q

04 /2018

706404 / 01

Operating instructions
RFID read/write head
with CANopen interface




Read/write head with CANopen interface

Content
1 Preliminary note . . ... . e 4
1.1 Symbolsused. . ... .. . e 4
2 Safety instructions . ... ... .. . . 4
2.1 General. . ... 4
2.2 Target groUp . . . oo 4
2.3 Electrical connection . ......... ... .. . . . .. e 4
2.4 Tamperingwiththedevice .. ... ... .. . . . .. 5
3 Generalinformation . ......... .. ... . . .. 5
3.1 CANopentechnology ......... ... ... .. 5
3.2 References. . ... e 5
4 Functionsand features. ........... ... . . 6
S dnstallation. . . ... 6
5.1 General installation instructions . . . ............... ... ... ... ..... 6
5.2 Notes onthe taginstallation. ... ...... ... ... .. ... ... . .. . ... .. ... 6
5.3 Avoiding interference . .. ....... .. .. . . e 6
6 Indicators of the DTM424 / 425/428 /434 /435. ... ... ... ... ... .. ..... 7
7 Indicators of the DTCH10 . . . ... ... e 7
8 CANopeninterface . .......... . . 8
8.1 CANopen functions . .......... ... i i 8
8.2 Changethenode D andbitrate ................ ... .. ........... 9
8.2.1 Change the node ID and bit rate in the object directory. . ... ... ... 9
8.2.2 Setthenote IDand bitrateviaLSS.......................... 9
8.3 Sel-UpP. ..o 10
8.4 Communication types of the process data object (PDO).............. 11
8.5 Objectdirectory (OD) . ... ..o e 12
8.6 Errormessages . ... 16
8.7 Monitoring activity via heartbeat. . . ............ ... ... ... L 18
8.8 Changeobjects ....... ... ... . . e 18
8.9 Processdataobjects . ......... ... 18
8.9.1 Transmit process data objects (TPDO) . ..................... 19
8.9.2 Receive process data objects (RPDO) ...................... 19
8.10 Device status . ... ... e 20
8.11 Deactivate antenna. . . ... ... . . . 21
8.12 Selecttagtype . ... .o 22
8.13 Read informationofatag............ ... .. ... .. .. . ... 23
8.14 RSSlIvalue ....... ... . . . e 23
8.15 Tag detectionfilter ... ....... . ... ... . . . . 23
8.15.1 "UID filter depth" object . . .. ... ... ... ... ... . . ..., 24
8.15.2 "Zero ID filter depth" object ... ......... ... ... .. .. L. 24
9 Datatransferwiththetag........... ... ... . . ... . . . . . . . . ... 25
9.1 Read UID (Unique Identification Number) ofthetag ................ 25



Read/write head with CANopen interface

9.2 Read data from the tag via PDO transfer. . .. ..................... 25
9.2.1 Example 1 ... 26
0.2.2 Example 2 . ... 26
9.3 Write data to thetagviaPDO transfer. . ......................... 27
931 Example 1 .. ... .. 28
9.3.2 Example 2 . ... . 28
9.4 Error handling forPDO transfer . .......... ... ... ... ... ...... 29
9.5 Read data from the tag via SDO transfer ........................ 29
951 Example. . ... ...
9.6 Write data to the tag via SDO transfer
9.6.1 Example. . ... .
9.7 Lock data ranges on the tag via SDO transfer. .................... 30
9.71 Example. . .. ... 31
9.8 Error handling for SDOtransfer . . . ........ ... ... .. ... ... ... .... 31
10 EDS data . ... e 33
11 Maintenance, repairand disposal. . .......... ... ... . ... ... ... .. ... 33
12 GlOSSarY . o e e 33

Licences and trademarks
All trademarks and company names used are subject to the copyright of the respective companies.



Read/write head with CANopen interface

1 Preliminary note

This document applies to devices of the type "RFID read/write head with CANopen
interface" (e.g. art. no.: DTM425). This document is part of the device.

This document is intended for specialists. These specialists are people who are
qualified by their appropriate training and their experience to see risks and to
avoid possible hazards that may be caused during operation or maintenance of
the device. The document contains information about the correct handling of the
device.

Read this document before use to familiarise yourself with operating conditions,
installation and operation. Keep this document during the entire duration of use of
the device.

Adhere to the safety instructions.

1.1 Symbols used

Instructions
Reaction, result

.] Designation of keys, buttons or indications
Cross-reference

Important note
Non-compliance may result in malfunction or interference.

URCE A 4

Information
Supplementary note

[=lo

2 Safety instructions

2.1 General

These instructions are an integral part of the device. They contain texts and figures
concerning the correct handling of the device and must be read before installation
or use.

Observe the operating instructions. Non-observance of the instructions, operation
which is not in accordance with use as prescribed below, wrong installation or
incorrect handling can seriously affect the safety of operators and machinery.

2.2 Target group

These instructions are intended for authorised persons according to the EMC
and low-voltage directives. The device must be installed, connected and put into
operation by a qualified electrician.

2.3 Electrical connection

Disconnect the unit externally before handling it.



Read/write head with CANopen interface

The connection pins may only be supplied with the signals indicated in the
technical data and/or on the device label and only the approved accessories of ifm
may be connected.

9 | The device does not have an internal CAN terminating resistor. A
* ) connection cable without terminating resistor can cause interference on the
CAN bus.

» Use 120 Q terminating resistors or a connection cable with integrated
terminating resistor, e.g. article EVC492.

2.4 Tampering with the device m

In case of malfunctions or uncertainties please contact the manufacturer. Any
tampering with the device can seriously affect the safety of operators and
machinery. This is not permitted and leads to the exclusion of any liability and
warranty claims.

3 General information

3.1 CANopen technology

The CANopen communication profile is based on the CAN Application Layer (CAL)
specification of the CiA organisation. CANopen is considered as a robust fieldbus
with highly flexible configuration options. It is used in many various applications
which are based on different application profiles. CANopen comprises a concept to
configure and communicate real-time data using synchronous and asynchronous
messages. Four message types (objects) are distinguished.

1. Administration messages (layer management, network management and
identifier distribution)

2. Service Data Objects (SDO)

3. Process Data Objects (PDO)

4. Predefined Objects (emergency)

For further information please refer to the CiA-CAN specification (CiA 301 -
CANopen).

3.2 References

http://www.can-cia.org

CAN Application Layer, DS 201 ...207 CiA

LSS profile DS305 CiA
CAN-based communication profile DS 301 CiA

CAN specification version 2.0 A Robert Bosch GmbH



Read/write head with CANopen interface

4 Functions and features

The RFID read/write head is used for reading and describing RFID tags. The
read/write head is configured and data is exchanged via the integrated CANopen
interface.

Typical applications are for example the identification of interchangeable tools and
attachments on mobile machines.

5 Installation

5.1 General installation instructions

! | Observe the separate mounting instructions.

1 | When mounting several read/write heads adhere to the minimum distances
=/ between the systems.

¢ | The immediate vicinity of powerful HF emission sources such as welding

=/ transformers or converters can affect operation of the read/write heads.

5.2 Notes on the tag installation

! | Installation of the tags in or on metal reduces the read and write distances.

¢ | The orientation of the read/write head antenna axis must correspond with the
=/ axis of the tag coil.

5.3 Avoiding interference

The device generates a modulated electrical field with a frequency of 13.56 MHz.
To avoid interference of the data communication no other devices generating
interference emission in this frequency band must be operated in its vicinity. Such
devices are for example frequency converters and switched-mode power supplies.



Read/write head with CANopen interface

6 Indicators of the DTMA424 [/ 425/ 428 | 434 | 435

Operating status LED red LED green LED yellow
Preoperational off lights permanently off

Preoperational and off flashes alternately with flashes alternately with
tag detected yellow LED (every 1.6 s) | green LED (every 1.6 s)
Operational off flashes (every 0.4 s) off

Operational and tag detected | off off lights permanently
Configuration error flashes (every 0.4 s)

: LED reacts according to the current operating status
Error in the CAN network flashes (every 1.2 s)

CAN: Bus OFF lights permanently off off
LSS service active flashes off off
Hardware error detected in off off flashes
the device

7 Indicators of the DTC510

@ ®
—
() ()
@ 1: green (operating status) / red (error)
2: yellow (ID tag)

Operating status LED red LED green LED yellow

Preoperational off on off; on if a tag has been
detected in the reading field

Operational off flashes (2.5 Hz) off; on if a tag has been
detected in the reading field

Configuration error | flashes alternately with | flashes alternately off; on if a tag has been

green LED (2.5 Hz) with red LED (2.5 Hz) | detected in the reading field

Error in the CAN flashes alternately with flashes alternately off; on if a tag has been

network green LED (0.8 Hz) with red LED (0.8 Hz) | detected in the reading field

CAN Bus off on off off; on if a tag has been
detected in the reading field

LSS service active | flickers irregularly off off; on if a tag has been
detected in the reading field

Hardware error off off flickers irregularly

detected in the

device




Read/write head with CANopen interface

8 CANopen interface

The RFID read/write head has a standardised CANopen interface according to
CiA DS-301. All measured values and parameters can be accessed via the object
directory (OD). The individual configuration can be saved in the internal permanent
memory.

8.1 CANopen functions

The following CANopen functions are available:

64 transmit and receive process data objects (TPDO1..64, RPDO1..64) in two
possible operating modes:

— individual check via a remote transmit-request telegram (RTR)
— event-controlled transmission

Error messages via emergency object (EMCY) with support of the:
— general error register

— manufacturer-specific register

— error list (Pre-defined Error Field)

Monitoring mechanism heartbeat

Status and error indication via LED

In addition to the CiA DS-301 functionality there are more manufacturer and
profile-specific characteristics:

— setting of the node ID and the bit rate via object directory entry (SDO)

— configuration and reading/writing of operational data via service data objects
(SDO)

Support of the layer settings service (LSS)
Support of synchronous process data transmission (SYNC)



Read/write head with CANopen interface

8.2 Change the node ID and bit rate
The device supports several options how to change the node ID and the bit rate.

1 | The device is delivered with the node ID 32 and a bit rate of 125 Kbits/s.

1 | Each node ID must only be assigned once in the CANopen network. If a node
=/ ID is assigned several times, malfunction in the CANopen network will result.

8.2.1 Change the node ID and bit rate in the object directory m

The node ID is entered in the object directory in the objects 0x20F0 and 0x20F1.
If the two values are identical, the setting is stored and is active after a software
reset of the device. Values between 1 and 127 may be used as node ID.

The bit rate is entered in the objects 0x20F2 and 0x20F3. If the two values are
identical, the setting is stored and is active after a software reset of the device. The
following values may be used as bit rate:

Value Bit rate
1000 Kbits/s
800 Kbits/s
500 Kbits/s
250 Kbits/s
125 Kbits/s
100 Kbits/s
50 Kbits/s
20 Kbits/s

N[OOI~ |O

If a master is used in the CANopen network for central storage of parameters,
the changed values for node ID (0x20F0 and 0x20F1) and bit rate (0x20F2
and 0x20F3) must be additionally entered in the master.

Otherwise the values will be reset during each start of the CANopen network.

8.2.2 Set the note ID and bit rate via LSS

Using the layer setting service (LSS) an LSS master can change the node ID and
bit rate of the device (LSS slave) via the CAN bus. The LSS master sets all LSS
slaves to a configuration mode. Each LSS slave can be unambiguously identified
via the device data (vendor ID, product code, revision number and serial number).

To change the bit rate the LSS master transfers the new bit rate in the
configuration mode with the service "Configure timing bit". The LSS slave replies
to the LSS master if the new bit rate is supported. Then the LSS master transmits
the time "Switch delay" via the service "Activate bit timing" after which the new bit
rate should be activated. After activation the LSS master switches the LSS slave
again to the operating mode.



Read/write head with CANopen interface

To change the node ID the LSS master transfers the new node ID in the
configuration mode. The LSS slave replies to the master if the new node ID is
valid. After changing the node ID the LSS master switches the LSS slave again to
the operating mode.

The new bit rate and node ID become active after a software reset of the LSS
slave.

8.3 Set-up
The CANopen standard CiA301 defines three possible operating states:

Pre-Operational

In the pre-operational state no PDO messages (process data) can be transmitted.
The pre-operational state is used to set the sensor parameters or as standby
mode.

During booting in the pre-operational mode on the CAN bus the device reports with
the bootUP message "0x700+Node-ID".

Operational
In the operational state all communication services are carried out. The operational
state is used to exchange the process data while in operation.

Stopped

In the stopped state only NMT messages (network management) are possible.
This allows almost complete separation of redundant or faulty sensors from the
bus.

The master or network manager can request the sensor via NMT messages to
change the state accordingly.

10



Read/write head with CANopen interface

8.4 Communication types of the process data object (PDO)

The TPDO can be checked at any time by transmitting a remote transmit-request
telegram (RTR). Otherwise the TPDOs are sent automatically as soon as their
value changes (event-driven).

As an option, the CANOpen service "SYNC" can be used (see CiA 301, 7.2.5
Synchronization object (SYNC)). For the synchronised transmission CANopen
provides the SYNC object at which the TPDOs are transmitted after every "nth"
reception of a SYNC telegram.

A total of 64 TPDOs and 64 RPDOs is available; on delivery only the first 4 of each m
are active. If the configuration of the CANopen network allows it, the remaining
process data objects can also be activated.

The process data is assigned to the linear address range in the standard settings
of the RFID tag. The TPDO1 maps e.g. the first 8 bytes of the user data memory of
the RFID tag.

Reading of the memory and transmission of the data via TPDO is effected
automatically as soon as a new RFID tag is detected.

Writing of the data is effected in the same way by write access to the respective
RPDO.

¢ | Data transfer per process data object is only possible in the "Operational"
=~/ operating mode (— 8.3 Set-up).

1



Read/write head with CANopen interface

8.5 Object directory (OD)

Index Subindex | Name (object) Type | Access | Default PDO Save
value mapping | object
capability | value
CANopen communication (CiA 301)
0x1000 | Ox00 Device type u32 ro 0x00000000 | - -
0x1001 | Ox00 Error register u8 ro 0x00 - -
0x1003 | 0x01 Predefined error field 032 ro 0x00000000
0x02
0x1005 | 0x00 COB ID SYNC u32 rw 0x00000000 | - yes
0x1008 | 0x00 Manufacturer device name | vSTR | ro Article - -
number of
the device
0x1009 | 0x00 Manufacturer hardware vSTR | ro Current - -
version hardware
version
0x100A | 0x00 Manufacturer software vSTR | ro Current - -
version software
version
0x1010 | Ox01 Save parameters u32 rw 0x00000000 | - -
(save device parameters
in non-volatile memory)
0x1011 0x01 Load the default u32 rw 0x00000000 | - -
communication parameter
0x1014 | 0x00 COB ID EMCY u32 rw Node ID+ -
(COB ID emergency 0x80
message)
0x1015 | 0x00 Inhibit time EMCY u16 rw 0x0000 - yes
(inhibit time between
EMCY messages)
0x1017 | Ox00 Producer heartbeat time ule | rw 0x0000 - yes
(time difference between
heartbeats sent in ms)
0x1018 | 0x01 Vendor ID u32 ro 0x0069666D | - -
0x02 Product code u32 ro Product - -
code of the
unit version
0x03 Revision number u32 ro Main - -
revision
and current
software
version
0x04 Serial number u32 ro Serial - -
number of
the device

12




Read/write head with CANopen interface

Index Subindex | Name (object) Type | Access | Default PDO Save
value mapping | object
capability | value
0x1200 | 0x01 COB ID client to server u32 |ro Node ID+ - -
0x600
0x02 COB ID client to server u32 |ro Node ID+ - -
0x580
0x1400- | 0x01 RPDO parameter: COB ID | u32 rw (— 8.9.2) - yes
0x143F 0x02 RPDO parameter: u8 ro OxFF - yes
transmission type
0x1600- | 0x01- RPDO mapping u32 | rw (— 8.9.2) - yes
0x163F | 0x08
0x1800- | 0x01 TPDO parameter: COBID | u32 |rw (— 8.9.1) - yes
0x183F 0x02 TPDO parameter: u8 ro OxFF - yes
transmission type
0x03 TPDO parameter: inhibit ule | rw 0x00 - yes
time
0x1A00- | 0x01- TPDO mapping u32 | rw (— 8.9.1) - yes
O0x1A3F | 0x08
Bus configuration
0x20F0 | 0x00 NODE ID setting A u8 rw 32 - Auto-
(Node ID for CANopen save
communication)
0x20F1 | 0x00 NODE ID setting B u8 rw 32 - Auto-
(Node ID for CANopen save
communication)
0x20F2 | Ox00 Bit rate setting A u8 rw 4 - Auto-
(CAN bus bit rate) save
0x20F3 | 0x00 Bit rate setting B u8 rw 4 - Auto-
(CAN bus bit rate) save
Status and control of the reader
0x2150 | 0x00 Device status u32 ro yes -
(device status flags)
0x2151 | 0x00 Antenna active bool | rw 1 - yes
(enable HF front end of the
device)
0x2160 | 0x01- Definition tag type dom | ro (— 8.12) - -
OxFE (name of supported tags)
0x2161 | 0x00 Tag type selection u8 rw 2 - yes
(value selects tag type
defined in 0x2160)
0x2162 | 0x00 RSSI us ro - yes -

13




Read/write head with CANopen interface

(length of the memory
range on the tag that is to
be read)

Index Subindex | Name (object) Type | Access | Default PDO Save
value mapping | object
capability | value
Tag information
0x2180 | 0x00 Current UID u64 ro 0x00000000 | yes -
(UID of the tag in the read 00000000
range, PDO mappable)
0x2181 | 0x00 Current DSFID u8 ro 0x00 yes -
(DSFID of the tag in
the read range, PDO
mappable)
0x2182 | 0x01 Tag information: UID ue4 | ro 0x00000000 | - -
00000000
0x02 Tag information: DSFID u8 ro 0x00 - -
0x03 Tag information: AFI u8 ro 0x00 - -
0x04 Tag information: u32 ro 0x00000000 | - -
Memory size
0x05 Tag information: u8 ro 0x00 - -
IC reference
0x06 Tag information: Tag type | u8 ro 0x00 - -
(detected tag type,
defined in 0x2160)
Read mappable data
0x2200 | 0x01- Address read start point ule | rw (— 8.9.2) - yes
0x40 (start of the address range
on the tag that is to be
read)
0x2201 | 0x01- Read length u8 rw (— 8.9.2) - yes
0x40 (length of the memory
range on the tag that is to
be read; max. 8 bytes)
0x220A | 0x01- Tag data ue4 | ro yes -
0x40 (8 bytes of tag data,
updated when new tag
enters reading area)
Read a data range
0x2280 | 0x00 Address read start point u16 rw 0x0000 - yes
(start of the address range
on the tag that is to be
read)
0x2281 | 0x00 Read length ule | rw 0x0000 - yes

14




Read/write head with CANopen interface

Index Subindex | Name (object) Type | Access | Default PDO Save
value mapping | object
capability | value
0x2282 | 0x00 Tag data dom |ro - -
(requested data from
the tag as configured
in objects 0x2280 and
0x2281)
Write mappable data
0x2300 | 0x01- Address write start point ule | rw (— 8.9.1) - yes
0x40 (start of the address range
on the tag that is to be
written)
0x2301 | Ox01- Write length u8 rw (— 8.9.1) - yes
0x40 (length of the memory
range on the tag that is to
be written; max. 8 bytes)
0x2302 | 0x01- Auto-write bool | rw 0 - yes
0x40 (enable automatic write
access if a new tag is
detected)
0x230A | 0x01- Tag data u4 | rmw yes -
0x40 (8 bytes of tag data)
0x230F | 0x00 Write trigger ue4 | rww 0x00000000 | yes
00000000
Write a data range
0x2380 | 0x00 Address write start point ule | rw 0x0000 - yes
(start of the address range
on the tag that is to be
written)
0x2381 | 0x00 Write length ul6 | rw 0x0000 - yes
(length of the memory
range on the tag that is to
be written)
0x2382 | 0x00 Tag data dom | wo - -
(data that is to be written
to the tag as configured
in objects 0x2380 and
0x2381)

15




Read/write head with CANopen interface

Index Subindex

Name (object)

Type

Access

Default
value

PDO
mapping

capability

Save
object
value

Lock a data range

0x2480 | 0x00

Address lock start point

(start of the address range

on the tag that is to be
locked; must correspond
to the tag ranges)

u16

0x0000 -

yes

0x2481 | 0x00

Lock length

(length of the memory
range on the tag that
is to be locked, must
correspond to the tag
ranges)

u16

0x0000 -

yes

0x2482 | 0x00

Lock trigger

(trigger for locking data
on the tag as configured
in Objects 0x2480 and
0x2481)

bool

wo

UID filter

0x4603 | 0x00

UID filter depth

s8

0x00 -

yes

0x4605 | 0x00

Zero ID filter depth

s8

0x02 -

yes

8.6 Error messages

The device supports a number of emergency messages that are sent in the event
of a communication, hardware or RFID error. If one of these errors occurs, the
error register (OV index 0x1001) and the pre-defined error field (OV index 0x1003)

are updated.

The COB ID of the emergency message can be changed in the object "COB
ID EMCY" (OV index 0x1014). By setting bit 31 in this object the emergency

messages are deactivated.

The disable time between two emergency messages can be defined via the object
0x1015. The indication is made in steps of 100 ps.

o) The COB ID of the emergency messages is preset to
) 0x80 + node ID.

heartbeat error

Emergency | Error register | Manufacturer | Manufacturer Emergency description

error code | (0x1001) error code error name

0x8210 0x11 Protocol - PDO not processed due
to length error

0x8130 0x01 Monitoring - node guarding or

16




Read/write head with CANopen interface

Emergency | Error register | Manufacturer | Manufacturer Emergency description
error code | (0x1001) error code error name
0x8100 0x11 Monitoring - general
communication error, send in case
of bus off
0x5000 0x81 0x01 Device hardware error (antenna
error)
0x4200 0x09 0x02 Device temperature too high
OxFF00 0x81 0x01 RX: 1ISO_ Tag did not answer, maybe tag is
COMMAND _ not in the field anymore?
ERROR_NO _
RESPONSE
OxFF00 0x81 0x02 RX: 1SO_ Error when receiving the answer
COMMAND _ from the tag (CRC error, framing
ERROR_RX_ error, collision, etc.)
ERROR
OxFFO01 0x81 0x01 TX: 1SO_ Tag did not answer, maybe tag is
COMMAND _ not in the field anymore?
ERROR_NO _
RESPONSE
OxFFO1 0x81 0x02 TX: 1SO_ Error when receiving the answer
COMMAND _ from the tag (CRC error, framing
ERROR_RX_ error, collision, etc.)
ERROR
OxFF02 0x81 0x01 ISO_TAG_ The specified command is not
ERROR _ supported. Example: command
COMMAND_NOT _ code error
SPECIFIED
OxFF02 0x81 0x02 ISO_TAG_ Cannot recognise the command.
ERROR _ The number of blocks is too high.
COMMAND _ Example: Format error
SYNTAX
OxFF02 0x81 0x03 ISO_TAG_ The indicated options are not
ERROR _ supported
OPTION_NOT_
SUPPORTED
OxFF02 0x81 0x0F ISO_TAG _ Other errors
ERROR_OTHER
OxFF02 0x81 0x10 ISO_TAG_ The specified block cannot be used
ERROR_BLOCK _ (or was not found)
NOT_USABLE
OxFF02 0x81 0x11 ISO_TAG_ The specified block has already
ERROR _BLOCK_ | been locked and cannot be locked
ALREADY _ again
BLOCKED
OxFF02 0x81 0x12 ISO_TAG_ The specified block has already
ERROR_ been locked and its contents
BLOCK_NOT _ cannot be updated
UPDATEABLE

17




Read/write head with CANopen interface

Emergency | Error register | Manufacturer | Manufacturer Emergency description
error code | (0x1001) error code error name
OxFF02 0x81 0x13 ISO_TAG_ The specified block could not be
ERROR_BLOCK _ programmed normally (a write
WRITE_VERIFY verify error occurred)
OxFF02 0x81 0x14 ISO_TAG_ The specified block could not be
ERROR_BLOCK_ [ locked normally (a lock verify error
LOCK_VERIFY occurred)
OxFF03 0x81 0x00 STATUS Internal buffer overflow
BUFFER_OVERFL

8.7 Monitoring activity via heartbeat

By means of the heartbeat function the activity of a device in the CANopen
network can be monitored by the master. The device regularly sends a heartbeat
message containing the device status.

The heartbeat function is activated by entering a value greater than "0" into
the heartbeat interval time object (OV index 0x1017). The value indicates the
time between two heartbeat signals in milliseconds. The heartbeat function is
deactivated with the value "0".

8.8 Change objects

Changes of the objects in the object directory are applied at once. The changes
will get lost by a reset. To prevent this the objects have to be saved in the internal
permanent memory (flash). All objects marked in the object directory as "Save
object value: yes" are permanently stored in the device flash. By writing the
command "Save" (65766173h) to save the objects (OV index 1010h/01h) all
current objects of the object directory are transferred to the flash memory.

The objects can be reset to factory setting by writing the signature "Load"
(64616F6Ch) to the OV index 1011h/01h. After a reset the changes are applied.

Depending on the architecture of the CANopen network the objects can also be
stored centrally in a CANopen master. In this case the objects are transferred to the
device when the system is started and the locally stored values are overwritten.

1 | Special features of the object node ID (OV index 0x20F0 and 0x20F1) and
=/ the bit rate (OV index 0x20F2 and 0x20F3):

e Changes of the objects are only applied after a reset (— 8.2 Change the
node ID and bit rate).

e The objects cannot be transferred to the flash via the OV index 1010h/01h.

e The objects cannot be reset to the factory setting via the OV index
1011h/01h.

8.9 Process data objects

64 transmit and receive process data objects each are available. On delivery 4
process data objects are active.

18



Read/write head with CANopen interface

8.9.1 Transmit process data objects (TPDO)

The table below contains the transmit process data objects (TPDO) on delivery.

Settings Object directory Tag memory
for PDO
mapping

TPDO | COB Mapped Mapped object | Mapped object | Address Read

object index | subindex length read start length
point

1 Node ID + 0x2150 0x00 0x20 Device status
0x0180

2 Node ID + 0x220A 0x01 0x40 0x00000000 0x08
0x0280

3 Node ID + 0x220A 0x02 0x40 0x00000008 0x08
0x0380

4 Node ID + 0x220A 0x03 0x40 0x00000010 0x08
0x0480

5 0 0x220A 0x04 0x40 0x00000018 0x08
(deactivated)

64 0 0x220A 0x3F 0x04 0x000001F0 0x08
(deactivated)

8.9.2 Receive process data objects (RPDO)

The table below contains the receive process data objects (RPDO) on delivery.

Settings Object directory Tag memory
for PDO
mapping

TPDO | COB Mapped Mapped object | Mapped object | Address Read

object index | subindex length read start length
point

1 Node ID + 0x230F 0x00 0x40 Write trigger
0x0200

2 Node ID + 0x230A 0x01 0x40 0x00000000 0x08
0x0300

3 Node ID + 0x230A 0x02 0x40 0x00000008 0x08
0x0400

4 Node ID + 0x230A 0x03 0x40 0x00000010 0x08
0x0500

5 0 0x230A 0x04 0x40 0x00000018 0x08
(deactivated)

64 0 0x230A Ox3F 0x04 0x000001F8 0x08
(deactivated)

19



Read/write head with CANopen interface

8.10 Device status

The current device status is represented in the object "Device status"

(OV index 0x2150, subindex 0x00). On delivery the object is assigned to TPDO1.

Bit 31 30 29 28 27 26 25 24
Status tag_err
Default |0 0 0 0 0 0 0 0
value
Bit 23 22 21 20 19 18 17 16
Status write_err
Default |0 0 0 0 0 0 0 0
value
Bit 15 14 13 12 11 10 9 8
Status read_err
Default |0 0 0 0 0 0 0 0
value
Bit 7 6 5 4 3 2 1 0
Status r r buf ovfl | fr_err busy present ant pow
Default |0 0 0 0 0 0 1 1
value
Status Value Description EMCY
message

pow 1 Power enabled (always 1)
ant 0 Antenna disabled

1 Antenna enabled
present 0 No tag present

1 Tag present
busy 0 Quiescent condition

1 Read or write access active
fr_err 0 Front end ok

1 Front end error detected (hardware problem) yes
buf _ovfl 0 Buffer ok

1 Buffer overflow detected yes
read_err Error during the last read operation yes
write_err Error during the last write operation yes
tag_err Error message from the tag for the last yes

operation

20




Read/write head with CANopen interface

Read error codes (updated after each read access of the tag)

0x00 ISO_COMMAND_ERROR_NO_ERROR | No error, command successfully executed

0x01 ISO_ COMMAND ERROR _NO Tag did not answer, maybe tag is not in the
RESPONSE field anymore

0x02 ISO_COMMAND_ERROR_RX_ERROR | Error when receiving the answer from the

tag (CRC error, framing error, collision, etc.)

Write error codes (updated after each write access of the tag)

0x00 ISO_COMMAND_ERROR_NO_ERROR | No error, command successfully executed

0x01 ISO_COMMAND_ERROR_NO _ Tag did not answer, maybe tag is not in the
RESPONSE field anymore?

0x02 ISO_COMMAND_ERROR_RX_ERROR | Error when receiving the answer from the

tag (CRC error, framing error, collision, etc.)

Tag error codes (updated after each read or write access of the tag)

0x00 ISO_TAG_ERROR_NO_ERROR No error from tag
0x01 ISO_TAG_ERROR_COMMAND NOT_ | The specified command is not supported.
SPECIFIED Example: command code error
0x02 ISO_TAG_ERROR_COMMAND _ Cannot recognise the command. The
SYNTAX number of blocks is too high. Example:
Format error
0x03 ISO_TAG_ERROR_OPTION_NOT _ The indicated options are not supported
SUPPORTED
OxOF ISO_TAG_ERROR_OTHER Other errors
0x10 ISO_TAG_ERROR BLOCK_NOT _ The specified block cannot be used (or was
USABLE not found)
0x11 ISO_TAG_ERROR_BLOCK_ALREADY_ | The specified block has already been
BLOCKED locked and cannot be locked again
0x12 ISO_TAG_ERROR BLOCK _NOT _ The specified block has already been
UPDATEABLE locked and its contents cannot be updated
0x13 ISO_TAG_ERROR_BLOCK_WRITE_ The specified block could not be
VERIFY programmed normally (a write verify error
occurred)
0x14 ISO_TAG_ERROR BLOCK_ LOCK _ The specified block could not be locked

VERIFY

normally (a lock verify error occurred)

8.11 Deactivate antenna

The antenna in the device can be deactivated if the value 0 is written to the object
"Antenna active" (OV index 0x2151). In this case no tag is detected any more
since the magnetic field of the device is no longer active.

The antenna is reactivated with the value 1. With the object "Antenna active" it is
possible to prevent interference between two devices placed next to each other by
alternately deactivating the antennas of the two devices.

21




Read/write head with CANopen interface

8.12 Select tag type

The device is compatible with several tag types according to ISO15693.
Depending on the size of the user data memory and manufacturer the tags differ
in the access to data. Therefore the device must know which type of tag is used in
the system.

In object 0x2161 the tag type used in the RFID system can be selected. The
available tag types can be read in the object 0x2180, subindex 0x01-OxFE.

Tag type Name Block size [byte] Number of blocks
1 user defined ? ?

2 I-Code SLI 4 28

3 I-Code SLI-S 4 40

4 [-Code SLI-L 4 8

5 F-MEM 2k 8 250
6 F-MEM 232b 4 58

7 F-MEM 8k 32 256
8 TI_32b 4 8

9 TI_256b 4 64
10 ST_128b 4 32
1 ST_256b 4 64
12 ST_8k 4 2048
13 I-Code SLIX2 4 79

Via the object 0x2182 0x06 it is possible to poll the tag type read by the device.
First of all the detected tag type must be read from the object 0x2182 subindex
0x06 and this value must be entered in the object 0x2161.

Of special importance is tag type 1: The parameters "Block size" and "Number
of blocks" are automatically determined by the device. If the parameters do not
match the known tag types, type 1 "User defined" is used.

51 | Detection of tag types is not supported by all tags.

The set tag type is only permanently saved in the device if the object "Save

L parameter” is used (— 8.8 Change objects).

51| Tag type 2 is preset.

22



Read/write head with CANopen interface

8.13 Read information of a tag

The information of a tag can be read via the objects 0x2180 to 0x2182. To do so,
the tag has to be within the detection range of the device.

The objects 0x2180 and 0x2182 are only valid as long as the tag is detected. If
there is no tag within the range, the values of the objects are reset to 0.

The value of the object 0x2182 can be read from the tag on request.

i Reading of information is not supported by each tag type.

8.14 RSSI value

The RSSI value (Received Signal Strength, OV index 0x2162) informs about the
strength of the received signal that is emitted by the tag in front of the device:

0: no tag detected
1: minimum signal strength
8: maximum signal strength

c ) The maximum signal strength is only reached with certain device /
L transponder combinations.

The signal strength depends on the distance between the transponder and

il the active face of the device.

Position changes in the environment, e.g. of metallic objects, can influence
the signal strength.

il

8.15 Tag detection filter
The following situations result in undesired multiple tag detection and reading:
e The tag is in the limit range.

e The installation conditions have a negative effect on the device's
electromagnetic field.

Thus, the tag is not clearly detected which leads to error messages while reading
or writing via PDOs. The objects "UID filter depth" and "Zero ID filter depth" allow
for error message filtering.

8 The following values have proven their worth in practice:

e "0"to "5" in dynamic applications (rapidly passing tags)
e ">5"in static applications

23



Read/write head with CANopen interface

Time [ms] ° |~

14
21
28
35
42
49
56
63
70
77
84
91
98
105
112
119
126
133
140

Tag in the
field

Tag not in the
field

UID filter depth: 0, Zero ID filter depth: 0

Tag detected

Tag not
detected

UID filter depth: 5, Zero ID filter depth: 0

Tag detected

Tag not
detected

UID filter depth: 0, Zero ID filter depth: 5

Tag detected

Tag not
detected

UID filter depth: 5, Zero ID filter depth: 5

Tag detected

Tag not
detected

8.15.1 "UID filter depth" object

The "UID filter depth" object (0x4603/0x00) allows for determining the number
of successful tag detections to be executed by the device. The tag will only be
considered on the CAN bus as having been detected (tag present) once the set
number has been reached.

The value "0" deactivates the filter. The values ">0" delay the "tag present" bit by
respectively 7 ms and thus implement a switch-on delay of the tag value. The
detection in the limit range stabilises as no value will be provided as long as the
tag has not been steadily detected.

8.15.2 "Zero ID filter depth” object

The "Zero ID filter depth" object (0x4605/0x00) allows for determining the number
of unsuccessful tag detections to be executed by the device. The tag will only be
considered on the CAN bus as not being present anymore (tag present) once the
set number has been reached.

24



Read/write head with CANopen interface

The value "0" deactivates the filter. The values ">0" delay the reset of the "tag
present" bit by respectively 7 ms and thus implement a switch-off delay of the tag
value. The detection in the limit range stabilises as no value will be provided as
long as the tag does not remain steadily undetected.

9 Data transfer with the tag

9.1 Read UID (Unique Identification Number) of the tag

The UID of the tag is available in object 0x2180 as soon as a tag is within the m
reading range of the device. If no tag is available, the value 0x0000000000000000
is entered.

If the object is mapped on a TPDO, transmission is event-controlled as soon as a
tag enters the reading range or is removed from the reading field.

9.2 Read data from the tag via PDO transfer

The transfer of the PDO data from the tag may be event-controlled. That means
that the configured TPDOs are automatically transmitted by the device when
the data change. This is the case, for example, when a new tag is detected in
the detection range of the device. The data is automatically read by the tag and
transferred by means of the TPDOs via the CAN bus.

The data that was read by the tag and assigned to a TPDO are in the object
0x220A with the subindexes 0x01-0x40.

o ) Only that data is read by the tag that is assigned to a TPDO. Data objects
1) that are not assigned are not updated automatically.

There are two objects for each data object that are used for configuration: 0x2200
(starting address read) and 0x2201 (length read) with subindexes matching the
data object. The start address in the user data area of the tag and length of the
files to be read are set in the objects.

o ) Only 64-bit data (8 bytes) is always transmitted by a TPDO. If the
L configured data length is smaller than 64 bits, the remaining bits are filled
with 0.

Max. 64 bits can be transmitted in one TPDO. If larger data volumes are to
be transferred, more TPDOs have to be assigned and the respective data
objects are to be configured.

[Flo

25



Read/write head with CANopen interface

9.2.1 Example 1
The data range 0x10 to 0x18 (8 bytes) is to be transferred with the 2nd TPDO.

Settin_gs for PDO | Object directory
mapping
TPDO COB Object index Object subindex | Object length
2 Node ID + 0x0280 | 0x220A 0x01 0x40
Object directory
Index Subindex Name (object) Value
0x2200 0x01 Address read start point 0x10
(start of the address range on the tag that is to be read)
0x2201 0x01 Read length 0x08
(length of the memory range on the tag that is to be read,;
max. 8 bytes)

9.2.2 Example 2
The data range 0x44 to 0x48 (4 bytes) is to be transferred with the 6th TPDO.

Settings for PDO | Object directory
mapping
TPDO coB Object index Object subindex | Object length
6 Node ID + 0x0680 | 0x220A 0x05 0x40
Object directory
Index Subindex Name (object) Value
0x2200 0x05 Address read start point 0x44
(start of the address range on the tag that is to be read)
0x2201 0x05 Read length 0x04
(length of the memory range on the tag that is to be read;
max. 8 bytes)

26



Read/write head with CANopen interface

9.3 Write data to the tag via PDO transfer

To write data to a tag via PDO transfer an RPDO must be assigned to the object
0x230A with a subindex in the range from 0x01 to 0x40. The address of the tag
user data range to which the data is to be written is defined in object 0x2300. The
subindexes of these objects have to be identical.

The tag is written on after the data was written to the RPDO and the respective bit
was changed in the "Write Trigger" object (OV index 0x230F, subindex 0x00).

MSB LSB
Bit 63 62 61 . . .. 2 1 0
Trigger tr64 tr63 tr62 . . . tr3 tr2 tr1
Default value | 0 0 0 0 0 0 0 0 0
Trigger Description
tr64 Trigger for tag data 64 (0x230A/0x40)
tr63 Trigger for tag data 63 (0x230A/0x3F)
tr62 Trigger for tag data 62 (0x230A/0x3E)
tr61 Trigger for tag data 61 (0x230A/0x3D)
tr60 Trigger for tag data 60 (0x230A/0x3C)
tr59 Trigger for tag data 59 (0x230A/0x3B)
tr58 Trigger for tag data 58 (0x230A/0x3A)
tré Trigger for tag data 6 (0x230A/0x6)
tr5 Trigger for tag data 5 (0x230A/0x5)
tr4 Trigger for tag data 4 (0x230A/0x4)
tr3 Trigger for tag data 3 (0x230A/0x3)
tr2 Trigger for tag data 2 (0x230A/0x2)
tr1 Trigger for tag data 1 (0x230A/0x1)

The writing process is always made with the bit change of the respective bit (0->1
or 1->0). Ideally, the object "Write Trigger" (OV index 0x230F, subindex 0x00) is
assigned to an RDPO. On delivery the object "Write Trigger" is assigned to the first
RPDO.

Automatic writing of data can be activated with the object "Auto Write" (OV index
0x2302). As soon as a tag is in the detection range, the last data is written to the
tag.

Only data up to the configured data length is written to the tag. The
subsequent data is ignored. If more than 8 bytes are transferred, more
RPDOs have to be assigned and the respective data objects have to be
configured.

il

27



Read/write head with CANopen interface

9.3.1 Example 1

The data range 0x10 to 0x18 (8 bytes) is to be transferred with the 2nd RPDO.

Settin_gs for PDO | Object directory
mapping
RPDO COB Object index Object subindex | Object length
2 Node ID + 0x0200 | 0x230A 0x01 0x40
Object directory
Index Subindex Name (object) Value
0x2300 0x01 Address read start point 0x10
(start of the address range on the tag that is to be read)
0x2301 0x01 Read length 0x08
(length of the memory range on the tag that is to be read,;
max. 8 bytes)
0x2302 0x01 Auto-write 0x00

Transfer data via RPDO:

PDO transfer PDO Data

To the device RPDO 2 0x12345678
Start write access:

PDO transfer PDO Data

To the device RPDO 1 Switch bit 0

9.3.2 Example 2

The data range 0x44 to 0x48 (4 bytes) is to be transferred with the 6th RPDO. In
addition this data is to be written to a tag each time it reaches the detection range
of the device.

Settin_gs for PDO | Object directory
mapping
RPDO CcOB Object index Object subindex [ Object length
6 Node ID + 0x0600 | 0x230A 0x05 0x40
Object directory
Index Subindex Name (object) Value
0x2300 0x05 Address read start point 0x44
(start of the address range on the tag that is to be read)
0x2301 0x05 Read length 0x04
(length of the memory range on the tag that is to be read;
max. 8 bytes)

28



Read/write head with CANopen interface

Object directory

Index

Subindex

Name (object)

Value

0x2302

0x05

Auto-write

0x01

Transfer data via RPDO:

PDO transfer

PDO

Data

To the device

RPDO 6

0x12340000

The data is written to the tag when it has reached the detection range.

il

9.4 Error handling for PDO transfer

If a read or write access to a tag is not possible, the device creates an emergency
message on the CAN bus.

The error code can be read from the error register (OV index 0x1001, subindex
0x00) and the predefined error field (OV index 0x1003, subindex 0x01-0x02) (—

8.6 Error messages).

9.5 Read data from the tag via SDO transfer

64-bit data (8 bytes) always have to be sent to an RPDO. If the configured
data length is smaller than 64 bits, the remaining bits are ignored.

To read data from a tag via SDO transfer it is necessary to define the data address

and length on the tag. The address must be indicated in object 0x2280 and the

data length in object 0x2281.
Then read access can be started from the tag via a data transfer to object 0x2282.

9.5.1 Example

The data range 0x50 to 0x70 is to be read from the tag.

Object directory

Index Subindex Name (object) Value

0x2280 0x00 Address read start point 0x50
(start of the address range on the tag that is to be read)

0x2281 0x00 Read length 0x20
(length of the memory range on the tag that is to be read,;
max. 8 bytes)

Transfer is started via reading the object 0x2282, subindex 0x00.

il

lengths as segmented transfer.

The data is transferred in one piece as domain data type. Up to a data
length of 4 bytes transfer is effected as expedited transfer; longer data

29



Read/write head with CANopen interface

The recipient must be prepared for temporary storage and processing of the
data.

i

9.6 Write data to the tag via SDO transfer

To write data to a tag via SDO transfer it is necessary to define the data address
and length on the tag.

The address must be indicated in object 0x2380 and the data length in object
0x2381. Then the write access to the tag can be started via a data transfer to
object 0x2382.

9.6.1 Example

The data range 0x34 to 0x37 is to be transferred to the tag.

Object directory

Index Subindex Name (object) Value

0x2380 0x00 Address write start point 0x34
(start of the address range on the tag that is to be written)

0x2381 0x00 Write length 0x03
(length of the memory range on the tag that is to be written)

0x2382 0x00 Tag data 0x010203
(data that is to be written to the tag)

The data is transferred in one piece as domain data type. Up to a data
length of 4 bytes transfer is effected as expedited transfer; longer data
lengths as segmented transfer.

[0

i The transmitter must be able to provide the indicated data length.

9.7 Lock data ranges on the tag via SDO transfer
The data ranges of the tag can be write-protected.

! | The write protection of a data range cannot be removed.

The start address of the data range to be protected is stored in the object "Starting
address lock" (OV index 0x2480). In addition the data range length is stored in the
object "Length lock" (OV index 0x2481).

The start address must be identical with the start address of a storage block
on the tag. The length must be a multiple of the length of a storage block on
the tag.

il

To activate the write protection 1 is written on the trigger (OV index 0x2482).

30



Read/write head with CANopen interface

9.7.1 Example

The data range 0x04 to 0x0C is to be write-protected for a tag of block size 4 (2

blocks or 8 bytes).

Object directory

Index Subindex Name (object) Value

0x2480 0x00 Address lock start point 0x04
(start of the address range on the tag that is to be locked)

0x2481 0x00 Write length 0x08
(length of the memory range on the tag that is to be locked)

0x2482 0x00 Tag lock trigger 0x01

9.8 Error handling for SDO transfer

SDO transfers are acknowledged transfers. If there is an error during transfer or

during actions caused by the transfer, an error is signalled after the SDO transfer.

SDO error Description Possible cause

code

0x05030000 | Toggle bit unchanged.

0x05040000 | SDO protocol elapsed.

0x05040001 Client/server command specifier not valid or unknown.

0x05040002 | Invalid block size (block mode only).

0x05040003 | Invalid sequence number (block mode only).

0x05040004 | CRC error (block mode only).

0x05040005 | Out of memory.

0x06010000 | Access to the object is not supported.

0x06010001 | Attempt to read a write only object.

0x06010002 | Attempt to write a read only object.

0x06020000 | Object does not exist in the object dictionary.

0x06040041 Object cannot be mapped to the PDO.

0x06040042 | The number and length of the objects to be mapped would exceed
the PDO length.

0x06040043 Reason: general parameter incompatibility.

0x06040047 | General parameter incompatibility in the device.

0x06060000 | Access failed due to a hardware error.

0x06070010 | Data type does not match, length of the service parameter does not
match.

0x06070012 | Data type does not match; service parameter too long.

0x06070013 Data type does not match; service parameter too short.

0x06090011 Subindex does not exist.

0x06090030 | Invalid value for parameter (download only).

31



Read/write head with CANopen interface

SDO error Description Possible cause
code
0x06090031 | Value of the written parameter is too high (download only).
0x06090032 | Value of the written parameter is too low (download only).
0x06090036 | Maximum value is lower than minimum value.
0x060A0023 | Resource not available: SDO connection.
0x08000000 | General error
0x08000020 Data cannot be transferred to the application or be stored. Error read or write
access of the
ID tag. Detailed
Information in the
device status object
(0x2150).
0x08000021 Data cannot be transferred to the application or be stored due to a
local controller.
0x08000022 Data cannot be transferred to the application or be stored due to the
current device status.
0x08000023 | The dynamic generation of the object dictionary fails or no object
dictionary is present (e.g. object dictionary is generated from a file
and the generation fails because of a file error).
0x08000024 | No data available Data length =0

32




Read/write head with CANopen interface

10 EDS data

The EDS file serves as a template for different configurations of a device type.
The EDS file is turned into a DCF file which contains device configurations, object
values, node ID and bit rate.

CANopen configuration tools are available for the configuration of the CANopen
network and the devices.

An EDS file can be downloaded from ifm's homepage:

| www.ifm.com | — Service — Download — ldentification systems

Contents of the EDS file:
e Communication functions and objects (to CANopen profile DS-301)

e Manufacturer-specific objects

]

The installation of the EDS file depends on the configuration tool. Please
contact the manufacturer of your controller, if necessary.

11 Maintenance, repair and disposal

» Do not open the housing as the device does not contain any components
which can be maintained by the user. The device must only be repaired by the

manufacturer.
» Dispose of the device in accordance with the national environmental
regulations.
12 Glossary
Term Description
0b ... Binary value (for bit coding), e.g. 0b0001 0000
Ox ... Hexadecimal value, e.g. 0x64 (= 100 decimal)
AFIAFI Indication of the application range of the tag
CAN Controller Area Network (bus system for the use in mobile vehicles)
CAN_H CAN high; CAN connection / CAN cable with a high voltage level
CAN L CAN low; CAN connection / CAN cable with a low voltage level
CANopen CAN-based network protocol on the application level with an open configuration interface
(object directory)
CiA CAN in Automation e.V. (user and manufacturer organisation in Germany/Erlangen,
definition and control body for CAN and CAN-based network protocols)
CcoB CANopen communication object: PDO, SDO, EMCY, ...
COB ID Communication object identification number for assignment of the data packages in the
CANopen network
DSFID Identification number for the assignment of the data structure on the tag

33



Read/write head with CANopen interface

Term Description

EDS Electronic data sheet

EMCY object | Emergency object (alarm message; device indicates an error)

Emergency Messages on the CANopen bus to communicate errors

messages

Error reg Error register (entry with an error code)

Heartbeat Configurable cyclic monitoring among network participants. In contrast to "node guarding”
no superior NMT master is required.

ID Identifier characterising a CAN message. The numerical value of the ID also contains a
priority concerning the bus access (ID 0 = highest priority)

Identifier See ID

ID tag RFID tag

LSS Procedure to set basic device settings

NMT Network management

NODE ID Unambiguous number of a participant in the CANopen network

Object/ OBJ | Term for data/messages which can be exchanged in the CANopen network

ov Object directory

PDO Process Data Object; in the CANopen network for transfer of process data in real time
such as the speed of a motor. PDOs have a higher priority than SDOs; in contrast to the
SDOs they are transferred without confirmation. PDOs consist of a CAN message with
identifier and up to 8 bytes of user data.

PDO mapping | Describes the application data transferred with a PDO.

ro Unidirectional; read only

RPDO Process data object, received by the device

RSSI Signal strength

rw bidirectional; read-write

SDO With this object direct access to the object directory of a network participant is possible
(read/write). An SDO can consist of several CAN messages. The transfer of the individual
messages is confirmed by the addressed participant. With the SDOs, devices can be
configured and parameters can be set.

SYNC The SYNC telegram initiates the synchronised transmission of process data.

TPDO Process data object, sent by the device

uiD Unique identification number of a tag

wo Unidirectional, write only

34




Read/write head with CANopen interface

35



	1 Preliminary note
	1.1 Symbols used

	2 Safety instructions
	2.1 General
	2.2 Target group
	2.3 Electrical connection
	2.4 Tampering with the device

	3 General information
	3.1 CANopen technology 
	3.2 References

	4 Functions and features
	5 Installation
	5.1 General installation instructions
	5.2 Notes on the tag installation
	5.3 Avoiding interference

	6 Indicators of the DTM424 / 425 / 428 / 434 / 435
	7 Indicators of the DTC510
	8 CANopen interface
	8.1 CANopen functions
	8.2 Change the node ID and bit rate
	8.2.1 Change the node ID and bit rate in the object directory
	8.2.2 Set the note ID and bit rate via LSS

	8.3 Set-up
	8.4 Communication types of the process data object (PDO)
	8.5 Object directory (OD)
	8.6 Error messages
	8.7 Monitoring activity via heartbeat
	8.8 Change objects 
	8.9 Process data objects
	8.9.1 Transmit process data objects (TPDO)
	8.9.2 Receive process data objects (RPDO)

	8.10 Device status
	8.11 Deactivate antenna
	8.12 Select tag type
	8.13 Read information of a tag
	8.14 RSSI value 
	8.15 Tag detection filter
	8.15.1 "UID filter depth" object
	8.15.2 "Zero ID filter depth" object


	9 Data transfer with the tag
	9.1 Read UID (Unique Identification Number) of the tag
	9.2 Read data from the tag via PDO transfer
	9.2.1 Example 1
	9.2.2 Example 2

	9.3 Write data to the tag via PDO transfer
	9.3.1 Example 1
	9.3.2 Example 2

	9.4 Error handling for PDO transfer
	9.5 Read data from the tag via SDO transfer 
	9.5.1 Example

	9.6 Write data to the tag via SDO transfer
	9.6.1 Example

	9.7 Lock data ranges on the tag via SDO transfer
	9.7.1 Example

	9.8 Error handling for SDO transfer

	10 EDS data
	11 Maintenance, repair and disposal
	12 Glossary

