSGÄNGE / inputs/outp								
Pin	EINGÄNGE	Konfiguration	AUSGÄNGE	Konf	igurat	ion	diad	nosefähig*	relaisgeschalt
oin	INPUTS	configuration	OUTPUTS		guratio		diag	nostic capability* IT / OUTPUT	relay switched
8	%IX0.00 / %IW03	B _L A	-	-			• /		
7	%IX0.01 / %IW04	B _L A	_	_			• /	_	
9	%IX0.02 / %IW05	B ₁ A	_	_			• /	_	
28	%IX0.03 / %IW06	B ₁ A		_			• /		
0	%IX0.04 / %IW07			_			• /		
		-							
9	%IX0.05 / %IW08	B _L A	_	-			• /		
1	%IX0.06 / %IW09	B _L A	_	-			• /	-	
0	%IX0.07 / %IW10	B _L A	_	-			• /	-	
4	%IX0.08	BL	%QX0.00	В _Н	PWM	PWM ₁	- /	•	VBB ₀ (1)
5	%IX0.09	BL	%QX0.01	В _Н	PWM	PWM ₁	- /	•	VBB _O (1)
6	%IX0.10	BL	%QX0.02	В _Н	PWM	PWM ₁	- /	•	VBB ₀ (1)
7	%IX0.11	BI	%QX0.03	В _Н	PWM	PWM ₁	- /	•	VBB ₀ (1)
0	%IX0.12	B _L I _L (FRQ 0)	_	_			• /	_	0()
)2	%IX0.13	B _L I _L (FRQ 1)	_	_			• /		
21	%IX0.14			_			• /		
8	%IX0.15	B _L I _L (FRQ 3)	_	-			• /) (55 (2)
6	%IX1.00	BL	%QX0.04		PWM	PWM	- /		VBB _R (2)
4	%IX1.01	BL	%QX0.05	В _Н	PWM	PWM	- /	•	VBB _R (2)
7	%IX1.02	BL	%QX0.06	В _Н	PWM	PWM	- /	•	$VBB_{R}(2)$
3	%IX1.03	BL	%QX0.07	В _Н	PWM	PWM	- /	•	$VBB_{R}(2)$
9	%IX1.04	B _{L/H} I _L (CYLO)	_	_			• /	_	
5	%IX1.05	B _{L/H} I _L (CYL1)	_	_			• /	_	
8	%IX1.06	$B_{L/H}$ I _L (CYL2)		_			• /		
5 7	%IX1.07	$B_{L/H}$ I _L (CYL3)	_	_			• /		
	%IX1.07						• /		\sqrt{BR} (1)
9		B _{L/H}	%QX0.08	B _H					$VBB_{O}(1)$
3	%IX1.09	B _{L/H}	%QX0.09	B _H			• /		VBB _O (1)
0	%IX1.10	B _{L/H}	%QX0.10	B _H			• /		VBB _O (1)
2	%IX1.11	B _{L/H}	%QX0.11	В _Н			• /		VBB _O (1)
1	%IX1.12	B _{L/H}	%QX0.12	В _Н			• /	•	VBB ₀ (1)
2	%IX1.13	B _{L/H}	%QX0.13	В _Н			• /	•	VBB ₀ (1)
3	%IX1.14	B _{L/H}	%QX0.14	В _Н			• /	•	VBB ₀ (1)
4	%IX1.15	B L/H	%QX0.15	B _H			• /	•	VBB ₀ (1)
8	%IX2.00	BL	%QX1.00		PWM		• /		VBB _R (2)
9	%IX2.00	BL	%QX1.00	B _{H/L}		H-Bridge	• /		VBB _R (2)
1	%IX2.02	BL	%QX1.02	B _{H/L}		H-Bridge	• /		$VBB_{R}(2)$
0	%IX2.03	BL	%QX1.03		PWM		• /		VBB _R (2)
51	%IX2.04	BL	%QX1.04		PWM		• /		VBB _R (2)
52	%IX2.05	BL	%QX1.05	B _{H/L}		H-Bridge	• /	•	VBB _R (2)
6	%IX2.06	BL	%QX1.06	B _{H/L}		H-Bridge	• /	•	VBB _R (2)
•		BL	%QX1.07		PWM		• /	_	VBB _R (2)

CR0200 / page 5 18.09.2015 ifm electronic gmbh • Friedrichstraße 1 • 45128 Essen We reserve the right to make technical alterations without prior notice.

	JSSBELEGUNG / wiring						_		CP
Pin	Potential	Bezeichnung / des					Ben	nerkung / note	
23	VBB _S (1032 V DC)	Versorgung Sensore			nsors a	nd module			
05	VBB ₀ (1032 V DC)	Versorgung Ausgänge / supply outputs						sgeschaltet / relay	
34	VBB _R (1032 V DC)	Versorgung über Relais / supply via relay						sgeschaltet / relay	switched (2)
01	GND s	Masse Sensoren un	d Modul / <i>ground</i>	sensoi	rs and r	nodule			
15	GND ₀	Masse Ausgänge / g	ground outputs						
12	GND _A	Masse Analogeingä	nge / ground ana	logue d	outputs				
CAN, R	S-232, ERROR, TEST								
Pin	Potential	Bezeichnung / des	cription				Ben	nerkung / note	
4	CAN1 _H	CAN-Interface 1 (Hi	gh)						
32	CAN1	CAN-Interface 1 (Lo	w)						
26	CAN2 H	CAN-Interface 2 (Hi	gh)				SAE	J 1939	
25	CAN2	CAN-Interface 2 (Lo	w)				SAE	J 1939	
3	GND	Masse / ground (RS	-232/CAN)						
)6	RxD	RS-232 Interface (Pr		prograi	nmina)		Pin (03, PC D-Sub (9 pi	n)
)7	TxD	RS-232 Interface (Pr	3 3 1		<u> </u>			02, PC D-Sub (9 pi	
13	ERROR	Fehlerausgang B _H /		orograi	inning/				,
24	TEST	TEST-Eingang / test							
	JSGÄNGE / inputs/outp		1						
		Konfiguration		Kan			ممالم	anosefähig*	roloicacocholt
Pin Din	EINGÂNGE INPUTS	configuration	AUSGÂNGE OUTPUTS		igurat guratio		diag	nostic capability* JT / OUTPUT	relaisgeschalt relay switched
8	%IX32.00 / %IW35	B _L A	_	-			• /		
27	%IX32.01 / %IW36	B _L A		_			• /		
9	%IX32.02 / %IW37	B ₁ A	_	_			• /	_	
28	%IX32.03 / %IW38	B ₁ A	_	_			• /		
0	%IX32.04 / %IW39	B ₁ A		_			• /		
29	%IX32.05 / %IW40	BL A		_			• /		
1	%IX32.06 / %IW40			_			• /		
		-							
80	%IX32.07 / %IW42	B _L A	-	-	514/44		• /		
4	%IX32.08	BL	%QX32.00	B _H	PWM	PWM	- /		VBB ₀ (1)
15	%IX32.09	BL	%QX32.01	В _Н	PWM	PWM	- /		VBB ₀ (1)
6	%IX32.10	BL	%QX32.02	В _Н	PWM	PWM	- /		VBB _O (1)
7	%IX32.11	BL	%QX32.03	В _Н	PWM	PWM	- /	•	VBB _O (1)
20	%IX32.12	B_{L} I_{L} (FRQ 0)	_	-			• /	-	
2	%IX32.13	B_{L} I_{L} (FRQ 1)	_	-			• /	-	
21	%IX32.14	B _L I _L (FRQ 2)	_	-			• /	-	
8	%IX32.15	B _L I _L (FRQ 3)	_	_			• /	-	
6	%IX33.00	B	%QX32.04	В _Н	PWM	PWM	- /	•	VBB _R (2)
4	%IX33.01	BL	%QX32.05	B _H	PWM	PWM	- /	•	VBB _R (2)
7	%IX33.02	B	%QX32.06	B _H	PWM	PWM	- /	•	VBB _R (2)
3	%IX33.03	B	%QX32.07	B _H	PWM	PWM	- /		VBB _R (2)
9	%IX33.04	B _{L/H} I _L (CYLO)	70Q/(32.07	ВH	1 00101		• /		V D D R (2)
5	%IX33.05								
		$B_{L/H}$ I _L (CYL1)		_			• /		
8	%IX33.06	$B_{L/H}$ I _L (CYL2)		-			• /		
57	%IX33.07	B _{L/H} I _L (CYL3)	-	-			• /		
9	%IX33.08	B L/H	%QX32.08	B _H			• /		VBB ₀ (1)
3	%IX33.09	B _{L/H}	%QX32.09	B _H			• /		VBB ₀ (1)
0	%IX33.10	B _{L/H}	%QX32.10	В _Н			• /		VBB _O (1)
2	%IX33.11	B _{L/H}	%QX32.11	В _Н			• /		VBB _O (1)
1	%IX33.12	B _{L/H}	%QX32.12	В _Н			• /	•	VBB ₀ (1)
2	%IX33.13	B _{L/H}	%QX32.13	В _Н			• /	•	VBB ₀ (1)
3	%IX33.14	B _{L/H}	%QX32.14	В _Н			• /	•	VBB ₀ (1)
4	%IX33.15	B _{L/H}	%QX32.15	В _Н			• /	•	VBB ₀ (1)
8	%IX34.00	BL	%QX33.00	B _H	PWM		• /	•	VBB _R (2)
.9	%IX34.01	BL	%QX33.01	B _{H/L}		H-Bridge	• /		VBB _R (2)
1	%IX34.02	BL	%QX33.02	B _{H/L}		H-Bridge	• /		VBB _R (2)
50	%IX34.03	BL	%QX33.02	B _H	PWM	in phage	• /		VBB _R (2)
50 51					PWM				
	%IX34.04	BL	%QX33.04	B _H	ΓVVIVI	LI Dride -	• /		$VBB_R(2)$
52	%IX34.05	BL	%QX33.05	B _{H/L}		H-Bridge	• /		VBB _R (2)
6	%IX34.06	BL	%QX33.06	B _{H/L}		H-Bridge	• /		VBB _R (2)
35	%IX34.07	BL	%QX33.07	В _Н	PWM		• /	•	$VBB_{R}(2)$

ifm electronic gmbh • Friedrichstraße 1 • 45128 Essen We reserve the right to make technical alterations without prior notice. CR0200 / page 6 18.09.2015