

# CE

# Инструкция по эксплуатации Мехатронный датчик потока

SB1xxx SB2xxx SB3xxx SB4xxx SB5xxx SB6xxx SB7xxx SB8xxx SB9xxx SB9xxx



# Содержание

|                                           | ,                                                 |
|-------------------------------------------|---------------------------------------------------|
| 2 Инструкции по безопасной эксплуатации   | 4                                                 |
| 3 Функции и ключевые характеристики       | 5                                                 |
| <ul> <li>4 Функция</li></ul>              | 5<br>7<br>8<br>9<br>10<br>11<br>11<br>11          |
| <ul> <li>5 Установка</li></ul>            | 13<br>14                                          |
| 6 Электрическое подключение               | 15                                                |
| 7 Рабочие элементы и индикация            | 16                                                |
| <ul> <li>8 Меню</li></ul>                 | 18<br>18<br>20<br>22                              |
| <ul> <li>9 Настройка параметров</li></ul> | 23<br>24<br>24<br>24<br>24<br>25<br>25<br>я<br>25 |

| 9.2.2 Мониторинг предельных значений с помощью OUT1 / функция                | 25       |
|------------------------------------------------------------------------------|----------|
| 9.2.3 Мониторинг предельных значений с помощью OUT2 / функция<br>гистерезиса | 26       |
| 9.2.4 Мониторинг предельных значений с помощью OUT2 / функция окна           | 26       |
| 9.2.5 Настройка аналогового выхода для объемного расхода                     | 26       |
| 9.2.6 Настройка частотного сигнала для объемного расхода                     | 26       |
| 9.3 Настройка контроля температуры                                           | 27       |
| 9.3.1 Мониторинг предельных значений с помощью OUT1 / функция гистерезиса    | RU<br>27 |
| 9.3.2 Мониторинг предельных значений с помощью OUT1 / функция                | 27       |
| 9.3.3 Мониторинг предельных значений с помощью OUT2 / функция                | 21       |
| ГИСТерезиса                                                                  | Z1       |
| 9.3.4 мониторинт предельных значений с помощью ООТ27 функция<br>окна         | 28       |
| 935 Настройка анапогового сигнала для температуры                            | 20       |
| 9.3.6 Настройка частотного сигнала для температуры                           | 28       |
| 9.4 Дополнительные настройки пользователя                                    | 29       |
| 9.4.1 Выбор единицы измерения для расхода                                    | 29       |
| 9.4.2 Настройка стандартных единиц измерений для температуры                 | 29       |
| 9.4.3 Конфигурация стандартного изображения                                  | 29       |
| 9.4.4 Конфигурация изменения цвета дисплея                                   | 29       |
| 9.4.5 Настройка демпфирования для коммутационного выхода                     | 29       |
| 9.4.6 Настройка демпфирования для аналогового выхода                         | 30       |
| 9.4.7 Установка статуса выходного сигнала в случае неисправности.            | 30       |
| 9.5 Функции обслуживания                                                     | 31       |
| 9.5.1 Считывание мин./макс. значений температуры                             | 31       |
| 9.5.2 Сброс всех параметров и возвращение к заводским настройкам             | и 31     |
| 10 Эксплуатация                                                              | 31       |
| 10.1 Считывание рабочего значения                                            | 31       |
| 10.2 Подтверждение установленного значения параметра                         | 32       |
| 11 Технические характеристики                                                | 32       |
| 12 Способ устранения неисправности                                           | 32       |

| 12.1 Ошибка измерения, возникшая в результате загрязнения |    |
|-----------------------------------------------------------|----|
| 12.2 Индикация ошибок                                     | 32 |
| 3 Техническое обслуживание, ремонт и утилизация           | 33 |
| 4 Заводская настройка                                     | 35 |

# 1 Введение

Техническая характеристика, сертификаты, принадлежности и дополнительная информация представлена на сайте www.ifm.com.

## 1.1 Используемые символы

- Инструкции
- > Реакция, результат
- [...] Маркировка органов управления, кнопок или обозначение индикации
- → Ссылка на соответствующий раздел
- Важное примечание
  - J Несоблюдение этих рекомендаций может привести к неправильному функционированию устройства или созданию помех.
  - Лиформация

Ј Дополнительное разъяснение.

## 2 Инструкции по безопасной эксплуатации

- Описанный прибор является субкомпонентом для интеграции в систему.
  - Производитель системы несет ответственность за безопасность системы.
  - Производитель системы обязуется выполнить оценку риска и создать документацию в соответствии с правовыми и нормативными требованиями, которые должны быть предоставлены оператору и пользователю системы. Эта документация должна содержать всю необходимую информацию и инструкции по технике безопасности для оператора, пользователя и, если применимо, для любого обслуживающего персонала, уполномоченного изготовителем системы.

RU

- Прочитайте эту инструкцию перед настройкой прибора и храните её на протяжении всего срока эксплуатации.
- Прибор должен быть пригодным для соответствующего применения и условий окружающей среды без каких-либо ограничений.
- Используйте датчик только по назначению (→ Функции и ключевые характеристики).
- Используйте датчик только в допустимой среде (→ Техническая характеристика).
- Если не соблюдаются инструкции по эксплуатации или технические параметры, то возможны травмы обслуживающего персонала или повреждение оборудования.
- Производитель не несет ответственности или гарантии за любые возникшие последствия в случае несоблюдения инструкций, неправильного использования прибора или вмешательства в прибор.
- Все работы по установке, настройке, подключению, вводу в эксплуатацию и техническому обслуживанию должны проводиться квалифицированным персоналом, получившим допуск к работе на данном технологическом оборудовании.
- Защитите приборы и кабели от повреждения.

## 3 Функции и ключевые характеристики

Датчик контролирует промышленные масла.

Он применяется для измерения объемного расхода и температуры среды.

# 4 Функция

- Датчик измеряет объемный расход по принципу перепада давления.
- Датчик оснащен интерфейсом IO-Link. С помощью подходящего аппаратного и программного обеспечения он выполняет следующие дополнительные функции:
  - Удалённая настройка параметров датчика.
  - Передача заданных значений параметров в другие датчики.
  - Электронная блокировка датчика через программное обеспечение.
  - Одновременное считывание всех рабочих параметров (объемный расход и температура) и бинарных коммутационных сигналов.

- Обширное отображение сообщений об ошибках и событиях.
- Отображение минимальных и максимальных значений температуры.
- Датчик отображает текущий объемный расход и температуру. Датчик формирует 2 выходных сигнала согласно настройке параметров:

| OUT1/IO-Link: 4 варианта настройки                                                                                                                                                                          | Настройка                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                                                                                                                             | параметров                                                                 |
| <ul> <li>Коммутационный сигнал: предельные значения<br/>объёмного расхода</li> </ul>                                                                                                                        | $\rightarrow$ 9.2.1; $\rightarrow$ 9.2.2                                   |
| <ul> <li>Коммутационный сигнал: предельные значения<br/>температуры</li> </ul>                                                                                                                              | $\rightarrow$ 9.3.1; $\rightarrow$ 9.3.2                                   |
| <ul> <li>Частотный сигнал для объёмного расхода</li> </ul>                                                                                                                                                  | $\rightarrow$ 9.2.6                                                        |
| <ul> <li>Частотный сигнал для температуры</li> </ul>                                                                                                                                                        | $\rightarrow 9.3.6$                                                        |
|                                                                                                                                                                                                             |                                                                            |
| OUT2: 4 варианта настройки                                                                                                                                                                                  | Настройка                                                                  |
| OUT2: 4 варианта настройки                                                                                                                                                                                  | Настройка<br>параметров                                                    |
| OUT2: 4 варианта настройки<br>- Коммутационный сигнал: предельные значения<br>объёмного расхода                                                                                                             | Настройка<br>параметров<br>→ 9.2.3; → 9.2.4                                |
| OUT2: 4 варианта настройки<br>- Коммутационный сигнал: предельные значения<br>объёмного расхода<br>- Коммутационный сигнал: предельные значения<br>температуры                                              | Настройка<br>параметров<br>→ 9.2.3; → 9.2.4<br>→ 9.3.3; → 9.3.4            |
| OUT2: 4 варианта настройки<br>- Коммутационный сигнал: предельные значения<br>объёмного расхода<br>- Коммутационный сигнал: предельные значения<br>температуры<br>- Аналоговый сигнал для объёмного расхода | Настройка<br>параметров<br>→ 9.2.3; → 9.2.4<br>→ 9.3.3; → 9.3.4<br>→ 9.2.5 |

### 4.1 Коммутационная функция

OUTx изменяет своё коммутационное состояние, если он находится выше или ниже установленных коммутационных пределов (поток или температура). Можно выбрать функцию гистерезиса или окна. Пример контроля объемного расхода:



P = 104 ка настроикиrP = точка сброса HY = гистерезис Hpo / Epo = NO (нормально откры FH = верхнее предельное значение FL = нижнее предельное значение FE = окно

Hno / Fno = NO (нормально открытый)

Hnc / Fnc = NC (нормально закрытый)

Когда настроена функция гистерезиса, сначала задаётся точка срабатывания (SP) и затем точка сброса (rP), которая должна быть ниже. Если изменяется только точка срабатывания, точка сброса остается неизменной.



ົງໃ

При настройке на функцию окна, нижнее предельное значение (FL) и верхнее предельное значение (FH) имеет фиксированный гистерезис 0.25 % от конечного значения диапазона измерения. Благодаря этому коммутационное состояние выхода остается неизменным, даже если объёмный расход несколько колеблется.

## 4.2 Аналоговая функция

- Прибор формирует аналоговый сигнал, который пропорционален объемному расходу и температуре среды.
- В пределах диапазона измерения аналоговый сигнал равен 4...20 мА.
- Если измеренное значение находится вне диапазона измерения или в случае внутренней ошибки, выдаются токовые сигналы, указанные на Рис. 1 и 2.

#### 4.2.1 Контроль объемного расхода



#### Рис. 1

- 1 Аналоговый сигнал
- Объёмный расход
- ③ Диапазон измерения
- ④ Диапазон индикации
- 5 Зона обнаружения
- МАW: Начальное значение диапазона измерения
- MEW: Верхний предел диапазона измерения
- OL: Выше диапазона индикации
- Err: Прибор находится в состоянии ошибки.
- FOU=On: Настройка по умолчанию, при которой аналоговый сигнал достигает в случае ошибки верхнего предельного значения.
- FOU=OFF: Настройка по умолчанию, при которой аналоговый сигнал достигает в случае ошибки нижнего предельного значения.

#### 4.2.2 Контроль температуры



#### Рис. 2

- 1 Аналоговый сигнал
- ② Температура среды
- ③ Диапазон измерения
- ④ Диапазон дисплея
- 5 Зона обнаружения
- МАW: Начальное значение диапазона измерения
- MEW: Верхний предел диапазона измерения
- OL: Выше диапазона индикации
- UL: Ниже диапазона индикации
- Err: Прибор находится в состоянии ошибки.
- FOU=On: Настройка по умолчанию, при которой аналоговый сигнал достигает в случае ошибки верхнего предельного значения.
- FOU=OFF: Настройка по умолчанию, при которой аналоговый сигнал достигает в случае ошибки нижнего предельного значения.

### 4.3 Частотный выход

Датчик выдаёт частотный сигнал, который пропорционален объёмному расходу и температуре среды.

До установленного предельного значения в [FEP1] (для OUT1 = TEMP: между предельными значениями, установленными в [FSP1] и [FEP1]) частотный сигнал находится между 0 Гц и значением частоты, установленным в [FrP1].



- Частотный сигнал в Гц
- Объемный расход или температура
- Эприбор находится в состоянии ошибки (FOU = OFF) или рабочее значение, переданное с помощью аналогового выходного сигнала, ниже зоны индикации или текущий поток равен 0.
- ④ Прибор находится в состоянии ошибки (FOU = ON)
- 5 Температура среды
- ⑥ Моментальный расход

## 4.4 Калибровка по спецификации заказчика (CGA)

Вязкость, указанная для области применения датчика (→ Технические данные), действительна для температуры масла 40 °C. Для других температур вязкость используемого масла может отличаться от вязкости эталонного масла, используемого для калибровки датчика.

|                 | Температура | Вязкость  | CGA                       |
|-----------------|-------------|-----------|---------------------------|
| Эталонное масло | 20 °C       | 430 мм²/с | 100 (заводская настройка) |
| Масло 1         | 20 °C       | 540 мм²/с | 80 %                      |
| Масло 2         | 20 °C       | 360 мм²/с | 120 %                     |

▶ В этом случае измените калибровочный коэффициент CGA, см. пример:



После изменения можно вернуться к заводской калибровке (→ 9.5.2).

## 4.5 IO-Link

Датчик оснащен коммуникационным интерфейсом IO-Link, который позволяет прямой доступ к рабочим и диагностическим данным. Кроме того, можно настроить параметры прибора во время работы. Эксплуатация прибора с помощью интерфейса IO-Link требует модуль с поддержкой IO-Link (IO-Link мастер).

С помощью ПК, подходящего ПО IO-Link и адаптерного кабеля IO-Link, коммуникация возможна даже если система находится в нерабочем режиме.

Файлы описания прибора (IODD), необходимые для настройки прибора, подробная информация о структуре рабочих данных, диагностическая информация, адреса параметров и необходимая информация об аппаратном и программном обеспечении IO-Link находится на www.ifm.com.

## 4.6 Демпфирование измеренного значения

При демпфировании измеренных значений можно установить время задержки, с помощью которого устройство обеспечивает хаотичное изменение расхода. Настройка времени демпфирования стабилизирует выходы, изображение и рабочее значение передаётся через интерфейс IO-Link.

Можно установить два времени демпфирования:

- [dAP] = время демпфирования для коммутационного сигнала, изображения и сигнала IO-Link (63 % время нарастания).
- [dAA] = время демпфирования для аналогового сигнала (10...90 % время нарастания).

Время демпфирования дополняется к времени отклика датчика (→ Техническая характеристика). Сигналы [UL] и [OL] (→ 12) определяются с учетом времени демпфирования.

## 4.7 Изменение цвета изображения (coLr)

Цвет символов на дисплее можно настроить с помощью параметра [coLr] (→ 9.4.4). С настройкой параметра rED (красный) и GrEn (зелёный), дисплей постоянно настроен на один цвет. Если настроены параметры rxou и Gxou, цвет символов изменяется в зависимости от рабочего значения:

|                      | OUT1 | OUT2 | Изменение цвета на |
|----------------------|------|------|--------------------|
| Настройки параметров | r1ou | r2ou | Красный            |
|                      | G1ou | G2ou | Зелёный            |



MAW = начальное значение диапазона измерения MEW = конечное значение диапазона измерения

## 5 Установка

# ВНИМАНИЕ

В процессе установки датчика или в случае неисправности (повреждение корпуса) среда, находящаяся под высоким давлением или горячая среда, может вытекать из системы.

- > Опасность ожога.
- ▶ Перед началом установки убедитесь в отсутствии давления в системе.
- Убедитесь, что никакая жидкость не может просочиться в область установки датчика.
- В целях предосторожности, обеспечьте для датчика подходящую защиту (напр. крышку), чтобы предотвратить опасность для персонала.





 Вставьте прибор в трубу в направлении потока (стрелка) и затяните.

IN = впускная сторона OUT = выпускная сторона

- При необходимости закрепите датчик снизу на монтажной пластине (не входит в комплект)
- Резьбовые отверстия М8 (глубина 6 мм) находятся на нижней стороне датчика

Опускные трубы на стороне входа или выхода датчика не требуются.



Датчик имеет функцию замедлителя обратного потока.



Головку датчика можно вращать на 360°.

• Соблюдайте следующие минимальные расстояния:

| Расстояние между головкой датчика и ферромагнитными материалами.   | ≥ 30 мм * |
|--------------------------------------------------------------------|-----------|
| Расстояние между головкой датчика и постоянным / переменным полем. | ≥ 500 мм  |
| Расстояние между осями датчика при установке рядом друг с другом.  | ≥ 50 мм   |

\* Труба может состоять из ферромагнитного материала.

### 5.1 Установка в случае, если масло содержит грязь

В случае, если в масле содержится грязь, рекомендуется горизонтальная установка.

• Соблюдайте угол наклона к горизонтальной оси:





В чистом масле также возможна установка в вертикальные трубы.

## 6 Электрическое подключение

К работам по установке и вводу в эксплуатацию допускаются только квалифицированные специалисты - электрики. Придерживайтесь действующих государственных и международных норм и правил по монтажу электротехнического оборудования. Напряжение питания соответствует стандартам EN 50178, SELV, PELV.

- Отключите электропитание.
- Подключите прибор согласно данной схеме:



| 4 (OUT1) | <ul> <li>Коммутационный сигнал: предельные значения объёмного расхода</li> <li>Коммутационный сигнал: предельные значения температуры</li> <li>Частотный сигнал для объёмного расхода</li> <li>Частотный сигнал для температуры</li> <li>IO-Link</li> </ul>   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 (OUT2) | <ul> <li>Коммутационный сигнал: предельные значения для объёмного расхода</li> <li>Коммутационный сигнал: предельные значения для температуры</li> <li>Аналоговый сигнал для значения объёмного расхода</li> <li>Аналоговый сигнал для температуры</li> </ul> |

### Образец схемы:



15

RU



## 7 Рабочие элементы и индикация



#### 1, 2, 3: Светодиодная индикация

- 1: коммутационное состояние OUT1 (горит, если выход 1 замкнут)
- 2: рабочее значение в указанной единице измерения: I/min; m³/h; gpm; gph; °C; °F
- 3: коммутационное состояние OUT2 (горит, если выход 2 замкнут)

#### 4: Буквенно-цифровой, 4-значный дисплей

- Индикация текущих рабочих значений (объёмный расход, температура)
- Индикация параметров и значений параметров.

### 5: Кнопки вверх [▲] и вниз [▼]

- Выбор параметров
- Изменение значений параметров (удерживайте кнопку нажатой)
- Изменение единицы измерения в нормальном рабочем режиме (Рабочий режим)
- Блокировка / Разблокировка (нажимайте кнопки одновременно на протяжении > 10 секунд)

#### 6: Кнопка [●] = Enter

- Переход из рабочего режима к главному меню
- Переход в режим настройки параметров
- Подтверждение установленного значения параметра

# 8 Меню

#### 8.1 Главное меню



Параметры отображаются при заводской настройке→ 14.

Параметры отображаются только при выборе в [ou1] и [ou2]  $\rightarrow$  8.2.

## Пояснения для главного меню

| Коммут  | ационный выход с функцией гистерезиса                                              |    |
|---------|------------------------------------------------------------------------------------|----|
| SP1     | Точка срабатывания 1 = верхнее предельное значение, при котором OUT1 переключается |    |
| rP1     | Точка сброса 1 = нижнее предельное значение, при котором OUT1<br>сбрасывается      |    |
| SP2     | Точка сброса 2 = верхнее предельное значение, при котором OUT2 переключается       |    |
| rP2     | Точка сброса 2 = нижнее предельное значение, при котором OUT2<br>сбрасывается      | RU |
| Коммут  | ационный выход с функцией окна                                                     |    |
| FH1     | Верхнее предельное значение, при котором OUT1 переключается                        |    |
| FL1     | Нижнее предельное значение при котором OUT1 переключается                          |    |
| FH2     | Верхнее предельное значение, при котором OUT2 переключается                        |    |
| FL2     | Нижнее предельное значение, при котором OUT2 переключается                         |    |
| Частоті | ный выход                                                                          |    |
| FSP1    | Начальная точка на OUT1 (только если SEL1 = TEMP)                                  |    |
| FEP1    | Конечная точка на ОUT1                                                             |    |
| FrP1    | Частота в конечной точке на OUT1                                                   |    |
| Расшир  | ренные функции                                                                     |    |
| EF_     | Открытие нижнего уровня меню                                                       |    |

### 8.2 Расширенные функции – Основные настройки (CFG)



## Объяснение расширенных функций (EF)

| rES  | Обновление заводской настройки |
|------|--------------------------------|
| CFG_ | Подменю основные настройки     |
| MEM_ | Подменю мин./макс. память      |
| DIS_ | Подменю настроек дисплея       |

## Объяснение основных настроек (CFG)

|                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Выходные функции OUT1 / OUT2 (поток и температура)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Hno = Функция гистерезиса нормально открытый                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Нпс = Функция гистерезиса нормально закрытый                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fno = Функция окна нормально открытый                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fnc = Функция окна нормально закрытыи                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ГРКО = ЧАСТОТНЫИ ВЫХОД                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Г                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Стандартная единица измерения для объемного расхода            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Стандартная единица измерения для температуры                  | RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Калибровка графика измерения (pitch)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Логический выход: pnp / npn                                    | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Демпфирование измеренного значения для коммутационного выхода, | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| изображение и сигнал IO-Link в секундах                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Демпфирование измеренного значения для аналогового выхода в    | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| секундах                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Реакция выхода OUT1 в случае ошибки                            | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Реакция выхода OUT2 в случае ошибки                            | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Стандартная единица измерения для оценки через OUT1:           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| значение объемного расхода или температуры среды               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Стандартная единица измерения для оценки через OUT2:           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| значение объемного расхода или температуры среды               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                | Выходные функции OUT1 / OUT2 (поток и температура)<br>Hno = Функция гистерезиса нормально открытый<br>Hnc = Функция окна нормально открытый<br>Fno = Функция окна нормально открытый<br>Fnc = Функция окна нормально закрытый<br>FRQ = Частотный выход<br>I = Аналоговый сигнал 420 мА.<br>Стандартная единица измерения для объемного расхода<br>Стандартная единица измерения для температуры<br>Калибровка графика измерения (pitch)<br>Логический выход: pnp / npn<br>Демпфирование измеренного значения для коммутационного выхода,<br>изображение и сигнал IO-Link в секундах<br>Демпфирование измеренного значения для аналогового выхода в<br>секундах<br>Реакция выхода OUT1 в случае ошибки<br>Реакция выхода OUT2 в случае ошибки<br>Стандартная единица измерения для оценки через OUT1:<br>значение объемного расхода или температуры среды<br>Стандартная единица измерения для оценки через OUT2:<br>значение объемного расхода или температуры среды |

### 8.3 Мин./макс. память (MEM) – Дисплей (DIS)



#### Объяснение мин./макс. память (МЕМ)

| Lo.T | Мин. значение температуры, измеренной в течение процесса  |
|------|-----------------------------------------------------------|
| Hi.T | Макс. значение температуры, измеренной в течение процесса |

#### Объяснение настроек дисплея (DIS)

| coLr | Конфигурация цвета дисплея                              |
|------|---------------------------------------------------------|
|      | rEd = Дисплей всегда красный                            |
|      | GrEn = Дисплей всегда зелёный                           |
|      | r1ou = Дисплей красный, в случае замкнутого выхода OUT1 |
|      | G1ou = Дисплей зелёный, в случае замкнутого выхода OUT1 |
|      | r2ou = Дисплей красный, в случае замкнутого выхода OUT2 |
|      | G2ou = Дисплей зелёный, в случае замкнутого выхода OUT2 |

| diS  | Частота обновления и ориентация дисплея<br>d1 = обновление измеренных значений каждые 50 мс.<br>d2 = обновление измеренных значений каждые 200 мс.<br>d3 = обновление измеренных значений каждые 600 мс.<br>rd1, rd2, rd3 = отображаются также как d1, d2, d3; с поворотом на 180°.<br>OFF = отображение измеренного значения выключено в рабочем<br>режиме. |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SELd | Стандартная единица измерения: значение моментального расхода или температура среды                                                                                                                                                                                                                                                                          |

## 9 Настройка параметров

Параметры могут быть установлены до установки и настройки прибора или во время эксплуатации.



Если Вы измените параметры во время работы прибора, то это повлияет на функционирование оборудования.

▶ Убедитесь в правильном функционировании.

Во время настройки параметров датчик остаётся в рабочем режиме. Он выполняет измерение в соответствии с установленными параметрами до тех пор, пока не завершится настройка параметров.



Параметры можно также настроить с помощью интерфейса IO-Link (→ 4.5).

## 9.1 О настройке параметров

| 1. Переход из рабочего режима к главному меню                           | [•]               |
|-------------------------------------------------------------------------|-------------------|
| 2. Выберите необходимый параметр                                        | [▲] или [▼]       |
| 3. Переход в режим настройки параметров                                 | [•]               |
| 4. Изменение значения параметра                                         | [▲] или [▼] > 1 с |
| <ol> <li>Подтверждение установленного значения<br/>параметра</li> </ol> | [•]               |
| 6. Возвращение в рабочий режим                                          | → 9.1.3           |



Если [C.Loc] отображается при попытке изменения значения параметра, изменение значения параметра одновременно производится с помощью программного обеспечения (временная блокировка).



Если на дисплее отображается [S.Loc], то датчик постоянно заблокирован с помощью ПО. Прибор можно разблокировать только в настройках параметров программного обеспечения.

## 9.1.1 Выбор подменю

- ► Нажмите на [▲] или [▼], чтобы выбрать подменю (EF, CFG, MEM, DIS).
- ▶ Кратко нажмите кнопку [●],чтобы перейти в подменю.

## 9.1.2 Выход из настройки параметров или уровня меню

- ▶ Нажмите одновременно [▲] + [▼].
- Возврат к следующему уровню меню. Измененные настройки параметров не принимаются.

## 9.1.3 Переход к отображению рабочего значения (рабочий режим)

Предлагаются 3 возможности:

- 1. Подождите 30 секунд (→ 9.1.5 Функция таймаута).
- 2. Переход от подменю к главному меню, от главного меню к отображению рабочего значения с помощью [▲] или [▼].
- Нажимайте одновременно [▲] + [▼] пока прибор не вернётся в рабочий режим (RUN).

## 9.1.4 Блокировка / Разблокировка

Для избежания нежелательных изменений в настройках есть возможность электронной блокировки датчика. Заводская настройка прибора: в незаблокированном состоянии.

Блокировка:

- ▶ Убедитесь, что прибор работает в нормальном рабочем режиме.
- ► Нажмите одновременно кнопку [▲] и [▼] и удерживайте в течение 10 с, до тех пор, пока не отобразится [Loc].



Во время эксплуатации: [LOC] кратковременно отображается, если Вы пытаетесь изменить значение установленных параметров.

Разблокировка:

- ▶ Убедитесь, что прибор работает в нормальном рабочем режиме.
- Нажмите одновременно кнопку [▲] и [▼] и удерживайте в течение 10 с, до тех пор, пока не отобразится [uLoc].

#### 9.1.5 Функция таймаута

Если в течение 30 с не будет нажата ни одна кнопка, то датчик возвращается в режим измерения с неизмененными значениями.

### 9.2 Настройки для контроля суммарного расхода

# 9.2.1 Мониторинг предельных значений с помощью OUT1 / функция гистерезиса

|   | Выберите [SEL1] и настройте [FLOW].<br>Выберите [ou1] и настройте функцию переключения:<br>- [Hno] = функция гистерезиса / нормально открытый | Меню CFG:<br>[SEL1]<br>[ou1] |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| ► | - [Hnc] = функция гистерезиса / нормально закрытый<br>Выберите [SP1] и установите значение, при котором выход<br>срабатывает.                 | Главное<br>меню:<br>ISP11    |
|   | Выберите [rP1] и установите значение, при котором выход<br>сбрасывается.                                                                      | [rP1]                        |

# 9.2.2 Мониторинг предельных значений с помощью OUT1 / функция окна

| Выберите [SEL1] и настройте [FLOW].<br>Выберите [ou1] и настройте функцию переключения:<br>- [Fno] = функция окна/нормально открытый                                                                | Меню CFG:<br>[SEL1]<br>[ou1]       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| - [Fnc] = функция окна/нормально закрытый<br>Выберите [FH1] и установите значение, при котором будет<br>срабатывать выход.<br>Выберите [FL1] и задайте значение, при котором выход<br>сбрасывается. | Главное<br>меню:<br>[FH1]<br>[FL1] |

# 9.2.3 Мониторинг предельных значений с помощью OUT2 / функция гистерезиса

# 9.2.4 Мониторинг предельных значений с помощью OUT2 / функция окна

|   | Выберите [SEL2] и настройте [FLOW].<br>Выберите [ou2] и настройте функцию переключения:<br>- [Fno] = функция окна / нормально открытый                                                  | Меню CFG:<br>[SEL2]<br>[ou2]        |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| • | - [Fnc] = функция окна / нормально закрытый<br>Выберите [FH2] и установите значение, при котором выход будет<br>срабатывать.<br>Выберите [FL2] и установите значение, при котором выход | Главное<br>меню:<br>[FH2]<br>IEL 21 |
|   | сбрасывается.                                                                                                                                                                           | [FLZ]                               |

#### 9.2.5 Настройка аналогового выхода для объемного расхода

| <ul> <li>Выберите [SEL2] и настройте [FLOW].</li> <li>Выберите [ou2] и настройте функцию:         <ul> <li>[I] = токовый сигнал пропорционален объёмному расходу (420 мА)</li> </ul> </li> </ul> | Меню CFG:<br>[SEL2]<br>[ou2] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|

### 9.2.6 Настройка частотного сигнала для объемного расхода

| обеспечивается частота, установленная в FrP1 |         |
|----------------------------------------------|---------|
|                                              | Главное |
|                                              | Меню:   |
|                                              |         |
|                                              | [FrP1]  |

## 9.3 Настройка контроля температуры

# 9.3.1 Мониторинг предельных значений с помощью OUT1 / функция гистерезиса

| Выберите [SEL1] и настройте [TEMP].<br>Выберите [ou1] и настройте функцию переключения:<br>- [Hno] = функция гистерезиса / нормально открытый | Меню CFG:<br>[SEL1]<br>[ou1] |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| - [Hnc] = функция гистерезиса / нормально закрытый<br>Выберите [SP1] и настройте значение, при котором выход<br>срабатывает.                  | Главное<br>меню:<br>[SP1]    |
| Выберите [rP1] и установите значение, при котором выход<br>сбрасывается.                                                                      | [rP1]                        |

# 9.3.2 Мониторинг предельных значений с помощью OUT1 / функция окна

| <ul> <li>Выберите [SEL1] и настройте [TEMP].</li> <li>Выберите [ou1] и настройте функцию переключения:         <ul> <li>[Fno] = функция окна / нормально открытый</li> <li>[Fnc] = функция окна / нормально закрытый</li> </ul> </li> <li>Выберите [FH1] и установите значение, при котором будет</li> </ul> | Меню CFG:<br>[SEL1]<br>[ou1]<br>Главное |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| <ul> <li>Выберите [FH1] и установите значение, при котором будет</li></ul>                                                                                                                                                                                                                                   | меню:                                   |
| срабатывать выход. <li>Выберите [FL1] и задайте значение, при котором выход</li>                                                                                                                                                                                                                             | [FH1]                                   |
| сбрасывается.                                                                                                                                                                                                                                                                                                | [FL1]                                   |

# 9.3.3 Мониторинг предельных значений с помощью OUT2 / функция гистерезиса

|   | Выберите [SEL2] и настройте [TEMP].<br>Выберите [ou2] и настройте функцию переключения:<br>- [Hno] = функция гистерезиса / нормально открытый                                                                                               | Меню CFG:<br>[SEL2]<br>[ou2]       |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| • | <ul> <li>- [Hnc] = функция гистерезиса / нормально закрытый</li> <li>Выберите [SP2] и установите значение, при котором выход<br/>срабатывает.</li> <li>Выберите [rP2] и установите значение, при котором выход<br/>сбрасывается.</li> </ul> | Главное<br>меню:<br>[SP2]<br>[rP1] |

RU

# 9.3.4 Мониторинг предельных значений с помощью OUT2 / функция окна

| <ul> <li>Выберите [SEL2] и настройте [TEMP].</li> <li>Выберите [ou2] и настройте функцию переключения:</li> <li>- [Fno] = функция окна / нормально открытый</li> </ul>                                                           | Меню CFG:<br>[SEL2]<br>[ou2]       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| <ul> <li>[Fnc] = функция окна / нормально закрытый</li> <li>Выберите [FH2] и установите значение, при котором будет срабатывать выход.</li> <li>Выберите [FL2] и установите значение, при котором выход сбрасывается.</li> </ul> | Главное<br>меню:<br>[FH2]<br>[FL2] |

### 9.3.5 Настройка аналогового сигнала для температуры

| <ul> <li>Выберите [SEL2] и настройте [TEMP].</li> <li>Выберите [ou2] и настройте функцию:         <ul> <li>[I] = токовый сигнал пропорционален объёмному расходу (420 мА)</li> </ul> </li> </ul> | Меню CFG:<br>[SEL2]<br>[ou2] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|

### 9.3.6 Настройка частотного сигнала для температуры

### 9.4 Дополнительные настройки пользователя

### 9.4.1 Выбор единицы измерения для расхода

| Выберите [uni.F] и установите единицу измерения: l/min, m³/h, gpm, | Меню CFG: |
|--------------------------------------------------------------------|-----------|
| gph.                                                               | [Uni.F]   |

#### 9.4.2 Настройка стандартных единиц измерений для температуры

| ► Выберите [Uni.T] и установите единицу измерения: °C, °F. | Меню CFG:<br>[Uni.T] |
|------------------------------------------------------------|----------------------|
|------------------------------------------------------------|----------------------|

## 9.4.3 Конфигурация стандартного изображения

| • | <ul> <li>Выберите [SELd] и задайте стандартную единицу измерения:</li> <li>- [FLOW] = текущее значение объёмного расхода отображается в стандартных единицах измерения.</li> <li>- [TEMP] = отображается текущая температура среды в стандартной единице измерения.</li> </ul>                                                                                                                                                                                                                                                                 | Меню DIS:<br>[SELd]<br>[diS] |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| • | Выберите [diS] и настройте скорость обновления и ориентацию<br>отображения:<br>- [d1]: обновление измеренных значений каждые 50 мс.<br>- [d2]: обновление измеренных значений каждые 200 мс.<br>- [d3]: обновление измеренных значений каждые 600 мс.<br>- [rd1], [rd2], [rd3]: индикация как для d1, d2, d3; с поворотом на 180°.<br>- [OFF] = отображение измеренного значения выключено в рабочем<br>режиме.<br>Светодиоды активны даже при выключенном дисплее. Сообщения<br>об ошибке отображаются на экране, даже если дисплей выключен. |                              |

#### 9.4.4 Конфигурация изменения цвета дисплея

| Выберите [coLr] и задайте цвет индикации рабочего значения: | Meню DIS: |
|-------------------------------------------------------------|-----------|
| rEd, GrEn, r1ou, G1ou, r2ou, G2ou ( $\rightarrow$ 4.7).     | [coLr]    |

#### 9.4.5 Настройка демпфирования для коммутационного выхода

| Выберите [dAP] и установите постоянную демпфирования в | Меню CFG: |
|--------------------------------------------------------|-----------|
| секундах (значение т. 63 %); диапазон настройки 05 с.  | [dAP]     |

29

## 9.4.6 Настройка демпфирования для аналогового выхода

 [Выберите [dAA] и установите постоянную демпфирования в секундах. диапазон настройки 0...5 с.

Меню CFG: [dAA]

## 9.4.7 Установка статуса выходного сигнала в случае неисправности

| ►<br>1. | Выберите [FOU1] и установите значение:<br>Коммутационный выход:<br>- [On] = выход 1 замкнут в случае ошибки.<br>- [OFF] = выход 1 разомкнут в случае ошибки.<br>- [OU] = выход 1 переключается независимо от ошибки согласно<br>заданным параметрам. | Меню CFG:<br>[FOU1]<br>[FOU2] |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 2.      | Частотный выход<br>- [On] = 130 % of FrP1.<br>- [OFF] = 0 Гц<br>- [ou1] = частотный сигнал предоставляется без изменений.                                                                                                                            |                               |
| ►       | Выберите [FOU2] и установите значение:                                                                                                                                                                                                               |                               |
| 1.      | Коммутационный выход:                                                                                                                                                                                                                                |                               |
|         | - [On] = выход 2 замкнут в случае ошибки.                                                                                                                                                                                                            |                               |
|         | - [OFF] = выход 2 разомкнут в случае ошибки.                                                                                                                                                                                                         |                               |
|         | <ul> <li>[ОО] = выход 2 переключается независимо от ошиоки согласно<br/>установленным параметрам.</li> </ul>                                                                                                                                         |                               |
| 2.      | Аналоговый выход                                                                                                                                                                                                                                     |                               |
|         | <ul> <li>- [On] = выход 2 замкнут в случае ошибки, аналоговый сигнал<br/>достигает верхнего значения ошибки.</li> </ul>                                                                                                                              |                               |
|         | <ul> <li>- [OFF] = выход 2 разомкнут в случае ошибки, аналоговый сигнал<br/>достигает нижнего значения ошибки.</li> </ul>                                                                                                                            |                               |
|         | <ul> <li>[OU] = выход 2 переключается независимо от ошибки согласно<br/>установленным параметрам. Аналоговый сигнал соответствует</li> </ul>                                                                                                         |                               |
|         | измеряемому значению.                                                                                                                                                                                                                                |                               |

## 9.5 Функции обслуживания

## 9.5.1 Считывание мин./макс. значений температуры

| ▶ Выберите [Hi.T] или [Lo.T]. и считайте значение.                                                        | Меню МЕМ: |
|-----------------------------------------------------------------------------------------------------------|-----------|
| [HI.T] = макс. значение, [LO.T] = мин. значение.                                                          | [Hi.T]    |
| Удаление из памяти:                                                                                       | [Lo.T]    |
| ▶ Выберите [Hi.T] или [Lo.T].                                                                             |           |
| <ul> <li>Кратко нажмите кнопку [•].</li> </ul>                                                            |           |
| ▶ Удерживайте кнопку [▲] или [▼].                                                                         |           |
| > [] отображается на экране.                                                                              |           |
| <ul> <li>Кратко нажмите кнопку [•].</li> </ul>                                                            |           |
| Рекомендуется удалить содержимое памяти, если прибор работает впервые в нормальных условиях эксплуатации. |           |

#### 9.5.2 Сброс всех параметров и возвращение к заводским настройкам

| <ul> <li>▶ Выберите [rES].</li> <li>▶ Нажмите [●].</li> </ul>                                                         | Меню EF:<br>[rES] |
|-----------------------------------------------------------------------------------------------------------------------|-------------------|
| <ul> <li>Нажмите кнопку [▲] или [▼], пока [] не отобразится на экране.</li> <li>Кратко нажмите кнопку [●].</li> </ul> |                   |
| Рекомендуем записать Ваши собственные настройки в таблицу перед их сбросом → 14 Заводская настройка.                  |                   |

## 10 Эксплуатация

### 10.1 Считывание рабочего значения

Светодиоды сигнализируют, какое значение отображается в данный момент (Светодиод 2 — 7 Рабочие элементы и индикация).

Значение, которое будет отображаться как стандартное (объем или температура), может быть предварительно установлено → 9.4.3.

Для измерения объемного расхода и температуры можно установить стандартную единицу измерения (→ 9.4.1 и → 9.4.2.

Другие измеренные значения параметров могут считываться в дополнение к предустановленному стандартному отображению:

- ▶ Нажмите кнопки [▲] или [▼].
- > Светодиод выбранного рабочего значения горит и отображается текущее рабочее значение.
- > Через 30 секунд дисплей переходит к стандартному отображению.

### 10.2 Подтверждение установленного значения параметра

| 1. Переход из рабочего режима к главному меню                                                                                           | [•]         |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2. Выберите необходимый параметр                                                                                                        | [▲] или [▼] |
| <ul> <li>Переход в режим настройки параметров</li> <li>Текущее установленное значение отображается<br/>на экране около 30 с.</li> </ul> | [•]         |
| Краткими нажатиями кнопки [•] несколько раз, дисплей переключается между названием параметра и значением параметра.                     |             |
| <ol> <li>Возвращение в рабочий режим без изменения<br/>параметров</li> </ol>                                                            | → 9.1.3     |

## 11 Технические характеристики

Другие технические характеристики и чертежи на www.ifm.com.

## 12 Способ устранения неисправности

# 12.1 Ошибка измерения, возникшая в результате загрязнения

Если между поплавком и корпусом есть частицы грязи, показание датчика не возвращается к нулю в случае остановки потока. В случае загрязнения отображаемое значение может составлять до 30% окончательного значения диапазона измерения.Корректирующие меры → 13 Техническое обслуживание, ремонт и утилизация.

## 12.2 Индикация ошибок

| Изображение | Предупредительное сообщение                                                                       |  |
|-------------|---------------------------------------------------------------------------------------------------|--|
| [PARA]      | Настройка параметров вне рабочего диапазона.                                                      |  |
| [SC1]       | Короткое замыкание на OUT1.<br>Светодиод 1 для OUT1 мигает (→ 7 Рабочие элементы и<br>индикация). |  |

| [SC2]   | Короткое замыкание на OUT2.<br>Светодиод 2 для OUT2 мигает (→ 7 Рабочие элементы и<br>индикация).                                                                                                                                                                           |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [SC]    | Короткое замыкание на обоих выходах.<br>Светодиод 1 и 2 мигают (→ 7 Рабочие элементы и индикация).                                                                                                                                                                          |  |
| [OL]    | Превышен диапазон изображения расхода или температуры.<br>- Значение объемного расхода между 120130 % конечного<br>значения диапазона измерения.<br>- Температура между 122133 °C (252272 °F).                                                                              |  |
| [UL]    | Ниже диапазона индикации температуры.<br>Температура между -3243 °C (-2646 °F).                                                                                                                                                                                             |  |
| [Err]   | <ul> <li>Ошибка прибора / неисправность.</li> <li>Измеренное значение вне зоны обнаружения.</li> <li>Измеренное значение &gt; 130 % конечного значения диапазон измерения.</li> <li>Значение температуры &lt; -43 °C (&lt; -46 °F) или &gt; 133 °C (&gt; 272 °F)</li> </ul> |  |
| [C.Loc] | Кнопки настройки заблокированы, изменение параметров<br>отклонено.<br>Соединение IO-Link активно.                                                                                                                                                                           |  |
| [S.Loc] | Кнопки настройки заблокированы, изменение параметров<br>отклонено.<br>Разблокируйте с помощью программного обеспечения для<br>параметрирования.                                                                                                                             |  |
| [IOE.n] | Неисправность. Неисправный прибор должен быть заменён.                                                                                                                                                                                                                      |  |

## 13 Техническое обслуживание, ремонт и утилизация

При правильной эксплуатации техобслуживание и ремонт не требуются.

Ремонт прибора может производить только изготовитель.

По окончании срока службы прибор следует утилизировать в соответствии с нормами и требованиями действующего законодательства.

В случае сильно загрязненной среды:

 установите фильтр с впускной стороны (IN). Рекомендация: используйте фильтр 200 микрон. Если ошибки в измерении возникают из-за недостаточной фильтрации, (→ 12.1) может потребоваться очистка:

- Отвинтите головку датчика (1).
- Снимите поплавок (2) и пружину (3).
- Очистите поплавок, например, с помощью сжатого воздуха.
- Очистите корпус внутри, например, тканью или сжатым воздухом.
- Перед сборкой проверьте уплотнительное кольцо (4) на отсутствие повреждений. При необходимости замените и смажьте.
- После очистки установите компоненты снова.
- Затяните головку датчика с усилием 10 Нм.
- Чтобы восстановить точность измерения, нажимайте на поплавок до упора (6), используя что-нибудь немагнитное (5), например, пальцем, и удерживайте не менее 2 секунд.



# 14 Заводская настройка

| Параметр  |             | Заводская<br>настройка | Настройка пользователя |    |
|-----------|-------------|------------------------|------------------------|----|
| SP1 / FH1 | (FLOW)      | 20 %                   |                        |    |
| rP1 / FL1 | (FLOW)      | 19 %                   |                        |    |
| SP1 / FH1 | (TEMP)      | 70°C                   |                        |    |
| rP1 / FL1 | (TEMP)      | 20 °C                  |                        |    |
| FrP1      | (FLOW/TEMP) | 10 %                   |                        | RU |
| FSP1      | (TEMP)      | -10 °C                 |                        |    |
| FEP1      | (TEMP)      | 100 °C                 |                        |    |
| FEP1      | (FLOW)      | 100 %                  |                        |    |
| SP2 / FH2 | (FLOW)      | 40 %                   |                        |    |
| rP2 / FL2 | (FLOW)      | 39 %                   |                        |    |
| SP2 / FH2 | (TEMP)      | 34 °C                  |                        |    |
| rP2 / FL2 | (TEMP)      | 33 °C                  |                        |    |
| ou1       |             | Fno                    |                        |    |
| ou2       |             | I                      |                        |    |
| SEL1      |             | TEMP                   |                        |    |
| SEL2      |             | FLOW                   |                        |    |
| SELd      |             | FLOW                   |                        |    |
| FOU1      |             | ou                     |                        |    |
| FOU2      |             | ou                     |                        |    |
| uni.F     | (FLOW)      | L/min                  |                        |    |
| Uni.T     | (TEMP)      | °C                     |                        |    |
| P-n       |             | PnP                    |                        |    |
| dAP       | (FLOW)      | 0.1 c                  |                        |    |
| dAA       | (FLOW)      | 0 c                    |                        |    |
| CGA       | (FLOW)      | 100 %                  |                        |    |
| coLr      |             | rEd                    |                        |    |

| Параметр | Заводская<br>настройка | Настройка пользователя |
|----------|------------------------|------------------------|
| diS      | d2                     |                        |

Процентные значения касаются конечного значения диапазона измерения (MEW).

Техническая характеристика, сертификаты, принадлежности и дополнительная информация представлена на интернет-странице www. ifm.com.