
efectorsoo

PI00xA

80000142 / 00

RU

Содержание

1	Введение	3
	1.1 Используемые символы	
2	Инструкции по технике безопасности	3
	Применение в соответствии с назначением	
•	3.1 Применение	
4	Функционирование	4
	4.1 Обработка измеренных сигналов	
	4.2 Контроль давления / функция переключения	
	4.3 Контроль давления / аналоговая функция	
	4.4 Функция диагностики	
5	Установка	8
6	Электрическое подключение	10
7	Рабочие элементы и индикация	11
	Меню	
	8.1 Структура меню	
	8.2 Пояснения к меню	
9	Настройка параметров	14
	9.1 Основная настройка параметров	
	9.2 Конфигурация дисплея (дополнительно)	16
	9.3 Настройка выходного сигнала	
	9.3.1 Настройка функции выхода	
	9.3.2 Настройка пределов переключения	
	9.3.3 Масштабирование аналогового значения	
	9.4 Настройки пользователя (дополнительные)	
	9.4.1 Калибровка нулевой точки	
	9.4.2 Настройка времени задержки для Выхода 1	
	9.4.3 Настройка полярности выходного сигнала для Выхода 1	
	9.4.4 Настройка демпфирования для коммутационного сигнала	
	9.4.5 Настройка демпфирования для аналогового сигнала	
	9.5 Сервисные функции	
	9.5.1 Считывание миним./макс. значений давления в системе	
	9.5.2 Сброс всех параметров и возврат к заводским настройкам	19

10 Эксплуатация	19
10.1 Считывание установленных значений параметров	20
10.2 Индикация неисправности	
10.3 Очистка крышки фильтра	
11 Габаритные размеры	21
12 Техническая характеристика	22
12.1 Диапазоны настройки	
13 Заводская настройка	25

1 Введение

1.1 Используемые символы

- Инструкция
- > Реакция, результат
- [...] Обозначение кнопок, выключателей или индикации
- → Ссылка на соответствующий раздел
- ! Ba

Важное примечание

Несоблюдение может привести к неправильному функционированию или помехам.

2 Инструкции по технике безопасности

- Внимательно прочитайте инструкцию перед началом установки прибора. Убедитесь в том, что прибор подходит для Вашего применения без какихлибо ограничений.
- Несоблюдение данной инструкции по эксплуатации или пренебрежительное отношение к техническим данным может привести к травмам обслуживающего персонала и / или повреждению оборудования.
- Обязательно проверьте совместимость материалов изделия (→ глава 12 Технические данные) с измеряемой средой.
- Строго соблюдайте инструкции по безопасной эксплуатации приборов во взрывоопасных зонах: → Инструкция по эксплуатации (в части, касающейся взрывозащиты) для фотоэлектрических датчиков в соответствии с директивой 94/9/ЕС, приложение VIII (ATEX) группа II, категория электрооборудования 3D/3G.

Инструкция по эксплуатации (в части, касающейся взрывозащиты) или сертификат соответствия ЕС должны поставляться вместе с изделием на языке одного из членов - государств ЕС. Если эти документы не были приложены к изделию, то Вы в праве потребовать их у продавца или производителя.

3 Применение в соответствии с назначением

Датчик давления предназначен для измерения давления в системах контроля и управления технологическими процессами и оборудованием.

3.1 Применение

Тип давления: относительное давление

Код товара	Диапазон измерения		давл	тимое ение рузки	разру	ение шения раны
	бар	фунт/ кв.дюйм	бар	фунт/ кв.дюйм	бар	фунт/ кв.дюйм
PI003A	-125	-14.4362.7	100	1 450	350	5 070
	мбар	фунт/ кв.дюйм	бар	фунт/ кв.дюйм	бар	фунт/ кв.дюйм
PI008A	-12.4250	-0.183.62	10	145	30	435
PI009A	-1 0001 000	-14.514.5	10	145	30	435

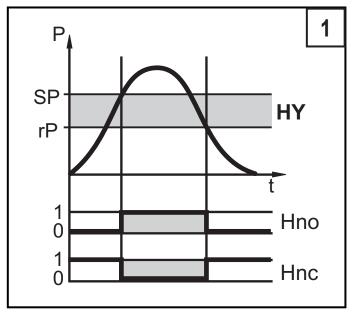
МПа = бар ÷ 10 / кПа= бар × 100

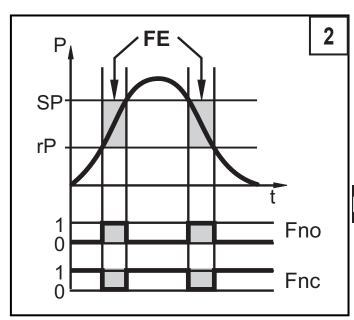
Примите соответствующие меры во избежание возникновения избыточного статического и динамического давления, превышающих давление перегрузки.

Не превышайте указанного разрывного давления. Прибор может быть разрушен даже при кратковременном превышении разрывного давления. ПРИМЕЧАНИЕ: Опасность поражения!

4 Функционирование

4.1 Обработка измеренных сигналов


- Прибор показывает текущее давление в системе.
- Датчик формирует 2 выходных сигнала согласно настройке параметров.


Выход	2 варианта настройки • коммутационный сигнал для предельных значений давления. • диагностический сигнал (становится неактивным в случае ошибочного выходного сигнала 1).
Выход	4 варианта настройки • аналоговый сигнал 420 мА; аналоговый сигнал 420 мА • аналоговый сигнал 010 В; аналоговый сигнал 010 В

4.2 Контроль давления / функция переключения

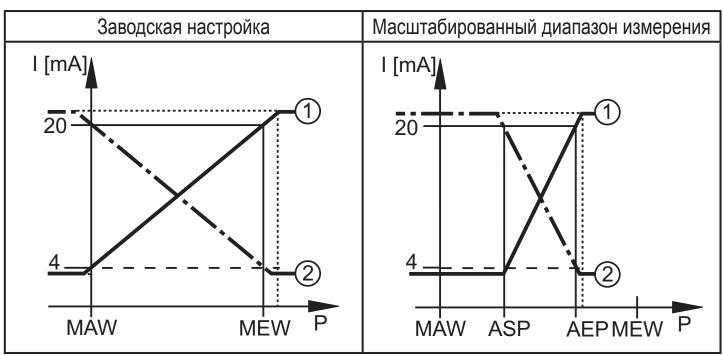
Выход 1 переключается, если значение давления выше или ниже пределов переключения (SP1, rP1). Следующие функции порогового выхода могут быть выбраны:

- Функция гистерезиса / нормально открытый: [OU1] = [Hno] (→ рис. 1).
- Функция гистерезиса / нормально закрытый: [OU1] = [Hnc] (рис. 1). Сначала задайте значение (SP1), затем установите точку сброса (rP1) на необходимое расстояние.
- Функция окна / нормально открытый: [OU1] = [Fno] (→ рис. 2).
- Функция окна / нормально закрытый: [OU1] = [Fnc] (→ рис. 2).
 Ширина окна регулируется с помощью расстояния между SP и rP1. SP1 = максимальное значение, rP1 = минимальное значение.

P = давление в системе; HY = гистерезис; FE = окно

4.3 Контроль давления / аналоговая функция

Аналоговый сигнал может быть настроен.

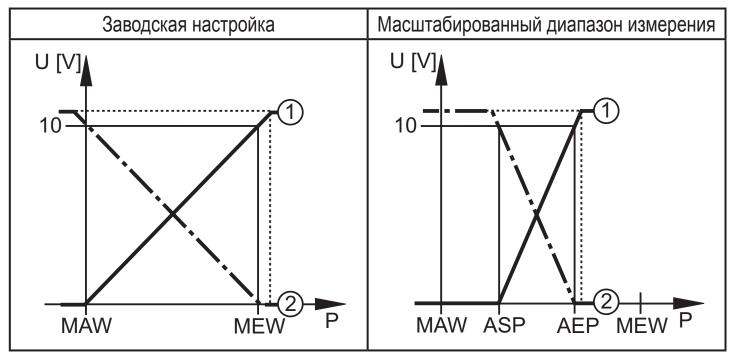

• [OU2] определяет, если настроенный диапазон измерения подётся в качестве сигнала 4...20 мА ([OU2] = [I]), сигнала 20...4 мА ([OU2] = [InEG]), сигнала 0...10 В ([OU2] = [U]) или сигнала 10...0 В ([OU2] = [UnEG]).

Масштабирование может быть настроено с помощью функции обучения или ввода значения для параметров ASP и AEP.

- С помощью обучения датчика начальной точке аналогового сигнала [tASP] или настройки параметра ASP Вы определяете измеренное значение, при котором выходной сигнал равен 4 мА / 0 В (20 мА / 10 В в [InEG] / [UnEG]).
- С помощью конечной точки аналогового сигнала (tAEP) или настройки параметра AEP Вы определяете измеренное значение, при котором выходной сигнал равен 20 мА / 10 В (4 мА / 0 В в [InEG] / [UnEG]).

Минимальное расстояние между ASP и AEP = 25% конечного значения диапазона измерения (масштаб 1:4).

Токовый выход


P = давление в системе, MAW = начальное значение диапазона измерения, MEW = конечное значение диапазона измерения

1: [OU2] = [I]; 2: [OU2] = [InEG]

Выходной сигнал в диапазоне 4 и 20 мА ([OU2] = [I]) или 20 и 4 мА ([OU2] = [InEG]). Также отображается:

- Давление в системе выше диапазона измерения:
 - выходной сигнал > 20 мA, если [OU2] = [I].
 - выходной сигнал в диапазоне 4 и 3.8 мА, если [OU2] = [InEG].
- Давление ниже диапазона измерения:
 - выходной сигнал в диапазоне 4 и 3.8 мA, если [OU2] = [I].
 - выходной сигнал > 20 мA, если [OU2] = [InEG].

Выход по напряжению

P = давление в системе, MAW = начальное значение диапазона измерения, MEW = конечное значение диапазона измерения

Выходной сигнал в диапазоне 0 и 10 В ([OU2] = [U]) или 10 и 0 В ([OU2] = [UnEG]) в заданном диапазоне измерения.

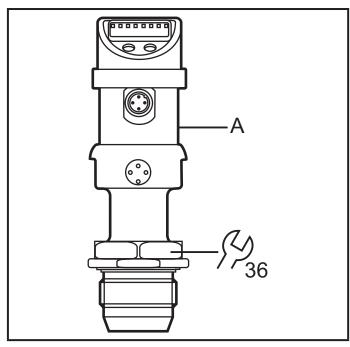
Также отображается:

- Давление в системе выше диапазона измерения:
 - выходной сигнал > 10 B, если [OU2] = [U].
- Давление ниже диапазона измерения:
 - выходной сигнал > 10 B, если [OU2] = [UnEG].

4.4 Функция диагностики

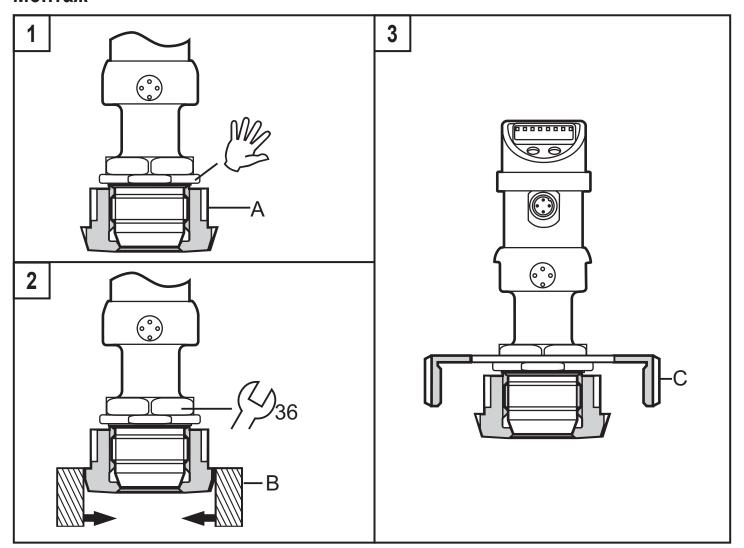
Выходной сигнал 1 используется как диагностический выходной сигнал согласно спецификации DESINA, если OU1 = dESI.

- При исправном функционировании выход переключён и выдаёт сигнал UB+ (если P-n = PnP) или UB- (если P-n = nPn).
- При неисправном функционировании выходной сигнал становится неактивным. Обнаружены следующие неисправности:
 - пониженное напряжение (начиная от 18 B); перенапряжение (начиная от 33 B);
 - слишком высокая рабочая температура (> 150°C) / слишком низкая (< -30 °C);
 - температура внутри корпуса слишком высокая (> 100°C) / слишком низкая (< -30°C);
 - ошибка RAM.


5 Установка

Перед началом работ по установке и снятию прибора убедитесь, что в системе отсутствует давление. Примечание: Индикация "0%" на дисплее не означает, что в системе отсутствует давление!

При высоких температурах рабочей среды рекомендуется устанавливать датчик в горизонтальном положении.

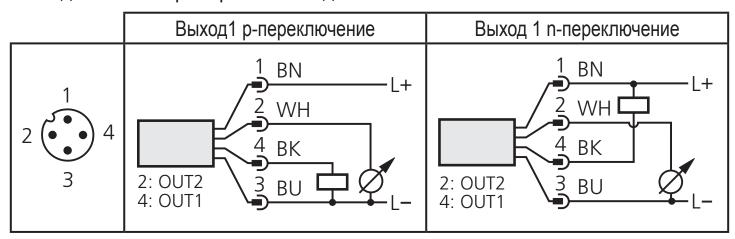

- Слегка смажьте резьбу датчика смазкой, подходящей и одобренной для применения.
- ▶ Вкрутите датчик в присоединительный фитинг G 1.
- Затяните датчик с помощью гаечного ключа.
 Момент затяжки: 20 Нм..

А = свободно поворачивающийся корпус

Установка приборов осуществляется с помощью различных присоединительных фитингов G 1. Присоединительные фитинги G 1 можо заказать отдельно в качестве принадлежностей.

Монтаж

- Слегка смажьте область контакта и адаптера смазкой, подходящей и одобренной для Вашего применения.
- ▶ Вверните прибор в фитинг (А) до упора (рис. 1). Будьте осторожны и не повредите уплотняющую поверхность.
- ► Скрепите датчик и фитинг в зажимном устройстве (B); (рис. 2). Слегка затяните зажимное устройство так, чтобы адаптер не деформировался.
- ▶ Затяните датчик с помощью гаечного ключа . Момент затяжки: 20 Нм.
- ▶ Датчик + адаптер при помощи накидной гайки, прижимного фланца или его аналога присоедините к рабочему процессу (С); (рис 3).

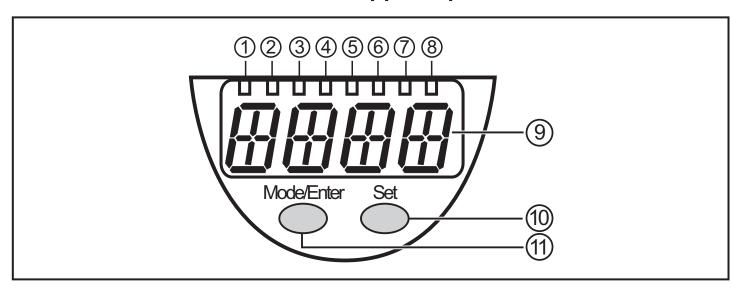

ПРИМЕЧАНИЕ: Надёжная эксплуатация гарантируется только в случае одноразовой установки.

Вварной адаптер

 Сначала вварите адаптер, затем установите датчик. Соблюдайте инструкции по установке датчика с адаптером.

6 Электрическое подключение

- К работам по установке и вводу в эксплуатацию допускаются только квалифицированные специалисты электрики.
 - Придерживайтесь действующих государственных и международных норм и правил по монтажу электротехнического оборудования. Напряжение питания соответствует EN50178, SELV, PELV.
- ▶ Отключите электропитание.
- Подключайте прибор согласно данной схеме:


Контакт 1	Ub+
Контакт 3	Ub-
Контакт 4 (Выход 1)	 бинарный коммутационный выходной сигнал для контроля давления диагностический выходной сигнал, если [OU1] = [dESI]
Контакт 2 (Выход 2)	• аналоговый выходной сигнал для давления в системе

Цвета жил разъёма ifm:

1 = BN (коричневый), 2 = WH (белый), 3 = BU (синий), 4 = BK (чёрный)

RU

7 Рабочие элементы и индикация

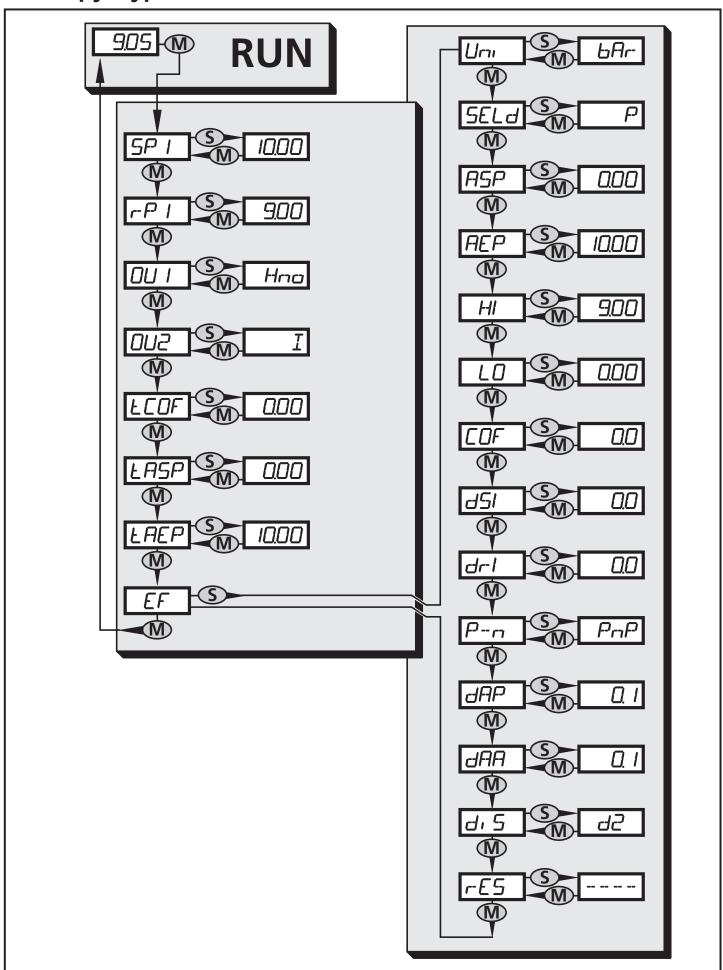
от 1 до 8: Светодиодная индикация

- Светодиод 1 6 = давление в системе в единицах измерения, которые указаны на табличке прибора.
 - Светодиоды 5 и 6 не используются для приборов с настройкой 3 единиц измерения.
- Светодиод 7 не используется.
- Светодиод 8 = коммутационное состояние выхода (Светодиод светится если выход 1 переключен).

9: Буквенно-цифровой 4-значный дисплей

- Индикация текущего давления в системе.
- Индикация параметров и значений параметров.

10: Кнопка настройки


- Установка значений параметров (удержанием кнопки или переменными краткими нажатиями).

11: Кнопка Mode/Enter

- Выбор параметров и подтверждение установленных значений параметров.

8 Меню

8.1 Структура меню

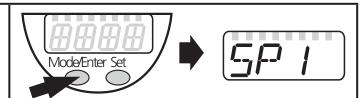
12

8.2 Пояснения к меню

SP1/rP1	Максимальное / минимальное значение для давления в системе, при котором выход 1 изменяет коммутационное состояние.
OU1	Функция выходного сигнала для Выхода 1: • Коммутационный сигнал для предельных значений давления: функция гистерезиса [Н] или функция окна [F], нормально открытый [. no] или нормально закрытый [. nc]. • Диагностический сигнал [dESI].
OU2	Функция выходного сигнала для Выхода 2: • Аналоговый сигнал для текущего давления в системе: 420 мА [I], 204 мА [InEG], 010 В [U], 100 В [UnEG].
tCOF	Обучение по калибровке нулевой точки.
tASP	Обучение по начальной точке аналогового сигнала для давления в системе: заданное значение, при котором 4 мА / 0 В выходной сигнал равен (20 мА / 10 В на [OU2] = [InEG] / [UnEG]).
tAEP	Обучение по конечной точке аналогового сигнала для давления в системе: заданное значение, при котором 20 мА / 10 В выходной сигнал равен (4 мА / 0 В on [OU2] = [InEG] / [UnEG]).
EF	Расширенные функции / Открытие уровня 2 меню
Uni	Стандартная единица измерения для давления в системе.
SELd	Режим отображения параметров: • Прибор преобразует давление в [Uni] • Давление в % от заданного масштабирования аналогового выхода.
ASP	Начальная точка аналогового сигнала для измерения давления в системе: измеренное значение, при котором 4 мА / 0 В выходной сигнал равен (20 мА / 10 В на [OU2] = [InEG] / [UnEG]).
AEP	Конечная точка аналогового сигнала для измерения давления в системе: измеренное значение, при котором 20 мА / 10 В выходной сигнал равен (4 мА / 0 В на [OU2] = [InEG] / [UnEG]).
HI	Ячейка памяти для сохранения максимального значения давления в системе.
LO	Ячейка памяти для сохранения минимального значения давления в системе.
COF	Калибровка нулевой точки.
dS1	Задержка включения для Выхода 1.
dr1	Сброс задержки для Выхода 1.
P-n	Полярность выхода для Выхода 1: pnp или npn.

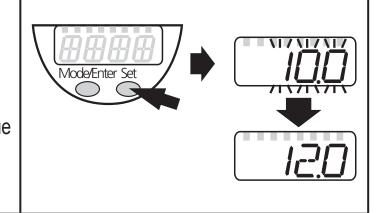
dAP	Демпфирование коммутационного выходного сигнала(Выход 1).
dAA	Демпфирование для аналогового выхода (Выход 2).
diS	Скорость обновления и ориентация дисплея.
rES	Вернуть заводскую настройку.

9 Настройка параметров


Во время настройки параметров прибор остаётся в рабочем режиме. Он функционирует согласно уже заданным параметрам до тех пор, пока операция по изменению и вводу новых параметров не будет завершена.

9.1 Основная настройка параметров

Каждая настройка параметров осуществляется в 3 этапа:


I Выбор параметра

► Нажимайте кнопку [Mode/Enter] , пока не отобразится желаемый параметр.

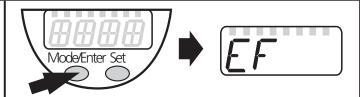
2 Установка значения параметра

- ► Нажмите [Set] и удерживайте кнопку нажатой.
- > Текущее значение параметра мигает на экране около 5 с.
- > Через 5 с: Установленное значение изменяется: многоразовыми краткими нажатиями или временным удержанием кнопки.

Цифровые значения постоянно увеличиваются. Для уменьшения значения: Подождите, пока дисплей достигнет максимального значения. Затем начнётся новый цикл и отображение с минимального значения.

3 Подтверждение введённого значения параметра

- ► Кратко нажмите кнопку [Mode/ Enter].
- Параметр снова отображается на экране. Новое значение сохраняется в памяти.

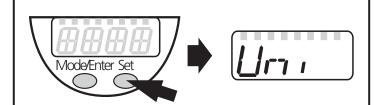


Настройте другие параметры

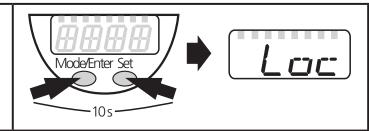
▶ Необходимо начать с шага 1.

Завершение настройки параметров

- ► Нажмите кнопку [Mode/Enter] несколько раз, пока не отобразится текущее измеренное значение или подождите 15 с.
- > Прибор возвращается в рабочий режим.
- Изменение уровня меню 1 на уровень меню 2:
 - ► Нажимайте кнопку [Mode/Enter] , пока [EF] не отобразится на экране.

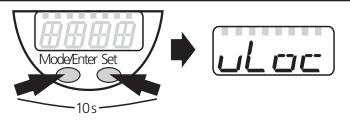


- ► Кратко нажмите кнопку [Set].
- > Отображается первый параметр субменю (в данном случае: [Uni]).


Если уровень меню 2 защищён кодом доступа, то на дисплее мигает "Cod1".

- Нажмите кнопку [Set] и удерживайте её нажатой до тех пор, пока номер кода не отобразится на экране.
- ► Кратко нажмите кнопку [Mode/ Enter].

Поставка прибора от производителя: без защиты кодом доступа.


- Блокировка / разблокировка Прибор можно заблокировать с помощью электроники для предотвращения ошибочных изменений в настройках.
 - ► Убедитесь, что прибор работает в нормальном рабочем режиме.
 - ► Нажимайте кнопки[Mode/Enter] + [Set] на протяжении 10 с.
 - > [Loc] отображается на экране.

Во время эксплуатации: [Loc] кратко отображается на экране, если Вы пытаетесь изменить значения параметров.

Для разблокировки:

- ► Нажимайте кнопки [Mode/Enter] + [Set] на протяжении 10 с.
- > [uLoc] отображается на экране.

Заводская настройка прибора: В разблокированном состоянии.

• Превышение времени ожидания:

Если во время настройки параметров в течение 15 с. кнопки не нажимаются, то датчик возвращается в рабочий режим с неизменными значениями.

9.2 Конфигурация дисплея (дополнительно)

 ▶ Выберите [Uni] и настройте единицу измерения: - [бар], [мбар], - [МПа], [кПа], - [фунт/кв.дюйм], - [InHO] (только РІ008А, РІ009А), - [м вод. ст.] (только РІ008А). - [мм вод. ст.] (только РІ008А). 	Um
 ▶ Выберите [SELd]] и настройте режим отображения: - [Р]: Прибор преобразует давление в Uni. - [Р%]: процентное значение (давление в % установленного масштабирования аналогового выхода. То есть: 0% = значение ASP; 100% = значение AEP). ПРИМЕЧАНИЕ: Индикация "0%" на дисплее не означает, что в системе отсутствует давление. 	SELd
 ▶ Выберите [diS] и определите скорость обновления и ориентацию отображения: - [d1]: Обновление измеренных значений каждые 50 мс. - [d2]: Обновление измеренных значений каждые 200 мс. - [d3]: Обновление измеренных значений каждые 600 мс. - [rd1], [rd2], [rd3]: Отображается как d1, d2, d3; с поворотом на 180°. - [OFF]: Дисплей дезактивирован в рабочем режиме. 	di 5

9.3 Настройка выходного сигнала

9.3.1 Настройка функции выхода

▶ Выберите [OU1] и настройте функцию переключения:	
- [Hno] = функция гистерезиса / нормально открытый,	' ' '
- [Hnc] = функция гистерезиса / нормально закрытый,	
- [Fno] = функция окна / нормально открытый,	
- [Fnc] = функция окна / нормально закрытый.	
В качестве альтернативы предлагается: конфигурация OUT1 как	
диагностического выходного сигнала:	
► Выберите [OU1] и настройте [dESI].	

	П
-1	

Выберите [OU2] и настройте функцию аналогового сигнала:

 [I] = сигнал тока пропорционален давлению 4...20 мА,
 [InEG] = сигнал тока пропорционален давлению 20...4 мА,
 [U] = сигнал напряжения пропорционален давлению 0...10 В,
 [UnEG] = сигнал напряжения пропорционален давлению 10...0 В.

9.3.2 Настройка пределов переключения

▶ Выберите [SP1] и установите значение, при котором Выход 1 переключается обратно.	SP 1
► Выберите [rP1] и установите значение, при котором Выход 1 переключается обратно.	r-P1
rP1 всегда ниже, чем SP1. Прибор принимает только значения, которые ниже SP1.	

9.3.3 Масштабирование аналогового значения

<u> </u>	
 ▶ Введите минимальное значение давления в системе. ▶ Нажимайте кнопку [Mode/Enter], пока [tASP] не отобразится на экране. ▶ Нажмите [Set] и удерживайте кнопку нажатой. 	LASP
 Мигает установленное текущее значение. 	
 Мигает установленное текущее значение. Отпустите кнопку [Set], когда дисплей перестанет мигать. 	
 Новое установленное значение отображается на дисплее. 	
► Кратко нажмите кнопку [Mode/Enter].	
> Текущее давление в системе установлено как начальное значение	
для аналогового сигнала.	
**	
 Установите необходимое максимальное давление в системе. Нажимайте кнопку [Mode/Enter], пока [tAEP] не отобразится на 	LAEP
ДИСПЛЕЕ.	
► Нажмите [Set] и удерживайте кнопку нажатой.	
> Мигает установленное текущее значение.	
▶ Отпустите кнопку [Set], когда дисплей перестанет мигать.	
> Новое установленное значение отображается на дисплее.	
► <u>Кратко нажмите кнопку [Mode/Enter].</u>	
> Текущее давление в системе установлено как конечное значение	
аналогового сигнала.	

Значения ASP / AEP могут быть быть установлены с помощью обучения датчика только в рамках установленного диапазона (\rightarrow 12.1 Диапазоны настройки). Если обучение датчика осуществляется при недействительном значении давления, то на дисплее отображается [UL] или [OL]. После подтверждения кнопкой [Mode/Enter], мигает [Err], значения ASP / AEP не изменяются.

В качестве альтернативы предлагается: ▶ Выберите [ASP] и задайте измеренное значение, при котором выходной сигнал 4 мА / 0 В (20 мА / 10 В при [OU2] = [InEG] / [UnEG]).	ASP AEP
 Выберите [AEP] и задайте измеренное значение, при котором выходной сигнал равен 20 мА / 10 В (4 мА / 0 В при [OU2] = [InEG] / [UnEG]). 	
Минимальное расстояние между ASP и AEP = 25% верхнего предела измерения (коэффициент 1:4).	

9.4 Настройки пользователя (дополнительные)

9.4.1 Калибровка нулевой точки

▶ Выберите [COF] и установите значение от -5% до 5% конечного значения диапазона измерения. Внутреннее значение "0" смещается на эту величину.	COF
В качестве альтернативы предлагается: Автоматическая адаптация смещения (диапазон настройки 0 бар ±5%); напр., при смещении места установки датчика или уровня нулевой точки для измерения уровня. ▶ Убедитесь, что в системе отсутствует давление. ▶ Нажимайте кнопку [Mode/Enter], пока [tCOF] не отобразится на экране.	LCOF
 Нажмите [Set] и удерживайте кнопку нажатой. Текущее значение смещения (в %) быстро мигает, затем отображается текущее значение давления в системе (в выбранной единице измерения). Отпустите кнопку [Set]. Кратко нажмите кнопку [Mode/Enter] для подтверждения нового значения смещения. 	

9.4.2 Настройка времени задержки для Выхода 1

[dS1] = задержка включения / [dr1] = задержка выключения. ▶ Выберите [dS1] или [dr1] и задайте значение между 0.1 и 50.0 с. (при	d5 I	
выборе 0.0 задержки не активна).	dr l	

9.4.3 Настройка полярности выходного сигнала для Выхода 1

•	Выберите [P-n] и установите [PnP] или [nPn].	P-n
----------	--	-----

RU

9.4.4 Настройка демпфирования для коммутационного сигнала

Выберите [dAP] и установите значение между 0.1 и 100.0 с (при 0.0 = [dAP] не активно).
 dAP значение = время реагирования между изменением давления и изменением статуса переключения в секундах.
 [dAP] влияет на частоту переключения: f_{макс} = 1 ÷ 2dAP.

9.4.5 Настройка демпфирования для аналогового сигнала

▶ Выберите [dAA] и установите значение 0.1 и 100.0 с. (при 0.0 = [dAA] не активно).
 dAA-значение = время реагирования между изменением давления и изменением аналогового сигнала в секундах.

9.5 Сервисные функции

[dAP] также влияет на дисплей.

9.5.1 Считывание миним./макс. значений давления в системе

Выберите [HI] или [LO] и кратко нажмите [Set].
 [HI] = максимальное значение, [LO] = минимальное значение.
 Удаление из памяти:

 Выберите [HI] или [LO].
 Нажимайте кнопку [Set] до тех пор, пока [----] не отобразится на экране.
 Кратко нажмите кнопку [Mode/Enter].

9.5.2 Сброс всех параметров и возврат к заводским настройкам

▶ Выберите [rES]
 ▶ Нажимайте кнопку [Set] до тех пор, пока [----] не отобразится на экране.
 ▶ Кратко нажмите кнопку [MODE/ENTER].
 Перед выполнением данной функции рекомендуем записать текущие настройки (→ 13 Предварительная заводская настройка).

10 Эксплуатация

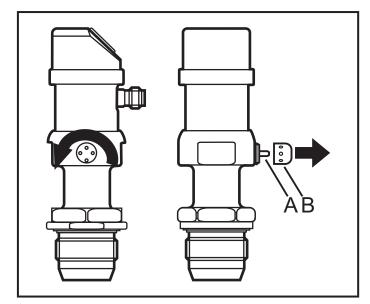
После подачи напряжения питания прибор автоматически переходит в Режим измерения (= нормальный режим работы). Датчик выполняет измерение и обработку результатов измерения, затем выдаёт выходные сигналы согласно заданным параметрам.

Рабочая индикация → глава 7 Рабочие элементы и индикация.

10.1 Считывание установленных значений параметров

- ► Удерживайте кнопку [Mode/Enter] до тех пор, пока на экране не отобразится желаемый параметр.
- ▶ Кратко нажмите кнопку [Set].
- > Датчик отображает на экране установленное значение параметра в течение 15 с. По истечении следующих 15 с прибор возвращается в режим измерения.

10.2 Индикация неисправности

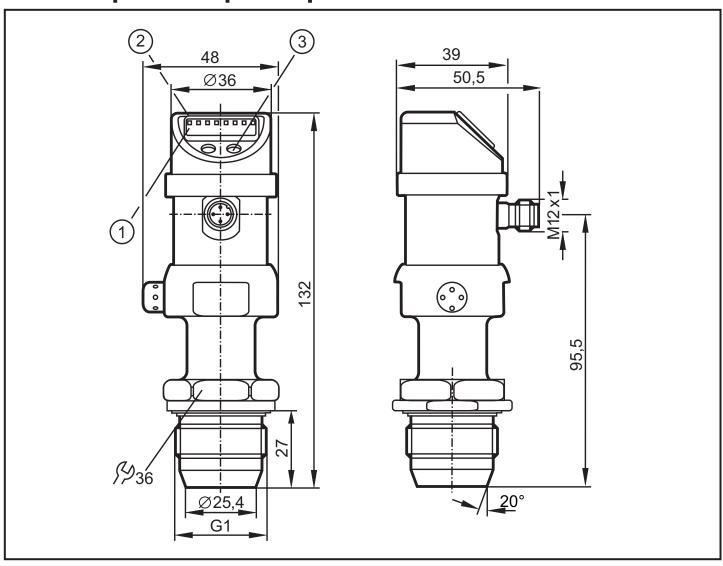

[OL]	Давление перегрузки (диапазон измерения превышен).
[UL]	Диапазон пониженного давления (диапазон измерения ниже минимального значения).
[SC1]	Короткое замыкание на Выходе 1; выход выключен на время короткого замыкания.
[Err]	Внутренняя ошибка, неверный входной сигнал.

Ошибки SC1 и Err отображаются даже если дисплей отключен.

10.3 Очистка крышки фильтра

Если на крышке фильтра датчика образуются вязкие отложения (приводят к ухудшению абсолютной точности измерений), то необходимо произвести её очистку.

- Отверните крышку фильтра (В) с помощью плоскогубцев с изоляцией).
- ▶ Тщательно очистите крышку.



К работам по очистке воздушного клапана (А) допускается только квалифицированный персонал. Во время работы требуется особая осторожность.

Возможные остатки продукта не должны вдавливаться в вентиляционные отверстия. Они могут привести к закупорке системы фильтрации и повлиять на точность измерения датчика.

▶ Плотно заверните крышку фильтра в исходное положение.

11 Габаритные размеры

Размеры в миллиметрах

1: дисплей

2: светодиоды

3: кнопка для программирования

12 Техническая характеристика

Рабочее напряжение [В] 1832 DC
Потребление тока [мА] < 50
Номинальный ток [мА]
Короткое замыкание / защита от перепутывания полюсов / перегрузок по току,
функция самодиагностики
Падение напряжения[В]< 2
Время задержки после включения питания [с] 0.5
Миним. время переключения выходов [с]
Частота переключения [Гц]6
Аналоговый выход 420 мА / 204 мА / 010 В / 100 В
Макс. допустимая нагрузка на токовый выход [Ω] (Ub - 10) x 50
Миним. нагрузка для выхода по напряжению [Ω]
Время реакции аналогового выхода [мс]
Точность / погрешность (в % верхнего предела измерения)1)
-Отклонение от характеристики (линейность, включая гистерезис и
повторяемость) ²⁾ < ± 0.2
- Линейность< ± 0.15
- Гистерезис< ± 0.15
- Повторяемость (с колебаниями температуры < 10K)< ± 0.1
- Долговременная стабильность (в % верхнего предела измерения за год)< ± 0.1
- Температурный коэффициент (ТК) в компенсированном
температурном диапазоне 0 70°С (в % верхнего предела измерения 10 К)
- Максимальный ТК нулевой точки< ± 0.05
- Максимальный ТК диапазона измерения< ± 0.15

Материал (в контакте со средой) нержавеющая сталь 316L / 1.4435; нержавеющая сталь 316L / 1.4404; характеристика поверхности: Ra 0.4 / Rz 4; керамика (99.9 % Al2 O3); PTFE; EPDM					
Материалы корпуса нержавеющая сталь (316S12); РС (макролон); РВТ FPM (Витон); РТFE	(полибутилентерефталат); РЕІ;				
Степень защиты IP 65 Класс защиты III Ударопрочность [г] 50 (DIN / IEC 68-2-27, 11 мс) Виброустойчивость [г] 20 (DIN / IEC 68-2-6, 10 - 2000 Гц)					
Миним.срок службы датчика в циклах срабатывания . Рабочая температура					
при применении вне взрывоопасной зоны	-2585°C				
при применении в взрывоопасной зоне -2060°					
Температура измеряемой среды					
при применении вне взрывоопасной зоны	-25125°C (145°C макс. 1 час)				
при применении в взрывоопасной зоне	-2060°C				
Температура хранения [°C] EMC EN 61000-4-2 ESD:	4 / 8 KB				
EN 61000-4-3 HF излучение: EN 61000-4-4 Всплеск: EN 61000-4-5 Выброс:					
EN 61000-4-6 HF проводимость: 10 В					

¹⁾ все данные указаны в масштабе 1:1 2) настройка порогового значения согласно DIN 16086

12.1 Диапазоны настройки

		SP1/	SP2	rP1/	rP2	AS	P	AE	P.	ΛD
		миним.	макс.	миним.	макс.	миним.	макс.	миним.	макс.	ΔΡ
4	бар	-0.96	25.00	-1.00	24.96	-1.00	18.74	5.24	25.00	0.02
P1003A	фунт/ кв.дюйм	-13.8	362.7	-14.4	362.1	-14.4	271.8	76.2	362.7	0.3
	МПа	-0.096	2.500	-0.100	2.496	-0.100	1.874	0.524	2.500	0.002
	мбар	-12.0	250.0	-12.4	249.6	-12.4	187.4	50.0	250.0	0.2
084	кПа	-1.20	25.00	-1.24	24.96	-1.24	18.74	5.00	25.0	0.02
P1008A	inH ₂ O	-4.8	100.4	-5.0	100.2	-5.0	75.3	20.1	100.4	0.1
	мм вод.ст.	-122	2250	-126	2546	-126	1912	510	2250	2
	мбар	-998	1000	-1000	998	-1000	500	-500	1000	1
A6 0	фунт/ кв.дюйм	-14.45	14.50	-14.50	14.45	-14.50	7.25	-7.25	14.50	0.05
P1009A	кПа	-99.8	100.0	-100.0	99.8	-100.0	50.0	-50.0	100.0	0.1
"	inH ₂ O	-400	401	-401	400	-401	201	-201	401	1
	м вод.ст.	-10.18	10.20	-10.20	10.18	-10.20	5.10	-5.10	10.20	0.01

ΔР = шаг приращения

13 Заводская настройка

	Заводская настройка	Настройка пользователя
OU1	Hno	
OU2	I	
SP1	25% VMR*	
rP1	23% VMR*	
ASP / tASP	0% VMR*	
AEP / tAEP	100% VMR*	
COF / tCOF	0.0	
dS1	0.0	
dr1	0.0	
P-n	pnp	
dAP	0.1	
dAA	0.1	
Uni	бар / мбар	
SELd	Р	
dis	d2	

^{* =} указанный процент от конечного значения диапазона измерения соответствующего датчика в бар / мбар задан (для PI009A процент от диапазона). VMR= верхний предел измерения.

Подробная информация на сайте www.ifm.com