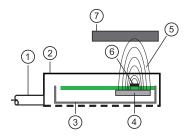
Датчики для обнаружения стали

(i)

Данная информационная карточка считается дополнением к каталогу основных датчиков позиционирования и технической спецификации. Более подробная информация и контактные адреса находятся на нашем сайте www.ifm.com.

Функции и ключевые характеристики

Во время эксплуатации датчики подвергаются влиянию окружающей среды, что может повлиять на функционирование, срок эксплуатации, качество и надежность датчика.


Пользователь несет ответственность за пригодность датчика для предполагаемого применения. Это действительно в частности для применения во взрывоопасных средах и сложных условиях эксплуатации, как давление, химические средства, колебание температуры, влажность и излучение, а также механическая нагрузка, особенно при неправильной установке датчика.

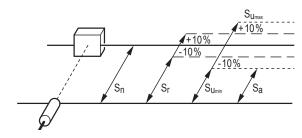
Запрещено использование датчика в применении, где безопасность людей зависит от функционирования датчика. При не соблюдении инструкции по эксплуатации, возможна серьёзная травма обслуживающего персонала или смерть.

Принцип работы датчика для определения стали

Датчики для определения стали обнаруживают изменения магнитных полей, вызываемые ферромагнитными материалами.

- 1 подключение
- ② корпус
- ③ экранирующая пластина
- 4 магнит
- ⑤ активная зона
- 6 чип датчика
- 7 мишень из ферромагнитного материала

Важная информация			
Активная зона	Зона, находящаяся над чувствительной поверхностью, в которой датчик срабатывает на приближение ферромагнитного материала.		
Количество включений	Считает количество включений, при достижении максимального значения отсчёт начинается снова с 0.		
Количество переключений	Считает количество переключений, при достижении максимального значения отсчёт начинается снова с 0.		
Выходная функция (можно настроить)	Нормально открытый:	Объект в пределах активной зоны > выход переключен.	
	Нормально закрытый:	Объект в пределах активной зоны > выход заблокирован.	
	Положительное переключение:	положительный выходной сигнал (к L-).	
	Отрицательное переключение:	отрицательный выходной сигнал (к L+).	
Задержка выключения (можно настроить)	Время, в течение которого выход остается переключенным, после того как мишень вышла из активной зоны.		
Номинальное напряжение изоляции	Приборы DC с классом защиты III: 60 B DC		


Номинальный ток короткого замыкания	Для приборов с защитой от короткого замыкания: 100 А		
Номинальное импульсное выдерживаемое напряжение	Приборы постоянного тока с классом защиты III: 60 В АС: 0.8 кВ (≙ категория электрического перенапряжения II)		
Время задержки включения питания	Время, которое необходимо датчику для начала работы после подачи рабочего напряжения (в миллисекундном диапазоне).		
Напряжение питания	Диапазон питающих напряжений, в котором датчик работает бесперебойно. Необходимо использовать стабилизированное и сглаженное постоянное напряжение! Учитывайте остаточную пульсацию!		
Часы работы	Время, в течение которого на датчик подаётся рабочее напряжение. Остаётся, когда достигнуто максимальное значение.		
Задержка включения (можно настроить)	Время, в течение которого выход переключен после того, как мишень достигла активной зоны.		
Диапазон настройки	Диапазон, в котором можно настроить точку переключения.		
Категория использования	Приборы постоянного тока: DC-13 (управление соленоидами)		
Гистерезис	Разница между точками включения и выключения.		
Защита от короткого замыкания	Благодаря импульсной защите от короткого замыкания датчики ifm защищены от избыточного тока. Пусковой ток ламп накаливания, электронных реле и низкоомных нагрузок может вызвать срабатывание этой защиты и выключение датчика!		
Диапазон измерения	Диапазон, в котором изменяется рабочее значение.		
Верхний предел диапазона измерения	Максимальное значение, которого может достичь рабочее значение в пределах диапазона измерения.		
Стандартный объект	Квадратная стальная пластина (напр. S235JR) толщиной 1 мм с длиной стороны, которая равна диаметру чувствительной поверхности или 3 х S _n , в зависимости от того, какое значение выше.		
Стандарт продукта	IEC 60947-5-2		
Повторяемость	Разница между двумя измерениями S _r . Макс. 10 % от S _r .		
Частота переключения	Количество переключений датчика в определенном интервале времени.		
	Демпфирование со стандартной мишенью на половине S _n . Соотношение демпфированный - недемпфированный (зуб - промежуток) = 1 : 2.		
	i Соблюдайте время цикла IO-Link.		
Защита	IРху в соответствии с IEC 60529		
Устойчивость к сварке	Интерференционный фильтр от помех для применения в сварочных работах.		
Потребление тока	Ток для питания 3-проводных приборов постоянного напряжения.		
Дрейф температуры	Смещение точки переключения из-за изменения температуры окр. среды в пределах значений, указанных в спецификации.		
Условия транспортировки	Если в спецификации не указано иное, то действует следующее:		
и хранения	Температура транспортировки и хранения:Мин. = - 40 °C. Макс. = макс. температура окружающей среды в соответствии со спецификацией.		
	Относительная влажность воздуха (RH) не должна превышать 50 % при +70 °C. При низкой температуре допускается более высокая влажность воздуха.		
	Срок годности: 5 лет.		
	Высота транспортировки и хранения: без ограничений.		

Датчики для обнаружения стали

Степень загрязнения Датчики для обнаружения стали предназначены для применения в степени загрязнения 3. Техническое обслуживание, При правильной эксплуатации техобслуживание и ремонт не требуются. ремонт и утилизация Ремонт прибора может производить только изготовитель По окончании срока службы прибор следует утилизировать в соответствии с нормами и требованиями действующего законодательства.

Расстояние срабатывания (по отношению к стандартной мишени)

Номинальное расстояние срабатывания Sn

= характеристическое значение прибора

Реальный диапазон срабатывания Sr

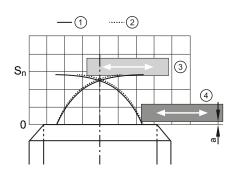
= индивидуальное отклонение при комнатной температуре между 90 % и 110 %

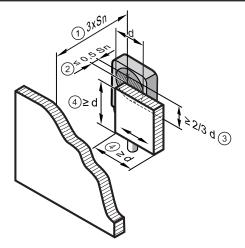
Необходимый диапазон

= смещение точки переключения между 90 % (S_{Umin} = S_a) и 110 % (S_{Umax}) от S_r

срабатывания Su

= надежное переключение между 0 % и 81 % от S_n


Надежный диапазон срабатывания = рабочее расстояние срабатывания S_а


Расстояние гарантированного = S_{Umax} + макс. гистерезис = 143 % от S_{n}

отключения

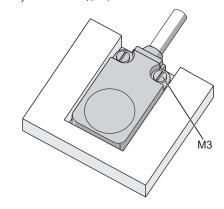
Датчики для обнаружения стали реагируют только на ферромагнитные металлы.

Поперечное приближение и диапазоны (действительно для строительной стали, напр. S235JR)

- (1) Стандартная кривая включения (для медленного приближения)
- ② Стандартная кривая выключения (для медленного приближения)
- ③ Плохая повторяемость
- 4 Хорошая повторяемость

Хорошая повторяемость точек переключения: чем ближе мишень размещена к чувствительной поверхности, тем лучше.

Главная рекомендация:

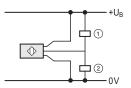

а = 10 % от номинального расстояния срабатывания

- (1) Расстояние до заднего фона
- 2 Рекомендуемое расстояние мишени
- ③ Рекомендуемый уровень покрытия чувствительной поверхности
- 4 Рекомендуемый размер мишени

Рекомендации по монтажу заподлицо и незаподлицо в металл

Инструкция по установке прямоугольного корпуса

установка заподлицо:



Датчики для обнаружения стали

Электрическое подключение

К работам по установке и вводу в эксплуатацию допускаются только квалифицированные специалисты - электрики.

- (1) отрицательное переключение
- ② положительное переключение

Конфигурация кабелей и разъемов

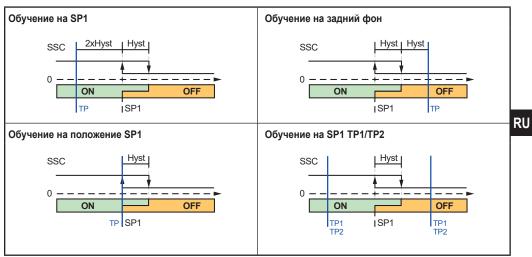
Цвета: ВК: черный, ВN: коричневый, ВU: синий, WH: белый

Стандартная конфигурация для 3-проводного DC:

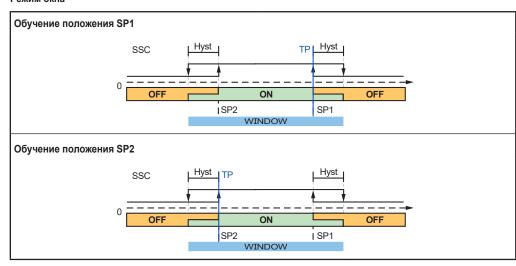
		Кабель	Клеммная коробка	Разъем US-100
L+		BN	1/3	контакт 1 / BN
L-		BU	2 / 4	контакт 3 / BU
Выход	7-	ВК	X	контакт 2 / WH контакт 4 / BK

Подключение контактов разъемов US-100 (смотря на штекер датчика)

Контакт 4: ВК Контакт 1: BN


Информацию о проводке и конфигурации контактов, а также данные о специальных исполнениях см. схемы подключения в нашем основном каталоге для датчиков позиционирования.

Диагностические данные IO-Link


Диапазон рабочей переменной превышен: Предупреждение (OL) Диапазон рабочей переменной слишком низкий: Предупреждение (UL) Неисправность аппаратного обеспечения прибора (напр. Сообщение об ошибке головка датчика повреждена):

Определение точки переключения IO-Link

Одноточ. режим

Режим окна

SP: точка переключения

ТР: точка обучения

Hyst: гистерезис

SSC: Канал коммутационного сигнала

Датчики для обнаружения стали

IO-Link параметры прибора

Параметры	Значение	Объяснение	Заводская настройка	
P-n	PnP, nPn	Настройка полярности выхода коммутационных выходов.	PnP	
SSCx Param. SP1		Ручная настройка точки переключения SP1:		
	20600	Одноточ. режим: соответствующая точка переключения	SSC1: 500 SSC2: 500	
		Режим окна: Настройка точки включения SP1 (SP1 > SP2)		
SSCx		Ручная настройка точки переключения SP2:		
Param. SP2	20600	Можно использовать только в режиме окна: Настройка точки выключения SP2 (SP2 < SP1)	SSC1: 200 SSC2: 200	
		Настройка логики точки переключения / логики для		
SSCx		обнаруженного объекта:	High active	
Config. Logic	High active	нормально открытый (Н.О.)		
Low active		нормально закрытый (Н.З.)		
SSCx Config. Mode		Настройка точки переключения:		
	Single Point	Датчик переключается на заданном значении (SP1).	Single Point	
	Окно	Датчик переключается в выбранном диапазоне между SP1 и SP2 (SP2 ≤ x ≤ SP1).		
SSCx Config. Hyst	10200	Настройка гистерезиса.	40	
SSCx switch-on delay	060,000 мс	Время, на которое задерживается включение датчика.	0	
SSCx switch-off delay	060,000 мс	Время, на которое задерживается выключение датчика.	0	
SSCx counter	02147483647	Количество переключений. Сброс через IO-Link	0	
SSCx counter switching threshold	02147483647	Ручная настройка порога срабатывания для SSCх переключений.	0	
TI Select	SSC1 SSC2	Выбор настраиваемого канала переключения.	SSC1	

SSCx = SSC1 или SSC2

Возможности обучения

Параметры	Объяснение
Teach SP1	Обучение текущей позиции объекта, который будет определен как точка переключения. Точка переключения выбирается непосредственно перед точкой обучения.
Teach SP1 TP1	Последовательность обучения установки точки переключения SP1. Первая часть (ТР1): обучение на объект.Обе части последовательности обучения для ТР1 и ТР2 должны быть выполнены, чтобы разместить точку переключения SP1 между объектом и задним фоном.
Teach SP1 TP2	Последовательность обучения установки точки переключения SP1. Вторая часть (TP2): Обучение на заднем фоне. Необходимо выполнить обе части последовательности обучения для TP1 и TP2
Teach SP1 start	Запускает обучение. Точка переключения определяется на основе записанных циклов демпфирования до тех пор, пока последовательность обучения не будет остановлена.
Teach SP1 stop	Останавливает последовательность обучения.
Teach background	Обучение только на задний фон, точка переключения определяется непосредственно перед задним фоном. Эта настройка является альтернативой для обучения SP1, если нет доступного объекта.
Teach SP1 position	Обучение текущей позиции объекта, который будет определен как точка переключения (SP1).Точка обучения соответствует точке переключения.
Teach SP2 position	Можно использовать только в режиме окна. Обучение текущей позиции объекта, который будет определен как точка переключения (SP2). Точка обучения соответствует точке переключения.
Cancel teaching	Удаляет текущей процесс обучения.
Teaching with the next switch-on	Запускает обучение (датчик демпфируется не менее 3-х раз) и затем перезапускает датчик.

SP = точка переключения, TP = точка обучения