Laser Displacement Operating Manual

V2.0

Table of Contents

Chapter 1: Product Profile	1-1
1.1 Packaging 1.2 Part Names and Functions 1.3 Installations	1-1
Chapter 2: Settings and Measurements	2-1
Chapter 3: Software Operation	3-1
3.1 Communication Setting 3.2 Position Reading and Set the Zero Value	
Chapter 4: Communication Setting	4-1
4.1 Communication Address	
Chapter 5: Specifications	5-1
Chapter 6: Safety Precautions	6-1
Chapter 7: Warranty	7-1

Laser Displacement Operating Manual V2.0

Revision History

Version	Revision	Date
V1.0	The first version was published.	2018/09/03
V2.0	Add the function description and the register address of the	2019/08/15
V2.0	"Response speed setting" and "Median filter setting" items.	2019/06/15

Product Profile

1.1 Packaging

The following is included:

- 1) Laser displacement
- 2) Cable (optional)
- 3) Laser label
- Laser Label Description

Laser Radiations: Class 2 Product Maximum Output: <1mW Pulse Duration: 0.5ms max. Wave Length: 635nm, IEC 60825-1:2014

1.2 Part Names and Functions

Laser Displacement Operating Manual

\bigcirc	Laser	Indicator

Indicator	Color	Description	Schematically
Laser Indicator	Blue light	Start (laser on)	24.00
	Croop light	Within measurement	
Measurement	Green light	range	Laser - C O
Range	Orongo light	Out of measurement	G.IN/O.out
	Orange light	range	Status -
	Red light	DO	
DI/DO	Green light	DI	<u>6</u>

1.3 Installation

○ Dimension (unit: mm)

O M8 Connector

Wiring Material	Item	Serial Number
	1.5m PUR cable	UC-S015088
PUR Cable + M8 Connector	3m PUR cable	UC-S030088
	5m PUR cable	UC-S050088

O Wiring Instructions

*1. In case of NPN connection, please connect the load between Pin 4 and Pin 1.

*2. In case of PNP connection, please connect the load between Pin 4 and Pin 2.

O Wiring Diagram

L	\oplus	
Ν	Ð	
€	⊕	
24V	⊕	
0V	Ð	── 藍色
	Power •	

○ Caution on Mounting Direction

For best product performance, please note the following instructions when installing products.

- 1) When products cling to devices, install the products in parallel with the devices to assure product performance.
- 2) When the shape of an inspection object is extrusive, ensure the product's lighting route is vertical to the inspection object's path to assure product performance.

Settings and Measurements

- After brown (+24V) and blue wires (0V) are connected to DC power and the signal cable (RS485) is connected to the master controller (PC, HMI or PLC), the laser displacement can be powered on and start reading value.
- 2) When the signal cable (RS485) is connected to the master controller (PC, HMI or PLC), the laser displacement will send a piece of data to master controller every 1ms.
- 3) It is recommended to use Delta's UI on the PC for initial judgment.

Software Operation

3.1 Communication Setting

- Open file Delta_LDS_UI.exe
- Communication format Setting (communication port, baud rate, communication format)
- > Take COM9, 115200(Default), 8,N,1/2 as an example

Delta_LDS_UI	- 🗆 X
COM_LDS Baud Rate Ø V0.40.02.00 later Connect	
Communication Type	
Read Position Setting CommunicationScan Scope	

If you can't determine the product baud rate, you can click the Communication Scan and select COM_LDS, then you can get the device address, baud rate and communication format.

Delta_LDS_UI	-	×
COM_LDS Saud Rate V (0.40.02.00 later Connect		
Communication Type		
Read Position Setting CommunicationScan Scope		
Scan Process ComPort COM9 START		
Message Device Address = 1; Baudrate = 115200; Communication Type = 8, N, 1/2		

Remark User interface is RS485 and it must be executed on the PC or laptop and confirmed to be powered on.

3.2 Position Reading and Set the Zero Value

O Position Reading

Providing users to read absolute position, zero position, relative position, max value, min value. In addition, you can also set the zero value and reset value here.

		Communication Type	~	V0.40.02.00		onnect		
.ead Positic	n Setting Com	umunicationScan Scope						
Unit (🖲 um	() mm						
Read_F								
	Device	Absolute Data label2	Zero Point label2	Relative Data label2	Max label2	Min label2	Zero	Reset
	~	label2	label2	label2	label2	label2	Zero	Reset
	~	label2	label2	label2	label2	label2	Zero	Reset
	~	label2	label2	label2	label2	label2	Zero	Reset

- Absolute Position: the distance between sensors and measured objects
- > Homing Position: the distance between sensors and the homing point.
- > Relative position: the distance between absolute position and relative position.
- > Max: maximum relative position
- > Min: minimum relative position
- > Homing: Set the current measured distance as the default, and the value is displayed as 0
- ➤ Reset value: reset the homing position to the initial value (initial values may differ based on different models) (LD-040 → 40000um; LD-080 → 80000um; LD-150 → 150000um)

O Data Record

1) 2) 3) 4) 5) You can set your own file name and data quality. Click **Start**, UI software generates a record file (.TXT) in the same folder.

elect the corres		e address	S		splaceme		
elect the laser o	•	which nee	eds to be re	ad			
elect Continuo	us					_	
om_rdz [Baud Rate Communication Type	~	● ₩0.40.02.00	later C	onnect		
Read Position Setting Con	umunicationScan Scope	· ·				 Step 1 	
Unit um	Omp Step 2						
Read_Position	Absolute Data	Zero Point	Relative Data	Max	Min		
	label2	label2	label2	label2	label2	Zero	Reset
	label2	label2	label2	label2	label2	Zero	Reset
	label2	label2	label2	label2	label2	Zero	Reset
				label2	label2	Zero	Reset

⊘ Setup

Provide all internal settings of the laser displacement, the following shows the setting options according to the application.

> Device Address, Baud Rate, Communication Format

Device address and baud rate needs to be setup at the same time, press the button of address change and the button of baud rate after setting is completed.

For example: device 1 is changed to device 2 and the baud rate changed from 115200 to 38400.

Communication Format

For example: select the current device address and the desired communication format, then press "write".

V0.40.02.00 later Connect
Device 1
ommunication Type 🛛 🗸 Write
c

Response Time Setting

After selecting the current device address, you can read or set the response speed.

◎ Filter Setting & Power reset after setting

After selecting the station number, you can set the size of the median filter and the average number of times. After writing, please resend the power and the parameters will be written into the firmware.

O Average Setting

First, select current device address. Then, click **Average Times** that needs to be changed and click

Average Setting.

	\bigcirc 1	O 10	○ 100	◯ 200) 300	Average	Average Times	Read
Device 1	0 400	0 500	◯ 1000			Setting		Average

O Do Setting

Comparator

The comparator provides absolute position setting and relative position setting. Whenever there is a homing action, comparator output will automatically switch to relative position setting. If you need to switch to absolute position, you need to reset the zero point or resend power.

1) Absolute Position Comparator

Set the upper and lower limits of the absolute position. When the object to be tested is in this range, the signal will be output.

2) Relative Position Comparator

As mentioned above, relative position comparator must be zeroed before it is executed. Also, when the object to be tested is in this range, the signal will be output.

DO Timer Setting

Delay time can be configured according to your use conditions. The setting range of delay time is $0\sim1000$ ms.

Timing diagram is shown as follow

The setting page shown in the following picture.

Timer Setting	None	× [Read
Delay Time	0	0~1000 (ms)	Write

- > Digital Input
- 1) None: No function
- 2) Set-Zero: Zeroing
- 3) Trigger: Start reading the position
- 4) Laser-off: Turn off the laser

Digital I/O Status Displaying

Check **Read Status** in the LDS_UI software to monitor I/O status in real-time. The green light represents start.

Read Version

Firmeware version

Device	1	~	
	-		Read

O Scan Process

If you can't determine the product baud rate, you can click the **Communication Scan** page and select **ComPort**, then you can get the device address, baud rate and communication format.

Delta_LDS_UI	-	\times
COM_LDS Saud Rate V0.40.02.00 later Connect		
Communication Type		
Read Position Setting CommunicationScan Scope		
Scan Process ComPort COM9 START Message Device Address = 1; Baudrate = 115200; Communication Type = 8,N,1/2		

◎ Oscilloscope

The oscilloscope can be used to observe the situation where the light source hits the object and is imaged on the CCD sensor.

- ➤ Weight
- Peak
- Shutter Level

The shutter level setting can be set up as automatic or manual based on user requirements. If every surface color and matrial of the objects are certain, in order to increase the scanning efficiency ,we suggest that we can setting the shutter level value into definite value.

Communication Setting

4.1 Communication Address

RS485 Communication Mode

- > Baud Rate Supported: 9600, 19200, 38400, 115200, 460800bps
- Communication Mode Supported: 8,N,1 \sigma 8,N,2 \sigma 8,O,1 \sigma 8,O,2 \sigma 8,E,1 \sigma 8,E,2
- Communications Protocol: Modbus(RTU)
- Communication Address Supported: 1~127
- Function Code

03H: Read Command

06H: Single Entry Write Command

10H: Multiple Entry Write Command

Position	Function code supported	Name	Description
0H~1H (R)	(03H)	Firmware version	Firmware version
7531H~7532H(R)	(03H)	Absolute position	The data represents the current absolute
			position
			LD-040: 30~50mm
			LD-080: 55~105mm
			LD-150: 90~210mm
80E9H~80EAH(R)	(03H)	Relative value	The distance relative to the zero point
		output	
9C41H (R/W)	(03H,06H)	Response Time	Response Time:
		Setting	1(0x0001) : 1 ms;
			3(0x0003) : 3 ms;
			5(0x0005) : 5 ms;
			10(0x000A) : 10ms
9C41H (R/W)	(03H,06H)	Average	Average time /response time:
		setting/response	1(0x0001) : 1 time /close to 1ms;
		time setting	10(0x000A): 1 times /close to 10ms;
			100(0x0064): 100 times /close to 100ms;
			200(0x00c8): 200 times /close to 200ms;
			300(0x012c): 300 times /close to 300ms;
			400(0x0190): 400 times /close to 400ms;

			500(0x01F4): 500 times /close to 500ms;
			1000(0x03E8) : 1000 times /close to
			1000ms
B799H(R/W)	(03H,06H)	Median filters &	High byte: (0x00 : Filter length:1)
, , , , , , , , , , , , , , , , , , ,		Moving average	(0x01 : Filter length: 3)
		setting	(0x02 : Filter length: 5)
			(0x03 : Filter length: 7)
			(0x04 : Filter length: 9)
			(0x05 : Filter length: 11)
			(0x06 : Filter length: 13)
			(0x07 : Filter length: 15)
			Low byte: (0x01 : Moving average: 1)
			(0x02 : Moving average: 4)
			(0x03 : Moving average: 8)
			(0x04 : Moving average: 16)
			(0x05 : Moving average: 32)
			(0x06 : Moving average: 64)
			(0x07 : Moving average: 128)
			(0x08 : Moving average: 256)
753BH~753CH	(03H)	Peak of PD	Peak of PD
(R)			
7595H~7610(R)	(03H)	Continuous value	62 consecutive positions (two characters
			represent a single value)
			7595H(High) & 7596H(Low) is the 1st value
			7597H(High) & 7598H(Low) is the 2nd value
			760FH(High) & 7610H(Low) is the 62th
			value
7919H~ 7995H	(03H)	Amplitude of 30 to	7919H is the 1st value (pixel 30).
(R)		154 pixels on the	7995H is the 125th value (pixel 154)
		PD	
79E1H~ 7A5DH	(03H)	Amplitude of 155	79E1H is the 1st value (pixel 155).
(R)		to 279 pixels on	7A5DH is the 125th value (pixel 279)
		the PD	
7AA9H~ 7B25H	(03H)	Amplitude of 280	7AA9H is the 1st value (pixel 280).
(R)		to 404 pixels on	7B25H is the 125th value (pixel 404)
		the PD	
7B71H~ 7BEDH	(03H)	Amplitude of 405	7B71H is the 1st value (pixel 405).
(R)		to 529 pixels on	7BEDH is the 125th value (pixels 529)

		the PD	
7C39H~ 7CB5H	(03H)	Amplitude of 530	7C39H is the 1st value (pixel 530).
(R)		to 649 pixels on	7CB5H is the 125th value (pixels 649)
		the PD	
7D01H~ 7D7DH	(03H)	Amplitude of 650	7D01H is the 1st value (pixel 650).
(R)		to 774 pixels on	7D7DH is the 125th value (pixels 774)
		the PD	
7DC9H~ 7E45H	(03H)	Amplitude of 775	7DC9H is the 1st value (pixel 775).
(R)		to 899 pixels on	7E45H is the 125th value (pixels 899)
		the PD	
7E91H~ 7F0DH	(03H)	Amplitude of 900	7E91H is the 1st value (pixel 900).
(R)		to 1019 pixels on	7F0DH is the 125th value (pixels 1019)
		the PD	
9C41H (R/W)	(03H,06H)	Average times	Average times/ response times:
		and response	1(0x0001) : 1 time/ close to 1ms;
		times	10(0x000A): 10 times/ close to 10ms;
			100(0x0064): 100 times/ close to 100ms;
			200(0x00c8): 200 times/ close to 200ms;
			300(0x012c): 300 times/ close to 300ms;
			400(0x0190): 400 times/ close to 400ms;
			500(0x01F4): 500 times/ close to 500ms;
			1000(0x03E8) : 1000 times/ close to
			1000ms
A029H (R/W)	(03H,06H)	Device address	High byte: device address (0x1~0x7f)
		and baud rate	Low byte: baud rate (0x0: 460800,
		setting	0x1: 115200 (initial value), 0x2: 9600,
			0x3: 19200, 0x4: 38400
A411H (W)	(06H)	Start reading the	0x01: start
		amplitude on the	Automatic zeroing when finished
		PD	
A7F9H (R/W)	(03H,06H)	Lower limit	Lower limit: high byte (digital output)
			\rightarrow absolute position
A85DH (R/W)	(03H,06H)		Lower limit: low byte (digital output)
			\rightarrow absolute position
A8C1H (R/W)	(03H,06H)	Upper limit	Upper limit: high byte (digital output)
			\rightarrow absolute position
A925H (R/W)	(03H,06H)		Upper limit: high byte (digital output)
. ,			\rightarrow absolute position
A989H (R/W)	(03H,06H)	DI/DO status	High byte: 0x00:DI/DO is OFF

Laser Displacement Operating Manual

		DI/DO NO/NC	0x01: DI is OFF DO is ON
			0x10: DI is ON、DO is OFF
			0x11: DI/DO is ON
			Low byte: 0x00:DI/DO is NC
			0x01: DI is NC DO is NO
			0x10: DI is NO 、DO is NC
			0x11: DI/DO is NO
AA51H (R/W)	(03H,06H)	Output delay	0x00: Normal output v 0x01: Off-delay; 0x02:
		mode setting	On-delay; 0x03: One-shot
AAB5H (R/W)	(03H,06H)	Output delay time	0~1000ms
		setting	
AB19H~AB1AH	(03H,10H)	Relative lower	-120000um~120000um → relative position
(R/W)		limit setting	(numbers)
AB7DH~ AB7EH	(03H,10H)	Relative upper	-120000um~120000um → relative position
(R/W)		limit setting	(numbers)
AFC9H (R/W)	(03H,06H)	Set the zero value	0x00: Reset the zero value
			0x01: set to zero
84D1H~84D2H	(03H,10H)	Read the zero	Read the set zero value
(R/W)		value	
B3B1H (R/W)	(03H,06H)	Communication	0x00: 8,0,1/2
		setting	0x01: 8,N,1/2
			0x03: 8,E,1/2
ABE1H (R/W)	(03H,06H)	Set external input	0x00: None
		function	0x01:Set-zero
			0x02: Trigger
			0x03: Laser-off
A9EDH (R/W)	(03H,06H)	Set shutter level	High byte: 0x00→Manual
			0x01→Auto
			Low byte: 0x00~0x0F→
			15 levels can be adjusted, if it is in the
			automatic mode, it cannot be set.

4.2 Communication Protocol

Communication code can read N bytes (The maximum value of N is 125): function code is 03H

For example: When the device address of the laser displacement is 01H and the register is 0x00 (Dec), the RTU mode command to read the current position is as follows.

Renly message

RTU mode

Command message

Address	0x01
Function code	0x03
Initial address (high)	0x00
Initial address (low)	0x00
Data entries	0x00
In bytes (high)	
Data entries	0x02
In bytes (low)	
CRC checksum (low)	0xC4
CRC checksum (high)	0x0B

Reply message	
Address	0x01
Function code	0x03
Bits	0x04
Register 30001 (high)	0x01
Register 30001 (low)	0x00
Register 30002 (high)	0x00
Register 30002 (low)	0x04
CRC checksum (low)	0xFA
CRC checksum (high)	0x0C

For example: When the device address of the laser displacement is 01H and the register is 7537H (absolute position), the RTU mode command to read the current position is as follows.

RTU mode

Command message	
Address	0x01
Function code	0x03
Initial address (high)	0x75
Initial address (low)	0x31
Data entries	0x00
In bytes (high)	
Data entries	0x02
In bytes (low)	
CRC checksum (low)	0x8F
CRC checksum (high)	0xC8

Reply message

0x01
0x03
0x04
0x96
0x0E
0x00
0x05
0x76
0x7B

For example: When the device address of the laser displacement is 01H and the register is 753BH ≻ (PD peak position), the RTU mode command to read the current position is as follows.

RTU mode	
Command message	
Address	0x01
Function code	0x03
Initial address (high)	0x75
Initial address (low)	0x3B
Data entries	0x00
In bytes (high)	
Data entries	0x02
In bytes (low)	
CRC checksum (low)	0xAF
CRC checksum (high)	0xCA

Reply message	
Address	0x01
Function code	0x03
Bits	0x04
Register 30001 (high)	0x32
Register 30001 (low)	0xB0
Register 30002 (high)	0x00
Register 30002 (low)	0x01
CRC checksum (low)	0x34
CRC checksum (high)	0xAC

For example: When the device address of the laser displacement is 01H and the register is 7595H (62 > consecutive data), after receiving the command, the laser displacement will read the previous 62 consecutive data and the RTU command is as follows.

Command message		Reply message	
Address	0x01	Address	0x01
Function code	0x03	Function code	0x03
Initial address (high)	0x75	Bits	0xF8
Initial address (low)	0x95	Register 30101 (high)	0x00
Data entries	0x00	Register 30101 (low)	0x05
In bytes (high)		Register 30102 (high)	0x9B
Data entries	0x7C	Register 30102 (low)	0x09
In bytes (low)			
CRC checksum (low)	0x4E		
CRC checksum (high)	0x0B		
		Register 30223 (high)	0x00
		Register 30223 (low)	0x05
		Register 30224 (high)	0x9B
		Register 30224 (low)	0x00
		CRC checksum (low)	0xDB
		CRC checksum (high)	0x3F

The first data:

0(0x00)*256*256*256+5(0x05)*256*256+155(0x9B)*256+9(0x09)=367369(0.1um)

The last data: 0(0x00)*256*256*256+5(0x05)*256*256+155(0x9B)*256+0(0x00)=367360(0.1um)

◎ Communication code can be 1 byte, function code: 06H

For example: Write 0201H (device address: 0x02 & baud rate: 0x01) to A029H, the device address is 0x01 and the RTU command is as follows.

Command message	
Address	0x01
Function code	0x06
Initial address (high)	0xA0
Initial address (low)	0x29
Data content (high)	0x02
Data content (low)	0x01
CRC checksum (low)	0xBA
CRC checksum (high)	0xA2

Reply r	nessage
---------	---------

Reply meeege	
Address	0x01
Function code	0x06
Initial address (high)	0xA0
Initial address (low)	0x29
Data content (high)	0x02
Data content (low)	0x01
CRC checksum (low)	0xBA
CRC checksum (high)	0xA2

 For example: Write the lower limit of digital I/O output to the laser displacement meter of device address 0x01 which need to set high byte of lower limit(A7F9H) and low byte of lower limit(A85DH). The RTU command is as follows

Lower limit = 35000 um (high byte is 0x0000, low byte is 0x88b8)

Command message

High byte setting

• • •	
Address	0x01
Function code	0x06
Initial address (high)	0xA7
Initial address (low)	0xF9
Data content (high)	0x00
Data content (low)	0x00
CRC checksum (low)	0x7A
CRC checksum (high)	0x8F
Data content (high) Data content (low) CRC checksum (low)	0x00 0x00 0x7A

Reply message

Address	0x01
Function code	0x06
Initial address (high)	0xA7
Initial address (low)	0xF9
Data content (high)	0x00
Data content (low)	0x00
CRC checksum (low)	0x78
CRC checksum (high)	0xEF

Chapter 4 Communication Setting

Low byte setting

Address	0x01
Function code	0x06
Initial address (high)	0xA8
Initial address (low)	0x5D
Data content (high)	0x88
Data content (low)	0xB8
CRC checksum (low)	0x5E
CRC checksum (high)	0x0A

Address	0x01
Function code	0x06
Initial address (high)	0xA8
Initial address (low)	0x5D
Data content (high)	0x88
Data content (low)	0xB8
CRC checksum (low)	0x5E
CRC checksum (high)	0x0A

 For example: Write the lower limit of digital I/O output to the laser displacement meter of device address 0x01 which need to set high byte of upper limit(A8C1H) and low byte of lower limit(A925H). The RTU command is as follows

Lower limit = 40000 um (high byte is 0x0000, low byte is 0x9C40)

Command message

Reply message

High byte setting

Address	0x01
Function code	0x06
Initial address (high)	0xA8
Initial address (low)	0xC1
Data content (high)	0x00
Data content (low)	0x00
CRC checksum (low)	0xF8
CRC checksum (high)	0x56

Address	0x01
Function code	0x06
Initial address (high)	0xA8
Initial address (low)	0xC1
Data content (high)	0x00
Data content (low)	0x00
CRC checksum (low)	0xF8
CRC checksum (high)	0x56

Low byte setting

Address	0x01
Function code	0x06
Initial address (high)	0xA9
Initial address (low)	0x25
Data content (high)	0x9C
Data content (low)	0x40
CRC checksum (low)	0xD1
CRC checksum (high)	0x6D

Address	0x01
Function code	0x06
Initial address (high)	0xA9
Initial address (low)	0x25
Data content (high)	0x9C
Data content (low)	0x40
CRC checksum (low)	0xD1
CRC checksum (high)	0x6D

◎ Communication code can be 2 byte, function code: 10H

 For example: Write digital I/O lower limit for relative setting and write lower limit -5000um to AB19H~AB1AH. The RTU command is as follows

Command message		Reply message	
Address	0x01	Address	0x01
Function code	0x10	Function code	0x10
Initial address (high)	0xAB	Initial address (high)	0xAB
Initial address (low)	0x19	Initial address (low)	0x19
Number of registers	0x00	Number of registers	0x00
(high)		(high)	
Number of registers	0x02	Number of registers	0x02
(low)		(low)	
Byte	0x04	CRC checksum (low)	0xB0
Register address	0xEC	CRC checksum (high)	0x2B
0xAB19 (high)			
Register address	0x78		
0xAB19 (low)			
Register address	0xFF		
0xAB1A (high)			
Register address	0xFF		
0xAB1A (low)			
CRC checksum (low)	0x0C		
CRC checksum (high)	0xC7		

Specifications

Name	Laser Displacement			
Sensing method	Triangulation			
Model	LD-040N	LD-080N	LD-150N	
Reference Distance	40mm	80mm	150mm	
Measurement Range	± 10mm	± 25mm	± 60mm	
Repeatability	2µm	5µm	15µm	
	Communication method: Digital I/O and RS485			
Interface	Supports 9600, 19200, 38400, 115200, 460800 bps			
	(Default value: 115200bps)			
Light Source	Laser CLASS 2			
Spot Size	50 x 15µm	90 x 25µm	168 x 40µm	
Input Voltage	12~24 VDC ± 10%			
Linearity	± 0.1%			
Response Time	1ms / 3ms / 5ms / 10ms (Default value: 1ms)			
Average	1 /2 /4 /8 /16 /32 /64 /128 /256 (Default value 64)			
Compling Data	1ms / 10ms / 100ms / 200ms / 300ms / 400ms / 500ms / 1000ms			
Sampling Rate	(Default value: 100ms)			
Indiantor	Laser ON: blue, Measurement range: green,			
Indicator	Out of measurement range: orange, DO: yellow, DI: red			
Protection Circuit	Protection against reverse power connection, output overcurrent,			
	power supply surge, output surge			
Operating Temperature	10°C ~ 50°C			
Storage Temperature	-25°C ~ 75°C			
Ambient Humidity	30% ~ 85 %			
Enclosure Rating	IP67			
Ambient Light Resistance	5000lus or less			
Vibration Resistance	10 ~ 55 Hz, 1.5 mm, 3 axes for 2 hours			
Insulating Resistance	20MΩ or more			
Withstand Voltage	500 VAC 50 / 60 Hz 1min			
Certifications	CE			
Materials	Optical window: Glass; Case: Aluminium			
Cables	M8 Connector (8 Pin)			
Dimensions	57mm × 42mm × 24mm			

Safety Precautions

Caution of laser displacement

- If you do not use, control, adjust, or perform operations as required, there is the possibility of exposure to radiation.
- > Due to the possibility of human injury (eyes, skin, etc.), please be sure to observe the followings.
- The product doesn't have automatically stop laser emitting device after dismantling, therefore please do not disassemble it.

Caution of laser product

- > Avoid direct or indirect entrance of laser light into the eye.
- > Do not deliberately irradiate the human body.
- > Pay heed to the path that the laser beam passes through.
- > Do not install at the same height as the beam path and human eye.

Warranty

All products from Delta Electronics Inc. undergo detailed inspection before shipment. If you have any problems, please contact your local branch or distributor and detail the failure.

O Warranty Term

> This Limited Warranty shall last for twenty four months from shipment to purchaser.

Warranty Conditions

- Our company will replace products free of charge once it becomes apparent that the company might be blamed for faults within the warranty period. However, the following conditions are not covered by the warranty:
- 1) Any product failure caused by improper conditions, environment, operation and operation methods not described in operation manual and user manual.
- 2) Any failure due to product defects, such as customer's equipment and software.
- 3) It is not caused by the modification or repair of products by Delta specialist.
- 4) It is not the damage caused by maintenance or replacement of expendable parts in accordance with operation manual and user manual.
- 5) Not Delta's responsibility: any natural physical disaster, such as fire, earthquake, flood or other external factor, such as abnormal voltage.
- Product warranty is limited to the above mentioned content. We are not responsible for any other minor loss (such as equipment damage and business) and any other damage due to product failure.