

Notice d'utilisation originale
Détecteurs de sécurité optoélectroniques
(barrage immatériel de sécurité /
barrière de sécurité multifaisceaux)
avec tube protecteur IP 69K
Largeur de protection (portée) 0...15 m

OY4xxS

Contenu

1	Remarque préliminaire	4
	Consignes de sécurité	
3	Fourniture	7
4	Fonctionnement et caractéristiques	7
5	Fonction	8
6	Montage	9
	6.1 Notices de montage	9
	6.2 Calcul de la distance de sécurité minimale	
	6.3 Montage vertical des barrages immatériels de sécurité / barrières de sécu	ıri-
	té multifaisceaux	
	6.3.1 Barrages immatériels de sécurité résolution 30 mm	
	6.3.2 Barrières de sécurité à 2, 3 et 4 faisceaux	.13
	6.4 Montage horizontal des barrages immatériels de sécurité	
	6.5 Fixation et orientation optique	
	6.5.1 Orientation optique	
	6.6 Distance des surfaces réfléchissantes	
	6.7 Systèmes multiples	.17
	6.8 Utilisation de miroirs de renvoi	.18
7	Raccordement électrique	.19
	7.1 Schéma de branchement émetteur	
	7.2 Schéma de branchement récepteur	.20
8	Modes de fonctionnement	21
	8.1 Fonctionnement automatique	
	8.2 Fonctionnement manuel	
	8.3 Raccordement de contacteurs externes	.23
	8.4 Fonction test	
	8.4.1 Fonction test interne	
9	Eléments de service et d'indication	.24
	9.1 Indications LED pour l'orientation optique	
	1 1	

9.1.1 Orientation en mode automatique	25
10 Fonctionnement	27 27 27
11 Schéma d'encombrement	29 30
12 Données techniques	33
13 Correction de défauts	34
14 Maintenance, réparation et élimination	36
15 Termes et abréviations	37
16 Annexe	

1 Remarque préliminaire

La notice fait partie de l'appareil. Elle s'adresse à des personnes compétentes selon les directives CEM, basse tension et les règlements de sécurité.

Elle fournit des informations sur l'utilisation correcte du produit.

Lire la notice avant l'utilisation afin de vous familiariser avec les conditions environnantes, l'installation et le fonctionnement.

Respecter les consignes de sécurité.

1.1 Symboles utilisés

- Action à faire
- > Retour d'information, résultat
- → Référence
 - O LED éteinte
 - LED allumée
- Remarque importante
 - Le non-respect peut aboutir à des dysfonctionnements ou perturbations.
- Information Remarque supplémentaire.
 - Protection de zone pour la main
- Protection de zone pour le corps ou des parties du corps
- Protection de surface pour le corps ou des parties du corps
- Protection de zone pour le corps

1.2 Avertissements utilisés

A AVERTISSEMENT

Avertissement de dommages corporels graves.

Danger de mort ou de graves blessures irréversibles.

2 Consignes de sécurité

- Respecter les consignes de la notice d'utilisation.
- Toute responsabilité est déclinée en cas de non-respect des consignes ou des normes, en particulier en cas de mauvaises manipulations et/ou modifications de l'appareil.
- L'appareil ne doit être monté, raccordé et mis en service que par un technicien dûment formé aux consignes de sécurité.
- Respecter les normes techniques pertinentes correspondantes à l'application.
- Respecter les exigences de la norme EN 60204, EN 999 et ISO 13855 lors de l'installation.
- Prendre contact avec le fabricant en cas de dysfonctionnement de l'appareil.
 Des interventions sur l'appareil ne sont pas permises.
- Mettre l'appareil hors tension en externe avant de commencer à travailler.
 Mettre hors tension les circuits de charge relais alimentés séparément.
- Effectuer un test complet de bon fonctionnement après installation du système.
- Utiliser l'appareil uniquement sous les conditions d'environnement spécifiées (→ 12 Données techniques). Contacter le fabricant en cas de conditions d'environnement particulières.
- En cas de questions sur la sécurité si nécessaire contacter les autorités responsables de votre pays.

A AVERTISSEMENT

En cas d'utilisation incorrecte du produit, la sécurité et l'intégrité de personnes et d'installations ne peuvent pas être garanties.

Danger de mort ou de graves blessures irréversibles.

- ► Respecter toutes les remarques de cette notice concernant l'installation et l'utilisation.
- ▶ Utiliser les détecteurs optoélectroniques de sécurité seulement sous les conditions spécifiées et conformément aux prescriptions.

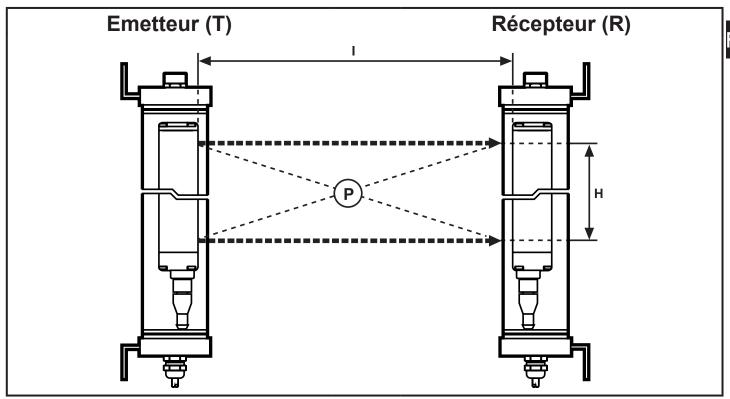
2.1 Exigences relatives à la sécurité de l'application

Les exigences de sécurité de chaque application doivent correspondre aux exigences spécifiées dans cette notice.

Respecter les obligations suivantes :

- ▶ Respecter les conditions d'utilisation spécifiées (→ 12 Données techniques). L'utilisation des détecteurs de sécurité optoélectroniques près de rayonnements ionisants n'est pas admise. Le cas échéant l'utilisation près de fluides actifs chimiquement et biologiquement doit être vérifiée.
- ▶ Pour des applications dans l'agroalimentaire, des tests de résistance de la matière des détecteurs de sécurité optoélectroniques avec tube protecteur ont été effectués. Pour des informations sur les produits chimiques utilisés dans les tests voir le certificat ECOLAB correspondant ou contacter votre filiale ifm.
- ► Choisir la fonction normalement fermée pour tous les circuits de sécurité externes raccordés au système.
- ➤ Si les détecteurs optoélectroniques de sécurité passent à l'état défini comme état de sécurité dû à un défaut interne, des mesures doivent être prises pour garantir l'état de sécurité si l'installation continue son fonctionnement.
- ▶ Remplacer les appareils endommagés.

La fonction de protection des détecteurs optoélectroniques de sécurité n'est garantie qu'avec les conditions suivantes :


- La commande de la machine peut être contrôlée électriquement et le mouvement machine dangereux peut être arrêté immédiatement et à chaque moment du cycle de travail.
- Il n'y a aucun danger, pour les opérateurs, d'éjection de matériaux ou de parties de machine.
- Le point dangereux n'est accessible que par la zone protégée.

3 Fourniture

- 2 détecteurs optoélectroniques de sécurité (1 émetteur et 1 récepteur) avec tube protecteur IP 69K
- 1 notice d'utilisation détecteurs de sécurité optoélectroniques avec tube protecteur IP 69K, numéro d'article 704860

Si l'un des composants mentionnés manque ou est endommagé, contacter l'une des filiales ifm.

4 Fonctionnement et caractéristiques

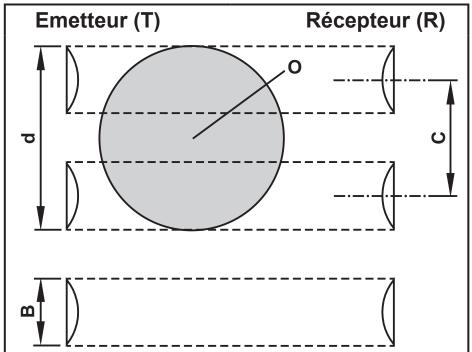
P = zone protégée ; I = largeur de protection (portée) ; H = hauteur de protection

Les barrages immatériels de sécurité / barrières de sécurité multifaisceaux OY4xxS sont des dispositifs protecteurs optoélectroniques multifaisceaux selon CEI 61496 et sont constitués d'un émetteur et d'un récepteur.

5 Fonction

La zone protégée (P) est générée entre l'émetteur et le récepteur et est définie par l'hauteur de protection (H) et la largeur de protection (portée) (I).

L'hauteur de protection est l'hauteur protégée par le barrage immatériel de sécurité / la barrière de sécurité multifaisceaux. Elle dépend du boîtier (→ 12 Données techniques).


Si les barrages immatériels de sécurité sont installés horizontalement, cette valeur indique la profondeur de la zone protégée.

La largeur de protection (portée) est la distance maximale qui peut exister entre l'émetteur et le récepteur (→ 12 Données techniques).

Lorsque la zone protégée est libre, les deux sorties (OSSD) du récepteur sont actives.

Si un objet (O) avec un diamètre supérieur ou égal à la résolution (d) entre dans la zone protégée, les sorties sont désactivées.

La résolution (d) (capacité de détection) du barrage immatériel de sécurité dépend du diamètre de la lentille (B) et de la distance entre les lentilles (C) et reste constante dans toutes les conditions de l'application.

O = objet

C = distance lentilles

B = diamètre lentille

d = résolution

!

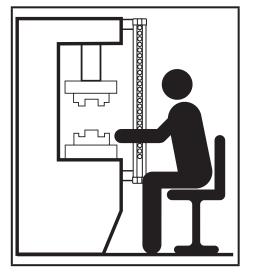
Pour qu'un objet (O) soit détecté de manière sûre dans la zone protégée, la dimension de l'objet (O) doit au minimum être aussi grande que la résolution (d).

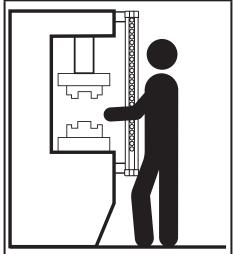
6 Montage

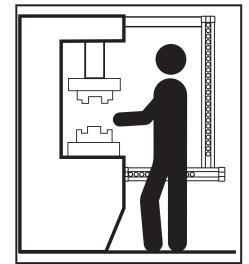
6.1 Notices de montage

Avant le montage des détecteurs de sécurité optoélectroniques, les conditions suivantes sont à garantir :

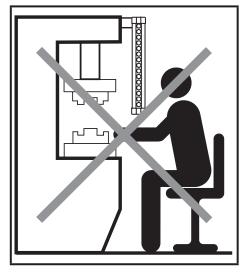
- Le degré de protection de l'équipement de protection électrosensible (ESPE) doit correspondre à l'évaluation des risques de la machine à surveiller.
- Le système de sécurité ne sert qu'à garantir une fonction de sécurité et n'est pas nécessaire pour le fonctionnement d'une machine.
- Il doit être possible d'arrêter immédiatement le mouvement dangereux de la machine. Pour cela, le temps d'arrêt de la machine doit être déterminé.
- L'objet à détecter doit être supérieur ou égal à la résolution du détecteur optoélectronique de sécurité.
- Monter les détecteurs de sécurité optoélectroniques de manière à ce que la zone dangereuse ne puisse être approchée que par la zone protégée. Selon l'application, d'autres dispositifs protecteurs peuvent être nécessaires.

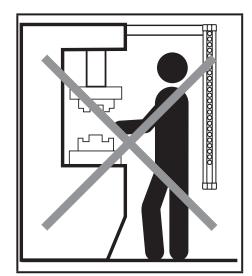

Les conditions environnantes du lieu de montage ne doivent pas affecter la fonction des détecteurs de sécurité optoélectroniques. A noter particulièrement :


- L'émetteur et le récepteur ne doivent pas être affectés par des sources lumineuses intensives (lampe spot, lumière du soleil etc.).
- La température ambiante doit être dans la gamme indiquée (→ 12 Données techniques).
- Un brumisage des lentilles dû à de grandes variations de température peut affecter le fonctionnement des détecteurs de sécurité optoélectroniques.
 Prendre des mesures appropriées pour éviter ce phénomène.
- Certaines conditions environnantes peuvent influencer la fonction des détecteurs de sécurité optoélectroniques. Pour les lieux de montage où il y a la possibilité de brouillard, pluie, fumée ou poussière, il est recommandé de prendre des mesures appropriées.
- Il faut respecter les directives EN 999 ou ISO 13855.



Pour le montage correct des détecteurs de sécurité optoélectroniques, prendre en compte les illustrations suivantes.


Montage correct



Montage non correct



6.2 Calcul de la distance de sécurité minimale

Il faut respecter une distance de sécurité minimale entre le détecteur optoélectronique de sécurité et le point de danger. Cette distance doit garantir que ce point dangereux ne puisse être atteint qu'après l'arrêt complet de l'état dangereux de la machine.

Monter le détecteur de sécurité optoélectronique à une distance supérieure ou égale à la distance minimale de sécurité (S), pour que la zone dangereuse (A) ne puisse être approchée qu'après l'arrêt total du mouvement dangereux de la machine.

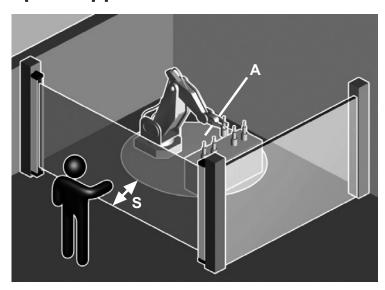
Selon la norme européenne EN 999:2008, la formule suivante doit être utilisée pour le calcul de la distance de sécurité minimale (S) :

$$S = K (t1 + t2) + C$$

 $C = 8 (d - 14)$

A = zone dangereuse

H = hauteur de protection


S = distance de sécurité minimale

C = distance supplémentaire

S	distance de sécurité minimale	mm
K	vitesse d'approche d'un objet vers la zone dangereuse	mm/s
t ₁	temps de réponse total du système de protection, du déclenchement à la désactivation	S
t ₂	temps de réponse total de la machine, du signal stop à la désactivation ou au passage à l'état défini comme sûr	S
С	distance supplémentaire	mm
d	résolution (capacité de détection)	mm

Le non-respect de la distance de sécurité minimale peut aboutir à une limitation ou à la perte de la fonction de sécurité.

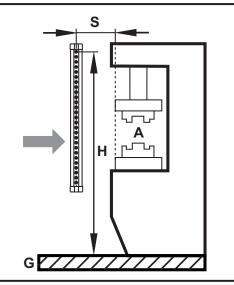
Exemple d'application:

A = zone dangereuse S = distance de sécurité minimale

6.3 Montage vertical des barrages immatériels de sécurité / barrières de sécurité multifaisceaux

6.3.1 Barrages immatériels de sécurité résolution 30 mm

Ces boîtiers sont dédiés à la protection de zone pour les mains (protection des mains).


Ils ne doivent pas être utilisés pour la protection des doigts!

La distance de sécurité minimale (S) est déterminée à l'aide de la formule suivante :

$$S = 2000 (t_1 + t_2) + 8 (d - 14)$$

Cette formule s'applique aux distances de sécurité minimales (S) entre 100 et 500 mm. Si le calcul indique que S est supérieur à 500 mm, la distance peut être réduite à une valeur minimale de 500 mm en utilisant la formule suivante:

$$S = 1600 (t_1 + t_2) + 8 (d - 14)$$

H = hauteur

S = distance de sécurité minimale

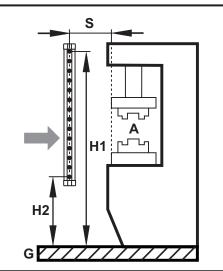
G = niveau référence

S'il est possible - en raison d'une configuration spéciale de la machine - d'accéder à la zone dangereuse par le haut, le faisceau le plus haut du barrage immatériel de sécurité doit se trouver sur une hauteur (H) (mesurée à partir du niveau de référence (G)) dont la valeur doit être déterminée selon les spécifications dans ISO 13855.

FR

6.3.2 Barrières de sécurité à 2, 3 et 4 faisceaux

Ces boîtiers sont dédiés à la protection de zone pour le corps entier.



Ils ne peuvent pas être utilisés pour une protection des mains ou des parties du corps!

La distance de sécurité minimale (S) est déterminée à l'aide de la formule suivante :

$$S = 1600 (t_1 + t_2) + 850$$

La hauteur (H1) du faisceau le plus haut mesurée par rapport au niveau de référence (G) ne doit pas être inférieure à 900 mm tandis que la hauteur (H2) du faisceau le plus bas ne doit pas dépasser 300 mm (ISO 13855).

A = zone dangereuse

Hx = hauteur

S = distance de sécurité minimale

G = niveau référence

6.4 Montage horizontal des barrages immatériels de sécurité

Ces boîtiers sont dédiés à la protection de surface pour le corps ou des parties du corps


Lors du montage horizontal s'assurer que la distance entre le début de la zone dangereuse (A) et le faisceau du barrage immatériel de sécurité le plus éloigné de (A), est supérieure ou égale à la distance de sécurité minimale (S). Elle est calculée comme suit :

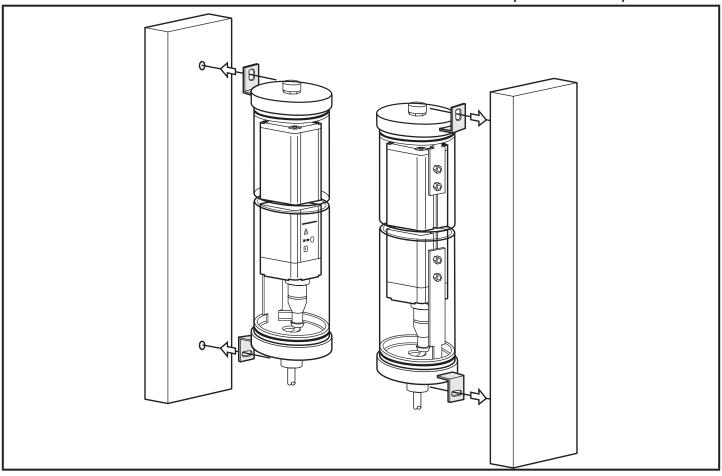
$$S = 1600 (t_1 + t_2) + 1200 - 0.4 H$$

où H est la hauteur de la zone protégée par rapport au niveau référence (G) de la machine ;

$$H = 15 (d - 50)$$

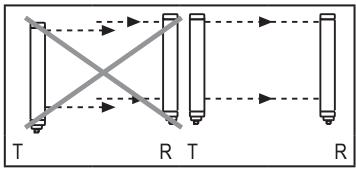
dans ce cas : H < 1 m (selon ISO 13855).

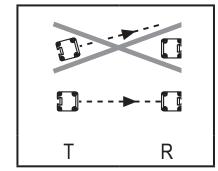
A = zone dangereuse

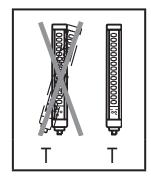

H = hauteur

S = distance de sécurité minimale

G = niveau référence


6.5 Fixation et orientation optique


Une orientation correcte de l'émetteur et du récepteur est décisive pour le fonctionnement correct des détecteurs de sécurité optoélectroniques.

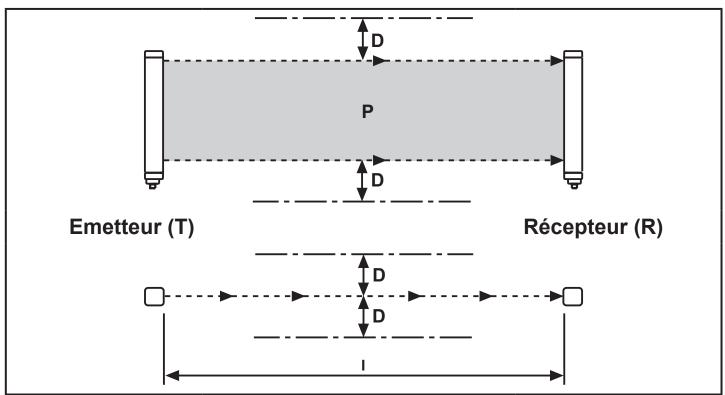


► Monter l'émetteur et le récepteur de sorte qui'ils se trouvent exactement faceà-face.

6.5.1 Orientation optique

T = émetteur ; R = récepteur

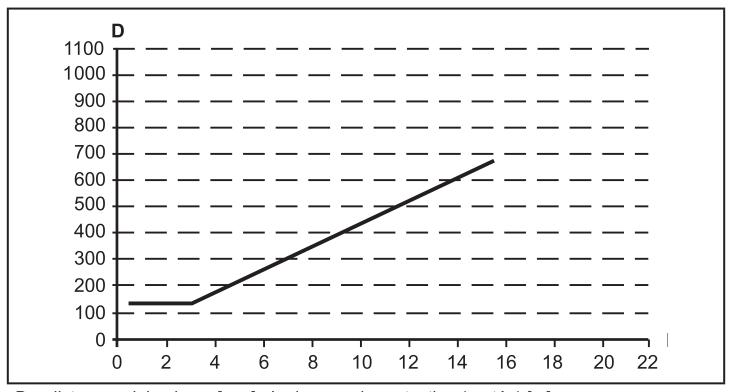
- Orienter l'émetteur et le récepteur de sorte qu'ils se trouvent en parallèle à la même hauteur et que les câbles soient orientés dans la même direction.
- ▶ Visser l'émetteur et le récepteur.


Les affichages LED du récepteur aident à orienter correctement les détecteurs optoélectroniques de sécurité. (→ 9.1 Indications LED pour l'orientation optique)

6.6 Distance des surfaces réfléchissantes

Des surfaces réfléchissantes proches des détecteurs de sécurité optoélectroniques peuvent éliminer la fonction de sécurité du système.

La distance minimale (D) dépend de la largeur de protection (I) en tenant compte de l'angle de projection et de réception.

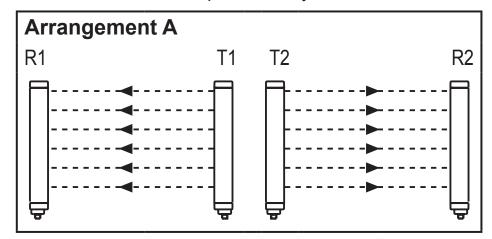

Il faut respecter la distance minimale (D) entre les surfaces réfléchissantes et la protection (P). En cas de non-respect, l'objet à détecter ne peut pas être détecté. En cas d'utilisation incorrecte du produit, la sécurité et l'intégrité de personnes et d'installations ne peuvent pas être garanties.

D = distance minimale; I = largeur de protection (portée) ; P = zone protégée

▶ Après le montage, vérifier par une interruption intentionnelle de la zone protégée (P) si des surfaces réfléchissantes affectent le fonctionnement des détecteurs optoélectroniques de sécurité.

Distance de sécurité minimale des surfaces réfléchissantes

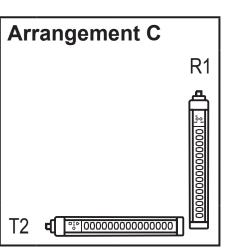
D = distance minimale en [mm] ; I = largeur de protection (portée) [m]


6.7 Systèmes multiples

L'utilisation de plusieurs barrages immatériels de sécurité / barrières de sécurité multifaisceaux peut aboutir à des défauts de fonctionnement et éliminer la fonction de protection.

Monter les barrages immatériels de sécurité / barrières de sécurité multifaisceaux de sorte que le faisceau émis de l'émetteur d'un système ne puisse être détecté que par le récepteur correspondant.

Les règles de montage importantes suivantes sont à respecter pour éviter une influence mutuelle de plusieurs systèmes :

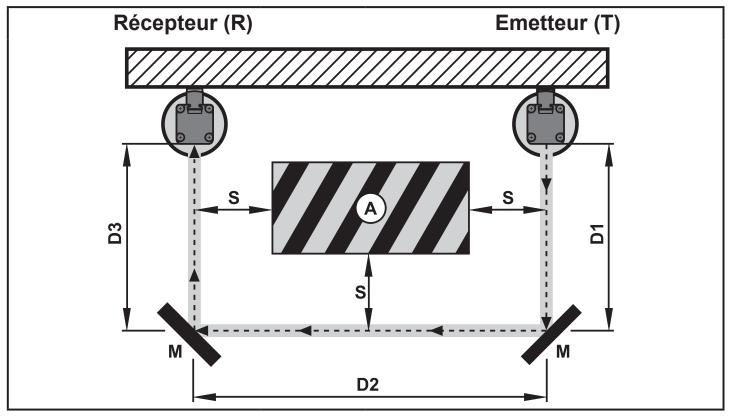

Arrangement B T1 R1 R1 R2 T2

Arrangements possibles:

A: Position des deux émetteurs l'un près de l'autre

B: Position de l'émetteur 1 et du récepteur 2 l'un au-dessus de l'autre

C: Combinaison en forme "L"


T = émetteur ; R = récepteur

6.8 Utilisation de miroirs de renvoi

Un ou plusieurs miroirs de renvoi (disponible comme accessoire) peuvent être utilisés pour la protection et la surveillance des zones dangereuses accessibles de plusieurs côtés. A l'aide de miroirs de renvoi le faisceau émis par l'émetteur peut être dirigé via plusieurs côtés d'accès.

► Afin d'obtenir un angle de réflexion de 90°C, orienter les miroirs avec un angle d'inclinaison de 45°C.

L'image suivante montre une application où une sécurisation d'accès en forme U est réalisée à l'aide de deux miroirs de renvoi.

A = zone dangereuse M = miroir de renvoi

S = distance de sécurité minimale Dx = longueur du côté

- ► Fixer le miroir de renvoi de sorte que la distance de sécurité minimale (S) soit respectée de chaque côté de la zone dangereuse.
- ▶ Lors du montage s'assurer que la surface du miroir est bien plane et qu'il n'y a pas de vibrations qui affectent le dispositif de sécurité.
- La portée résulte de la somme des longueurs de toutes les côtés (D1 + D2 + D3) de l'accès à la zone protégée. La portée maximale des détecteurs optoélectroniques de sécurité est réduite de 15% pour chaque miroir.
- Ne pas utiliser plus de trois miroirs de renvoi.

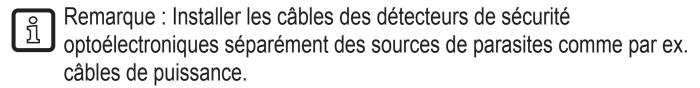
7 Raccordement électrique

- ► Mettre l'installation hors tension. Le cas échéant, mettre également hors tension les circuits de charge relais alimentés séparément.
- La tension nominale est 24 V DC. Cette tension peut se situer entre 19,2 V et 28,8 V.
- En cas d'un unique défaut, la tension d'alimentation ne doit pas dépasser la valeur maximale de 28,8 V DC. Pour cette raison, une séparation sûre de l'alimentation en courant et du transformateur est nécessaire.
- Afin de garantir une fiabilité fonctionnelle, il faut s'assurer que la capacité de la sortie est de 2000 µF / A min. si une alimentation avec pont de diodes est utilisée.
- Raccorder les appareils selon les tableaux suivants :

7.1 Schéma de branchement émetteur

Couleur du fil conducteur	Nom	Туре	Description
Brun	L+ (24 V DC)		Tension d'alimentation
Blanc	Blanc Range 0	Configuration largeur de protection	
Bleu	L- (0 V DC)	- Entrée -	Tension d'alimentation
Vert	Range 1		Configuration largeur de protection
Gris	FE		Terre fonctionnelle
Rouge	24 V AC / DC		Chauffage 24 V AC / DC
Jaune	0 V DC		Chauffage 0 V DC
Rose	n.c.		non raccordé

La largeur de protection (portée) à utiliser est configurée via range 0 et range 1.


Configuration largeur de protection (portée)

Range 0	Range 1	Description
24 V	0 V	Sélection petite portée (07 m)
0 V	24 V	Sélection grande portée (315 m)
0 V	0 V	Emetteur en fonction test (→ 8.4 Fonction test)
24 V	24 V	Aucune fonction, erreur de configuration

Pour un fonctionnement correct des barrages immatériels de sécurité / barrières de sécurité multifaisceaux les fils blanc et vert de l'émetteur doivent être raccordés selon les indications dans le tableau ci-dessus.

7.2 Schéma de branchement récepteur

Couleur du fil conducteur	Nom	Туре	Description
Blanc	OSSD1	Sortie	Sortie de sécurité statique 1
Brun	24 V DC	ı	Tension d'alimentation 24 V DC
Vert	OSSD2	Sortie	Sortie de sécurité statique 2
Jaune	K1_K2 / Restart	Entrée	Contacteurs externes
Gris	SEL_A	Entrée	Mode de fonctionnement barrages
Rose	SEL_B	Entrée	immatériels de sécurité
Bleu	0 V DC	_	Tension d'alimentation 0 V DC
Rouge	FE	_	Terre fonctionnelle
Violet	24 V AC / DC	_	Chauffage 24 V AC / DC
Noir 0 V DC –		Chauffage 0 V DC	

► Raccorder l'émetteur et le récepteur à la terre fonctionnelle.

8 Modes de fonctionnement

Les différents modes de fonctionnement des barrages immatériels de sécurité / barrières de sécurité multifaisceaux type OY4xxS peuvent être réglés via les raccordements correspondants sur le récepteur.

	Modes de fonctionnement		Connexions	
		Jaune	Gris	Rose
Α	•	K1_K2	SEL_A	SEL_B
	YE GY PK RD	Raccordement à : L+ (24 V DC)	Raccordement à : L+ (24 V DC)	Raccordement à : L- (0 V DC)
В	Démarrage automatique avec surveillance des contacteurs	K1_K2 Raccordement à: L+ (24 V DC) (via NF des	SEL_A Raccordement à : L+ (24 V DC)	SEL_B Raccordement à : L- (0 V DC)
С	Manuel 3 L+ L-	contacteurs) K1_K2 / Restart Raccordement	SEL_A Raccordement	SEL_B Raccordement
	YE GY PK RD	à : L+ (24 V DC) (via bouton de démarrage)	à : L- (0 V DC)	à : L+ (24 V DC)
D	Démarrage surveillé avec surveillance des contacteurs	K1_K2 / Restart	SEL_A	SEL_B
	3 1 2 YE	Raccordement à : L+ (24 V DC) (via bouton de démarrage et NF des contacteurs)	Raccordement à : L- (0 V DC)	Raccordement à : L+ (24 V DC)
1:	Contacteur 1	Couleurs des fils	conducteurs :	

- 2: Contacteur 2

3: Redémarrage

YE (jaune), GY (gris), PK (rose), RD (rouge)

8.1 Fonctionnement automatique

Si les barrages immatériels de sécurité / barrières de sécurité multifaisceaux sont utilisés en mode automatique, un démarrage surveillé n'est pas possible.

Les barrages immatériels de sécurité / barrières de sécurité multifaisceaux rentrent en fonctionnement automatiquement quand la zone protégée est libre, les sorties (OSSD) sont validées.

Vérifier si cela est conforme avec l'évaluation des risques de votre installation.

En mode automatique les sorties OSSD1 et OSSD2 suivent l'état des barrages immatériels de sécurité / barrières de sécurité multifaisceaux :

Zone protégée libre	Sorties = actives état logique "1"		
Zone protégée interrompue	Sorties = désactivées état logique "0"		

8.2 Fonctionnement manuel

Le fonctionnement manuel ou démarrage surveillé (Start / Restart) est toujours nécessaire si un passage dans la zone dangereuse doit être surveillé (des personnes peuvent être présentes dans la zone dangereuse après passage de la zone protégée sans être détectées).

Le bouton démarrage / redémarrage doit se trouver en dehors de la zone dangereuse. Il doit être monté de façon que la zone dangereuse et l'accès soient clairement visibles. Il ne doit pas être possible d'activer le bouton démarrage / redémarrage à l'intérieur de la zone dangereuse.

En mode manuel les barrages immatériels de sécurité / barrières de sécurité multifaisceaux répondent à la fonction comme "trip device" selon CEI 61496. Le non-respect de cette norme peut aboutir à une mise en danger de personnes.

Les sorties de sécurité OSSD1 et OSSD2 sont activées quand la zone protégée est libre et la commande restart est actionnée via un bouton de démarrage ou via une impulsion correspondante sur l'entrée K1_K2/ Restart.

Si les barrages immatériels de sécurité / barrières de sécurité multifaisceaux sont désactivés par une personne ou un objet, la commande restart (24 V sur l'entrée K1_K2 / Restart) doit être actionnée pour le redémarrage. Durée de l'impulsion > 100 ms.

8.3 Raccordement de contacteurs externes

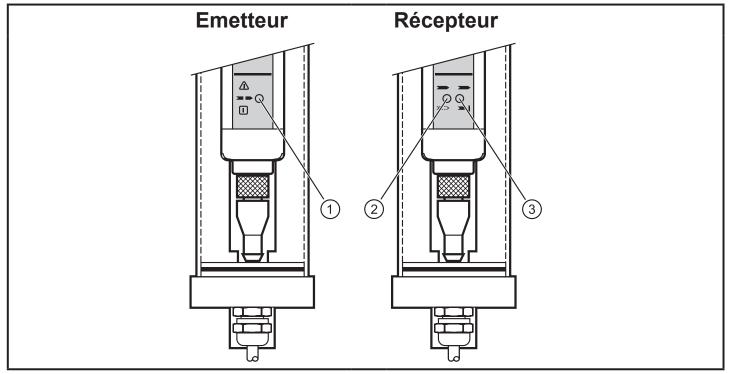
En mode de fonctionnement automatique et manuel, des contacteurs externes peuvent être associés. Pour cela, les contacteurs doivent être raccordés en série entre la tension d'alimentation et l'entrée K1_K2 / Restart du récepteur (\rightarrow 8 Modes de fonctionnement / tableau, fig. B).

En cas de fonctionnement surveillé, raccorder en série un bouton de démarrage en plus (\rightarrow 8 Modes de fonctionnement / tableau, fig. D).

8.4 Fonction test

La fonction test permet la vérification des détecteurs optoélectroniques de sécurité, par exemple à l'aide d'un système de contrôle du process ou d'un module de commande (→ 7.1 Tableau Configuration largeur de protection).

L'impulsion test interrompt l'émission de lumière de l'émetteur et les sorties ont un signal à 0 (\rightarrow 10.1 Etat de commutation des sorties).



Le temps minimal de la commande test est 4 ms.

8.4.1 Fonction test interne

Les barrages immatériels de sécurité / barrières de sécurité multifaisceaux type 4 réalisent des tests internes en permanence. Les défauts sont détectés pendant le temps de réponse du modèle correspondant provoquant des désactivations (temps de réponse → 12 Données techniques).

9 Eléments de service et d'indication

- 1: LED 3 couleurs (rouge / verte / orange)
- 2: LED 2 couleurs (jaune / bleue)
- 3: LED 2 couleurs (rouge / verte)

9.1 Indications LED pour l'orientation optique

Les affichages LED du récepteur aident à orienter correctement les détecteurs optoélectroniques de sécurité .

9.1.1 Orientation en mode automatique

		Réce	pteur	
	LED en 2	couleurs	LED en 2 couleurs	
Signification	Rouge	Verte	Jaune	Bleue
Le récepteur ne détecte aucun faisceau lumineux	•	0	0	0
Le récepteur détecte quelques faisceaux lumineux	×	0	0	•
Le récepteur détecte tous les faisceaux lumineux à signal faible	0	•	0	•
Le récepteur détecte tous les faisceaux lumineux	0	•	0	0

- ▶ Orienter l'émetteur de sorte que la LED verte du récepteur soit allumée.
- ► Visser l'émetteur et le récepteur.

9.1.2 Orientation en mode manuel

En mode manuel la LED jaune est allumée au lieu de la LED verte. Le barrage immatériel / la barrière multifaisceaux attend la validation manuelle.

		Réce	pteur	
	LED en 2	couleurs	LED en 2	couleurs
Signification	Rouge	Verte	Jaune	Bleue
Le récepteur ne détecte aucun faisceau lumineux	•	0	0	0
Le récepteur détecte quelques faisceaux lumineux	*	0	0	•
Le récepteur détecte tous les faisceaux lumineux à signal faible	0	0	×	×
Le récepteur détecte tous les faisceaux lumineux	0	0	•	0

- ➤ Orienter l'émetteur de sorte que la LED jaune du récepteur soit allumée.
- ► Visser l'émetteur et le récepteur.

9.2 Etats LED

La LED bleue est allumée avec signal faible (\rightarrow 9.1).

	Emetteur			Récepteur			
		LED		LE	D	LED	
Signification	Rouge	Verte	Orange	Rouge	Verte	Jaune	Bleue
Mise sous tension du système, test d'entrée	•	0	0	•	0	•	0
Erreur (→ 13 Correction de défauts)	×	0	0	×	0	0	0
Condition de test	0	0	•	0	0	0	0
Condition de fonctionnement normale	0	•	0	0	*)	0	0
Zone protégée interrompue, sorties désactivées	0	•	0	•	0	0	0
Zone protégée libre, sorties désactivées, Attend le redémarrage	0	•	0	0	0	•	0
Zone protégée libre, sorties activées	0	•	0	0	•	0	0

^{*)} La LED verte clignote 2 fois quand le système est mis en tension, si l'appareil est configuré en grande portée.

10 Fonctionnement

10.1 Etat de commutation des sorties

Les barrages immatériels de sécurité / barrières de sécurité multifaisceaux ont deux sorties (OSSD) sur le récepteur, leurs niveaux de sortie dépendent de l'état de la zone protégée.

Tous les courts-circuits entre les sorties ou entre une sortie et l'alimentation en tension (24 V DC ou 0 V DC) sont détectés comme un défaut par les barrages immatériels de sécurité / barrières de sécurité multifaisceaux.

Sortie	Etats TOR			Signification
OSSD1	1			Condition
OSSD2	1			Zone protégée libre.
OSSD1	1 0 0		0	Condition
OSSD2	0	1	0	Zone protégée interrompue ou défaut constaté.

10.1.1 Etat de sécurité

L'état de sécurité est l'état désactivé (état sans courant : état logique "0") sur au moins une des sorties (OSSD).

Si une des sorties est désactivée, le bloc logique de sécurité aval doit mener le système complet dans l'état défini de sécurité.

10.1.2 Etat commuté

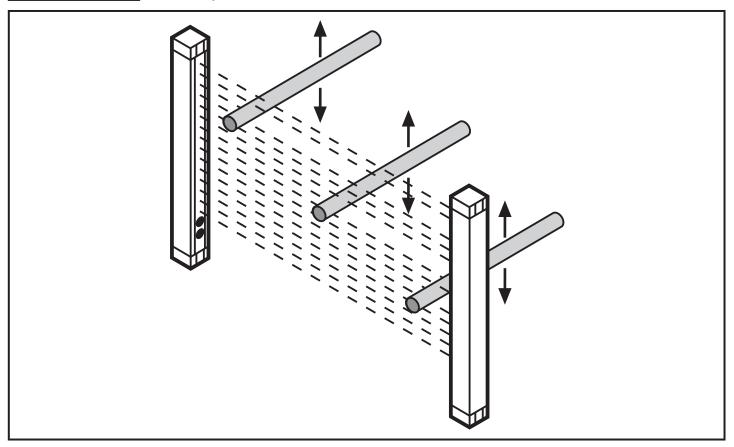
En état commuté, le récepteur fournit une tension de 24 V DC (état logique "1") aux deux sorties.

Données de sortie

Les données de sortie suivent les données d'entrée selon CEI 61496 :

Etat logique "1"	24 V DC	Max. 400 mA
Etat logique "0"	≤ 1,5 V DC	< 0,2 mA

10.2 Test du fonctionnement des barrages immatériels de sécurité

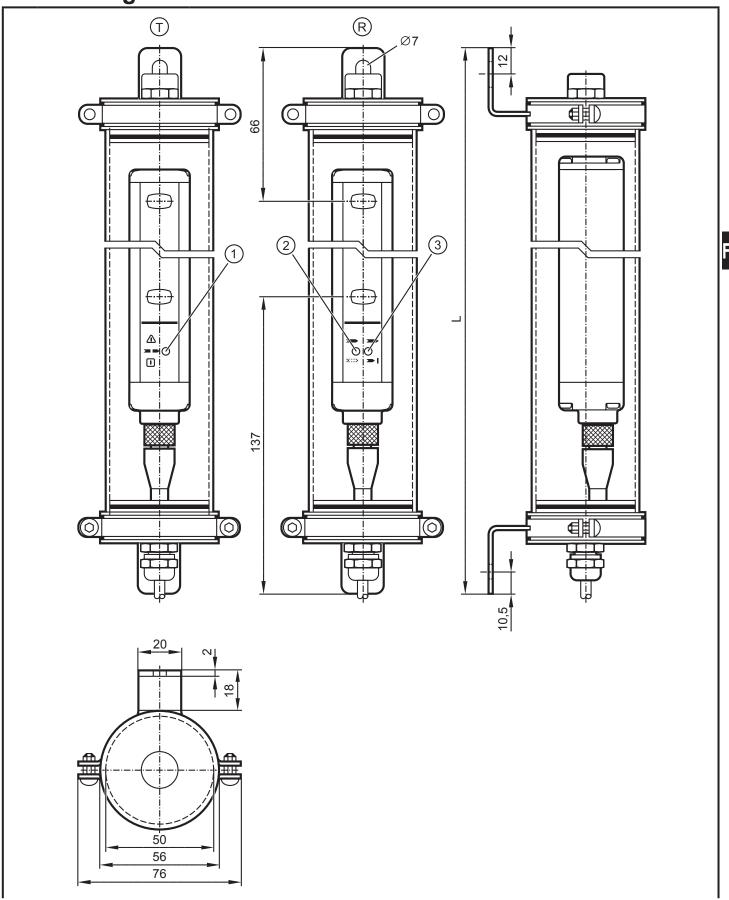

ñ

Avant de commencer à travailler, vérifier le fonctionnement correct des barrages immatériels de sécurité.

Pour le test de fonctionnement, utiliser un échantillon conforme à la résolution du barrage immatériel de sécurité.

Informations sur les barres de contrôle disponibles sur :

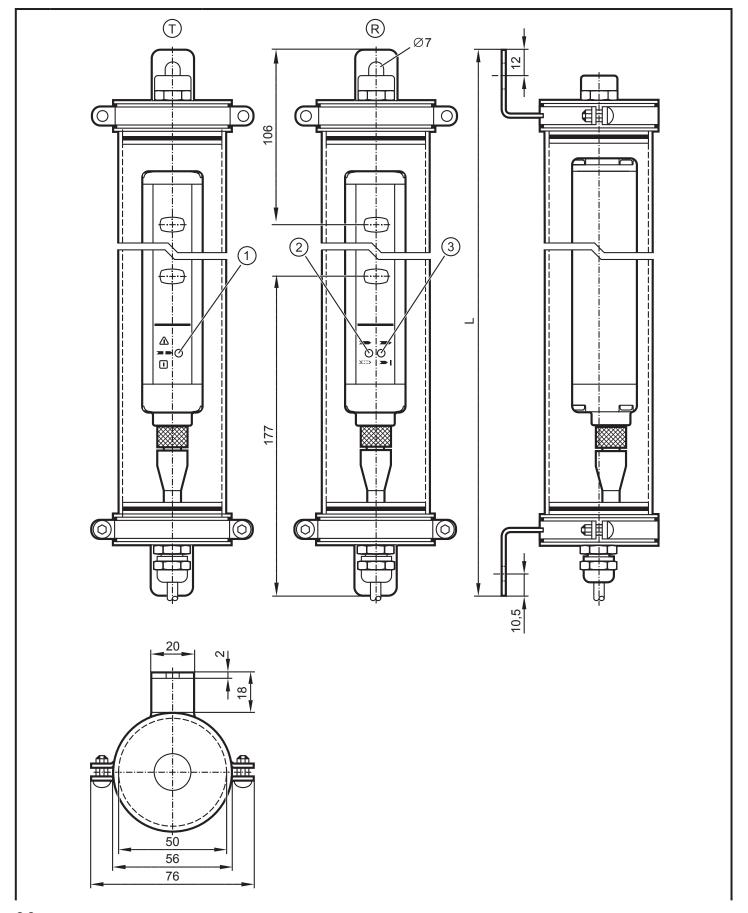
www.ifm.com \rightarrow Nos produits \rightarrow Accessoires.



- ► Faire entrer l'échantillon dans la zone protégée et le bouger doucement de haut en bas. D'abord au centre et ensuite près de l'émetteur et du récepteur.
- ➤ S'assurer que la LED rouge du récepteur est allumée en continu durant tout le mouvement dans la zone protégée.
- Respecter les remarques sur l'entretien des barrages immatériels de sécurité

 14 Maintenance, réparation et élimination
- Remarques sur la mise en service \rightarrow 17.1 Liste de vérification.

11 Schéma d'encombrement


11.1 Barrage immatériel de sécurité

T: Emetteur 1: LED 3 couleurs (rouge / verte / orange)

R: Récepteur 2: LED 2 couleurs (jaune / bleu) L: Longueur totale* 3: LED 2 couleurs (rouge / verte)

11.2 Barrière de sécurité multifaisceaux

FR

T: Emetteur 1: LED 3 couleurs (rouge / verte / orange)

R: Récepteur 2: LED 2 couleurs (jaune / bleue) L: Longueur totale* 3: LED 2 couleurs (rouge / verte)

11.2.1 Orientation des faisceaux

Modèle	Faisceaux	Distance entre le bord inférieur du tube protecteur et les faisceaux [mm]
OY421S	2	177 - 677
OY422S	3	177 - 577 - 977
OY423S	4	177 - 477 - 777 - 1077

^{*} Longueurs disponibles \rightarrow 12 Données techniques

12 Données techniques

Conforme aux exigences : Type 4 CEI 61496-1, SIL 3 CEI 61508, SILc ISO 13849-1:2015 catégorie 4 PL e	I 3 CE	I 62061,
Technologie de sortie		DC / PNP
Tension d'alimentation		24 DC (19,228,8)
Consommation		
Emetteur	[mA]	42
Récepteur	[mA]	83
Sorties (OSSD)		2 x PNP
Courant max. par sortie	[mA]	400 (24 V)
Charge capacitive maximale CL_max	[µF]	0,82
Retard à la disponibilité	[s]	< 2
Durée d'utilisation T _M (Mission Time)	[h]	175200
CEM		CEI 61496-1
Vibration		CEI 61496-1
Choc		CEI 61496-1
Température ambiante	[°C]	-1055
Humidité relative de l'air max.	[%]	95
Protection		IP 65 / IP 67 / IP 69K / III
Matière du boîtier		
Tube protecteur transparent		PMMA
Bouchon		POM
Bride		Inox 1.4404 (316L)
Joint d'étanchéité		Silicone
Type de lumière		Infrarouge 950 nm
Affichage		LED jaune, LED verte, LED rouge, LED bleue, LED orange
Raccordement		
Emetteur		Câble PVC / 15 m / 8 x 0,34 mm²
Récepteur		Câble PVC / 15 m / 10 x 0,34 mm²
Longueur max. du câble de raccordement	[m]	100 *)

^{*)} pour une section transversale de 0,34 mm²

12.1 Chauffage

		OY441S	0Y442S	0Y443S	0Y444S	0Y445S	0Y446S	0Y447S	0Y448S	0Y449S	OY450S
Consommation											
Emetteur	[mA]	83	167	250	333	375	417	417	417	417	417
Récepteur	[mA]	83	167	250	333	375	417	417	417	417	417

		0Y421S	0Y422S	0Y423S
Consommation				
Emetteur	[mA]	333	417	417
Récepteur	[mA]	333	417	417

12.2 Barrages immatériels de sécurité résolution 30 mm

		0Y441S	0Y442S	0Y443S	0Y444S	0Y445S	0Y446S	0Y447S	0Y448S	OY449S	OY450S
Hauteur de protection	[mm]	160	310	460	610	760	910	1060	1210	1360	1510
Longueur totale L	[mm]	342	492	642	792	942	1092	1242	1392	1542	1692
Temps de réponse	[ms]	3	4	5	6	6,5	7,5	8,5	9,5	10	11
Fiabilité relative à la techi de la sécurité PFH _D	nologie [1/h]	9,2-09	1,0 ⁻⁰⁸	1,2 ⁻⁰⁸	1,3 ⁻⁰⁸	1,4-08	1,5 ⁻⁰⁸	1,7 ⁻⁰⁸	1,8 ⁻⁰⁸	1,9 ⁻⁰⁸	2,0 ⁻⁰⁸

12.3 Barrières de sécurité à 2, 3 ou 4 faisceaux

		0Y421S	0Y422S	0Y423S
Nombre de faisceaux		2	3	4
Hauteur de protection [[mm]	510	810	910
Longueur totale L [[mm]	782	1082	1182
Temps de réponse	[ms]	2,5	2,5	2,5
Fiabilité relative à la technolo de la sécurité PFH _D	ogie [1/h]	9,2 ⁻⁰⁹	1,0 ⁻⁰⁸	1,1-08

13 Correction de défauts

Les LED de l'émetteur et du récepteur affichent les états de fonctionnement défectueux (→ 9 Eléments de service et d'indication). Voir les tableaux suivants pour une description détaillée des défauts.

13.1 Diagnostic de défauts émetteur

LED		Cause possible	Correction de défauts
Rouge	2 impulsions consécutives	Raccordement défectueux	Vérifier les fils vert et blanc.
Rouge	3/4 impulsions consécutives	Défaut interne	Envoyer l'appareil pour réparation à la filiale ifm.

13.2 Diagnostic de défauts récepteur

LED		Cause possible	Correction de défauts
Rouge	2 impulsions consécutives	Configuration fausse	Vérifier les raccordements.
Rouge	3 impulsions consécutives	Aucun feedback contacteur externe	Vérifier la connexion des contacteurs externes.
Rouge	4 impulsions consécutives	Emetteur parasite détecté	Chercher l'émetteur parasite et prendre les mesures suivantes : - Réduire la portée de l'émetteur parasite de grande à petite. - Inverser la position de l'émetteur et du récepteur. - Repositionner l'émetteur parasite pour que le récepteur ne soit pas affecté. - Protéger les faisceaux de l'émetteur parasite avec des éléments protecteurs mats.
Rouge	5 impulsions consécutives	Erreur Sorties OSSD	Vérifier les raccordements. Si le défaut existe toujours, envoyer l'appareil à la filiale ifm pour réparation.
Rouge	6/7 impulsions consécutives	Défaut interne	Envoyer l'appareil pour réparation à la filiale ifm.
Jaune		Signal faible	 Vérifier l'orientation de l'émetteur et du récepteur. Nettoyer le tube protecteur, vérifier la portée. Attendre l'impulsion de redémarrage.

14 Maintenance, réparation et élimination

- Maintenir le dispositif protecteur optoélectronique selon les règlements nationaux en vigueur et selon les délais demandés. Les tests doivent être confiés à des personnes qui possèdent les compétences correspondantes.
- Il est recommandé de nettoyer le tube protecteur de l'émetteur et du récepteur régulièrement.
- Afin d'éviter des charges électrostatiques sur le tube protecteur, ne pas utiliser de tissu en laine.
- Pour les opérations de nettoyage, le détecteur de sécurité optoélectronique doit être mis hors tension.
- Respecter les produits et articles de nettoyage admissibles et la température de nettoyage maximale (80°). Pour plus d'informations, voir le certificat Ecolab.
- ► Effectuer un test de fonctionnement après l'opération de nettoyage.
- Des rayures sur les tubes protecteurs des détecteurs de sécurité optoélectroniques peuvent dévier les faisceaux lumineux et affecter la fonction de protection.
- L'appareil ne doit être réparé que par le fabricant.
- S'assurer d'une élimination écologique de l'appareil après son usage selon les règlements nationaux en vigueur.

15 Termes et abréviations

Blanking		Fonction optionnelle qui permet, à des objets plus grands que la capacité de détection, de se trouver dans la zone protégée sans que ceci mène à une désactivation des sorties OSSD.
ESPE		Systèmes de protection électro-sensibles.
CCF	Common Cause Failure	Défaillance de cause commune.
DC _{avg}	Average Diagnostic Coverage	Degré de couverture du diagnostic moyen.
Muting		Fonction de suppression temporaire d'une fonction de sécurité par d'autres parties du système de commande relatives à la sécurité.
MTTF _d	Mean Time To Dangerous Failure	Temps moyen avant défaillance dangereuse.
OSSD	Output Signal Switch Device	Dispositif de signal de sortie de commutation, sortie de sécurité statique.
PFH (PFH _D)	Probability of (dangerous) Failure per Hour	Probabilité d'une défaillance (dangereuse) par heure.
PL	Performance Level	Capacité des éléments relatifs à la sécurité d'effectuer une fonction de sécurité dans des conditions prévisibles et de réduire le risque.
SIL	Safety Integrity Level	Niveau de sécurité SIL 1-4 selon CEI 61508. Plus le niveau SIL est haut, plus faible est la probabilité d'une défaillance de la fonction de sécurité.
SILcl	Safety Integrity Level _{claim limit}	Niveau de sécurité _{limite de revendication} (selon CEI 62061)
T _M	Mission Time	Durée d'utilisation
T1	Test Interval	Intervalle de test

Données techniques et informations supplémentaires sur notre site web à www.ifm.com.

16 Annexe

16.1 Liste de vérification

Cette liste de vérification sert d'aide pour la mise en service des barrages immatériels de sécurité / barrières de sécurité multifaisceaux. Les exigences de la liste de vérification doivent être respectées, selon l'application et les directives / normes consultées.

- 1. Est-ce que les directives / normes valables pour la sécurité de la machine étaient respectées ?
- 2. Est-ce que l'accès à la protection de zone / la protection de surface vers le point de danger est uniquement possible par la zone protégée par les barrages immatériels de sécurité / barrières de sécurité multifaisceaux ?
- 3. Est-ce que les mesures de protection qui empêchent de passer au-dessous, par-dessus ou par les côtés ont été prises et sécurisées contre les tentatives de fraude ?
- 4. Est-ce que le temps d'arrêt de la machine a été mesuré et adapté pour le montage des barrages immatériels de sécurité / barrières de sécurité multifaisceaux ?
- 5. Est-ce que les barrages immatériels de sécurité / barrières de sécurité multifaisceaux sont fixés correctement et protégés contre le desserrage ou le désalignement ?
- 6. Est-ce que les barrages immatériels de sécurité / barrières de sécurité multifaisceaux ont été vérifiés selon les descriptions de fonctionnement et de maintenance de cette notice ?
- 7. Est-ce qu'une surveillance externe (EDM) des contacteurs externes (par ex. contacteurs, vannes etc.) est utilisée ?
- 8. Est-ce que l'état défini comme sûr est initialisé lors de la désactivation des barrages immatériels de sécurité / barrières de sécurité multifaisceaux ?
- 9. Est-ce qu'il y a des souillures ou rayures sur la face active de l'émetteur ou du récepteur ?
- 10. Est-ce que les instructions de montage de cette notice d'utilisation sont respectées ?
- Cette liste de vérification ne remplace ni le contrôle ni la mise en service par un électricien formé en technologie de sécurité.