

1

 Original System Manual

Know-How ecomatmobile

CODESYS® V2.3

English

7
3
9
1

0
2
0

 /
 0

1

 0

4
 /
 2

0
1
8

>

2

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Content

Table of Contents

1 About this manual 4

1.1 Copyright .. 4
1.2 Overview: documentation modules for CRnnnn .. 5
1.3 Which devices are described in this manual? .. 5
1.4 What do the symbols and formats mean? ... 6
1.5 How is this documentation structured? .. 7
1.6 History of the instructions (SEM) ... 7

2 Templates and demo programs 8

2.1 Introduction .. 8
2.1.1 What are ifm templates?... 8
2.1.2 What are ifm demo programs? ... 9

2.2 Set up programming system via templates ..10
2.2.1 About the ifm templates .. 11
2.2.2 How do you set up the programming system fast and simply? (e.g. CR2500) 13
2.2.3 Insert CANopen slave (example: CR2500 <-- CR2011) ... 14
2.2.4 Supplement project with further functions... 15

2.3 ifm demo programs ..18
2.3.1 Demo programs for controller ... 18

3 Using CAN – description 20

3.1 General about CAN ..20
3.1.1 CAN: hardware ... 21
3.1.2 CAN: software .. 25

3.2 CAN interfaces ...28
3.2.1 CAN: interfaces and protocols .. 28

3.3 CAN: exchange of data ..29
3.3.1 Data reception .. 29
3.3.2 Transmit data ... 29

3.4 Technical details on CANopen ...30
3.4.1 CANopen network configuration, status and error handling ... 30
3.4.2 CANopen support by CoDeSys .. 31
3.4.3 CANopen master .. 32
3.4.4 CANopen slave .. 55
3.4.5 CANopen tables ... 65

3.5 CANopen network variables ..75
3.5.1 General information .. 75
3.5.2 Configuration of CANopen network variables ... 76
3.5.3 Particularities for network variables .. 80

3.6 Summary CAN / CANopen / network variables ...81
3.7 CAN for the drive engineering ..82

3.7.1 Identifier acc. to SAE J1939 ... 83
3.7.2 Example: Detailed message documentation .. 84
3.7.3 Example: Short message documentation ... 85

3.8 CAN / CANopen: errors and error handling ...86
3.8.1 CAN errors ... 87
3.8.2 CANopen errors ... 89

4 Control outputs – description 97

4.1 PWM functions – description ...97
4.1.1 PWM signal processing – description ... 98
4.1.2 Hydraulic control with PWMi ... 103

4.2 Controller – description ..105
4.2.1 Self-regulating process ... 105
4.2.2 Controlled system without inherent regulation .. 106

3

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Content

4.2.3 Controlled system with delay .. 106

5 Working with the user flash memory 107

5.1 Flash memory – what is that? ..107
5.2 What is a CSV file? ..108
5.3 CSV file and the ifm maintenance tool ...109

5.3.1 Requirements for the CSV file .. 109
5.3.2 Creation of a CSV file using a spreadsheet program ... 110
5.3.3 Creation of a CSV file using an editor .. 112
5.3.4 Transfer of a CSV file with the maintenance tool .. 114
5.3.5 Access to the flash data: Function blocks... 115

6 Visualisations in the device 116

6.1 General ..116
6.2 Recommendations for user interfaces ...117

6.2.1 Recommendations for a user-friendly product design .. 117
6.2.2 Do you know the future users? ... 118
6.2.3 Check suitability for use.. 119
6.2.4 Language as an obstacle ... 120
6.2.5 Cultural details are often not transferable ... 122
6.2.6 Directives and standards .. 124

6.3 Basic information about colours and bitmap graphics ...131
6.3.1 Image size vector graphics / pixel graphics .. 132
6.3.2 Colour for bitmap graphics ... 133
6.3.3 Which colours are shown? ... 133

6.4 Special information about bitmap graphics ..134
6.4.1 Additive colour mixing .. 134
6.4.2 What graphics are suitable for which PDM and what steps must be carried out? 135

7 Overview of the files and libraries used 136

7.1 General overview ...137
7.2 What are the individual files and libraries used for? ..138

7.2.1 Files for the runtime system ... 138
7.2.2 Target file ... 138
7.2.3 PLC configuration file ... 138
7.2.4 ifm device libraries .. 139
7.2.5 ifm CANopen libraries master / slave ... 139
7.2.6 CODESYS CANopen libraries .. 140
7.2.7 Specific ifm libraries ... 141

8 Diagnosis and error handling 143

8.1 Overview ..143

9 Terms and abbreviations 144

10 Index 157

11 Notizen • Notes • Notes 161

4

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

About this manual Copyright

1 About this manual

Copyright ... 4
Overview: documentation modules for CRnnnn .. 5
Which devices are described in this manual? ... 5
What do the symbols and formats mean? ... 6
How is this documentation structured? ... 7
History of the instructions (SEM) ... 7

202

>

1.1 Copyright
6088

© All rights reserved by ifm electronic gmbh. No part of this manual may be reproduced and used
without the consent of ifm electronic gmbh.

All product names, pictures, companies or other brands used on our pages are the property of the respective rights owners:
 • AS-i is the property of the AS-International Association, (→ www.as-interface.net)
 • CAN is the property of the CiA (CAN in Automation e.V.), Germany (→ www.can-cia.org)
 • CODESYS™ is the property of the 3S – Smart Software Solutions GmbH, Germany (→ www.codesys.com)
 • DeviceNet™ is the property of the ODVA™ (Open DeviceNet Vendor Association), USA (→ www.odva.org)
 • EtherNet/IP® is the property of the →ODVA™
 • EtherCAT® is a registered trade mark and patented technology, licensed by Beckhoff Automation GmbH, Germany
 • IO-Link® (→ www.io-link.com) is the property of the →PROFIBUS Nutzerorganisation e.V., Germany
 • ISOBUS is the property of the AEF – Agricultural Industry Electronics Foundation e.V., Deutschland
 (→ www.aef-online.org)
 • Microsoft® is the property of the Microsoft Corporation, USA (→ www.microsoft.com)
 • Modbus® is the property of the Schneider Electric SE, Frankreich (→www.schneider-electric.com)
 • Profibus is the property of the PROFIBUS Nutzerorganisation e.V., Germany (→ www.profibus.com)
 • PROFINET® is the property of the →PROFIBUS Nutzerorganisation e.V., Germany
 • Windows® is the property of the →Microsoft Corporation, USA

http://www.as-interface.net/
http://www.can-cia.org/
http://www.codesys.com/
http://www.odva.org/
http://www.io-link.com/
http://www.aef-online.org/
http://www.microsoft.com/
http://www.schneider-electric.com/
http://www.profibus.com/

5

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

About this manual Overview: documentation modules for CRnnnn

1.2 Overview: documentation modules for CRnnnn
22853

The documentation for this devices consists of the following modules:
(Downloads from ifm's website → www.ifm.com)

Document Contents / Description

Data sheet Technical data in a table

Installation instructions
(are supplied with the
device)

 Instructions for installation, electrical installation, and commissioning

 Technical data

Programming manual Functions of the setup menu of the device

 Creation of a CODESYS project with this device

 Target settings with CODESYS

 Programming of the device-internal PLC with CODESYS

 Description of the device-specific CODESYS function libraries

System manual
"Know-How
ecomatmobile"

Know-how about the following topics (examples):

 Overview Templates and demo programs

 CAN, CANopen

 Control outputs

 Visualisations

 Overview of the files and libraries

>

1.3 Which devices are described in this manual?
14403

Technology and methods can differ from device to device.

These instructions apply to the following devices:
 • all ecomatmobile controllers
 • PDM: CR10nn
 • PCB controller: CS0015

http://www.ifm.com/

6

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

About this manual What do the symbols and formats mean?

1.4 What do the symbols and formats mean?
203

The following symbols or pictograms illustrate the notes in our instructions:

 WARNING

Death or serious irreversible injuries may result.

 CAUTION

Slight reversible injuries may result.

NOTICE

Property damage is to be expected or may result.

Important note
Non-compliance can result in malfunction or interference

Information
Supplementary note

► ... Request for action

> ... Reaction, result

→ ... "see"

abc Cross-reference

123
0x123
0b010

Decimal number
Hexadecimal number
Binary number

[...] Designation of pushbuttons, buttons or indications

7

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

About this manual How is this documentation structured?

1.5 How is this documentation structured?
204

1508

This documentation is a combination of different types of manuals. It is for beginners and also a
reference for advanced users. This document is addressed to the programmers of the applications.

How to use this manual:

 Refer to the table of contents to select a specific subject.

 Using the index you can also quickly find a term you are looking for.

 At the beginning of a chapter we will give you a brief overview of its contents.

 Abbreviations and technical terms → Appendix.

In case of malfunctions or uncertainties please contact the manufacturer at:
Contact → www.ifm.com

We want to become even better! Each separate section has an identification number in the top right
corner. If you want to inform us about any inconsistencies, indicate this number with the title and the
language of this documentation. Thank you very much for your support!

We reserve the right to make alterations which can result in a change of contents of the
documentation. You can find the current version on ifm's website:
→ www.ifm.com

>

1.6 History of the instructions (SEM)
14337

What has been changed in this manual? An overview:

Date Theme Change

2017-01-13 Software manual for CODESYS 2.3 hint to download from the ifm homepage removed

2018--03-05 FB INPUT Value corrected for analogue input resistance

measurement (16...30 000

2018-04-16 Chapter "CAN: Hardware" Now added again

>

http://www.ifm.com/
http://www.ifm.com/

8

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs Introduction

2 Templates and demo programs

Introduction .. 8
Set up programming system via templates ... 10
ifm demo programs.. 18

13747

>

2.1 Introduction
11646

>

2.1.1 What are ifm templates?
11647

They are templates for CODESYS application programs.
These templates are separately available for all programmable ecomatmobile devices.

Structure of the file names:
ifm_template_CRnnnn(CAN)_(V1)_(V2).pro

While the bracket terms have the following meaning:

(CAN) CAN protocol:
 • Layer2
 • CANopen master
 • CANopen slave

(V1) Version (Vxxyyzz) of the CRnnnn device's runtime system

(V2) Version (Vnn) of the template

 The article number in the template must be exactly identical with the article number of the device
to be programmed! → Device manual, chapter "Information concerning the software"

>

Quick reference guide: ifm templates
18057

This is how you find the ifm templates:

► In the CODESYS menu [Datei] > open [Neu aus Vorlage...].

> The dialogue [Öffnen] appears.

► Select the following path in the directory tree:
(Program drive) > [Programme] > [ifm electronic] > [CoDeSys (Version)] > [Projects] > (aktuelle
Template-DVD) > (requested template)

► Confirm the selection with [Öffnen].

> A new CODESYS project is created.
This project contains all necessary elements and parameter settings for a project that can run on
the selected device.

► Adjust this project manually to the application.
When necessary, integrate individual ifm demos (→ chapter ifm demo programs (→ p. 18)).

9

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs Introduction

2.1.2 What are ifm demo programs?
11648

ifm demo programs are CODESYS examples for individual functions.
In most cases, the examples do not apply to a specificifm device, as far as nothing else is specified.

Structure of the file names:
(device)demo_(V1)_(V2).pro

While the bracket terms have the following meaning:

(Device) Article no. of the example device

(V1) Type of demonstration

(V2) Version (Vnn) of the demo program

>

Quick reference guide: ifm demo programs
18058

This is how you find the ifm demo programs:

► Open [Projekt] > [öffnen] in the CODESYS menu.

> The dialogue [Öffnen] appears.

► Select the following path in the directory tree:
(Program drive) > [Programme] > [ifm electronic] > [CoDeSys (Version)] > [Projects] > (requested
demo directory) > (requested demo project)

► Confirm the selection with [Öffnen].

> The window [Objekte kopieren] appears.

► Highlight the elements containing exclusively the requested function.

► Confirm the selection with [OK].

> The highlighted elements from the demo project are inserted in the current project, .

► Adjust the elements of the application and add e.g. to the module PLC_PRG.

10

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs Set up programming system via templates

2.2 Set up programming system via templates

About the ifm templates ... 11
How do you set up the programming system fast and simply? (e.g. CR2500) 13
Insert CANopen slave (example: CR2500 <-- CR2011) ... 14
Supplement project with further functions ... 15

18051

ifm offers ready-to-use templates (program templates) for a fast, simple, and complete setting up of
the programming system.

970

 When installing the ecomatmobile DVD "Software, tools and documentation", projects with
templates have been stored in the program directory of your PC:
…\ifm electronic\CoDeSys V…\Projects\Template_DVD_V…

► Open the requested template in CODESYS via:
[File] > [New from template…]

> CODESYS creates a new project which shows the basic program structure. It is strongly
recommended to follow the shown procedure.

11

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs Set up programming system via templates

2.2.1 About the ifm templates

Folder structure in general .. 11
Programs and functions in the folders of the templates (C) .. 12

3981

As a rule the following templates are offered for each unit:

 ifm_template_CRnnnnLayer2_Vxxyyzz.pro

for the operation of the unit with CAN layer 2

 ifm_template_CRnnnnMaster_Vxxyyzz.pro

for the operation of the unit as CANopen master

 ifm_template_CRnnnnSlave_Vxxyyzz.pro

for the operation of the unit as CANopen slave

The templates described here are for:
 • CODESYS from version 2.3.9.6
 • on the ecomatmobile DVD "Software, tools and documentation" from version 020000

The templates all have the same structures.

The selection of this program template for CAN operation already is an important basis for a
functioning program.

>

Folder structure in general
3978

The function elements are sorted in the following folders:

Folder Description

CAN_OPEN for Controller and PDM,
CAN operation as master or slave:

contains the FBs for CANopen.

I_O_CONFIGURATION for Controller,
CAN operation with layer 2 or as master or slave:

FBs for parameter setting of the operating modes of the inputs and outputs.

PDM_COM_LAYER2 for Controller,
CAN operation as layer 2 or as slave:

FBs for basis communication via layer 2 between PLC and PDM.

CONTROL_CR10nn for PDM,
CAN operation with layer 2 or as master or slave:

Contains FBs for image and key control during operation.

PDM_DISPLAY_SETTINGS for PDM,
CAN operation with layer 2 or as master or slave:

Contains FBs for adjusting the monitor.

12

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs Set up programming system via templates

Programs and functions in the folders of the templates (C)
18048

The above folders contain the following programs and function blocks (all = function elements):

Function elements in the folder
CAN_OPEN

Description

CANopen CAN operation as master:

Contains the following parameterised function elements:
 • CAN1_MASTER_EMCY_HANDLER,
 • CAN1_MASTER_STATUS,
 • SELECT_NODESTATE (→ down).

CANopen CAN operation as slave:

Contains the following parameterised function elements:
 • CAN1_SLAVE_EMCY_HANDLER,
 • CAN1_SLAVE_STATUS,
 • SELECT_NODESTATE (→ down).

Objekt1xxxh CAN operation as slave:

Contains the values [STRING] for the following parameters:
 • ManufacturerDeviceName, e.g.: 'CR1051'
 • ManufacturerHardwareVersion, e.g.: 'HW_Ver 1.0'
 • ManufacturerSoftwareVersion, e.g.: 'SW_Ver 1.0'

Function elements in the folder
I_O_CONFIGURATION

Description

CONF_IO_CRnnnn CAN operation with layer 2 or as master or slave:

Parameterises the operating modes of the inputs and outputs.

Function elements in the folder
PDM_COM_LAYER2

Description

PLC_TO_PDM CAN operation with layer 2 or as slave:

Organises the communication from the Controller to the PDM:
 • monitors the transmission time,
 • transmits control data for image change, input values etc.

TO_PDM CAN operation with layer 2 or as slave:

Organises the signals for LEDs and keys between Controller and PDM.

Contains the following parameterised function elements:
 • PACK (→ 3S),
 • PLC_TO_PDM (→ up),
 • UNPACK (→ 3S).

Function elements in the root
directory

Description

PLC_CYCLE CAN operation with layer 2 or as master or slave:

Determines the cycle time of the PLC in the unit.

PLC_PRG CAN operation with layer 2 or as master or slave:

Main program This is where further program elements are included.

13

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs Set up programming system via templates

2.2.2 How do you set up the programming system fast and simply? (e.g. CR2500)
18052

► In the CODESYS menu select: [File] > [New from template...]

► Select directory of the current DVD, e.g. ...\Projects\TEMPLATE_DVD020000.

► Find article number of the unit in the list, e.g. CR2500 as CANopen master:

► Mind the correct program version!

► How is the CAN network organised?
Do you want to work on layer 2 basis or is there a master with several slaves (for CANopen)?

► Confirm the selection with [Open].

> A new CODESYS project is generated with the following folder structure (left):

Example for CR2500 as CANopen master: Another example for CR1051 as CANopen slave:

(via the folder structures in templates section About the ifm templates (→ p. 11)).

► Save the new project with [file] > [Save as...], and define suitable directory and project name.

14

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs Set up programming system via templates

2.2.3 Insert CANopen slave (example: CR2500 <-- CR2011)
18053

► Configure the CAN network in the project:
Double click the element [PLC configuration] above the tabulator [resources] in the CODESYS
project.

► Right mouse click in the entry [CR2500, CANopen Master]

► Click in the context menu [Append subelement]:

> A list of all available EDS files appears in the extended context menu.

► Select requested element, e.g. "System R360": I/O CompactModule CR2011 (EDS)".

The EDS files are in directory C:\\CoDeSys V\Library\PLCConf\.

> The window [PLC configuration] changes as follows:

► Set CAN parameters, PDO mapping and SDOs for the entered slave according to the
requirements.

 Better deselect [Create all SDOs].

► With further slaves proceed as described above.

► Save the project!

This should be a sufficient description of your project. You want to supplement this project with further
elements and functions?

 chapter Supplement project with further functions (→ p. 15)

15

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs Set up programming system via templates

2.2.4 Supplement project with further functions
3987

You have created a project using an ifm template and you have defined the CAN network. Now you
want to add further functions to this project.

For the example we take a CabinetController CR2500 as CAN open Master to which an I/O
CabinetModule CR2011 and an I/O CompactModule are connected as slaves:

Example: PLC configuration

A joystick is connected to the CR2012 which is to trigger a PWM output on the CR2032. How is that
achieved in a fast and simple way?

► Save CODESYS project!

► In CODESYS use [Project] > [Copy...] to open the project containing the requested function:
e.g. CR2500Demo_CR2012_02.pro

from directory DEMO_PLC_DVD under C:\...\CoDeSys V\Projects\:

► Confirm the selection with [Open].

► The message "Error when loading the PLC configuration" can be ignored.

> Window [Copy objects] appears:

16

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs Set up programming system via templates

► Highlight the elements which contain only the requested function, in this case e.g.:

 In other cases libraries and/or visualisations might be required.

► Confirm the selection with [OK].

> In our example project the elements selected in the demo project have been added:

POUs: Resources:

► Insert the program [CR2012] in the main program [PLC_PRG] e.g.:

► The comments of the function elements and global variables usually contain information on how
the individual elements have to be configured, included or excluded. This information has to be
followed.

► Adapt input and output variables as well as parameters and possible visualisations to your own
conditions.

► [Project] > [Save] and
[Project] > [Rebuild all].

► After possibly required corrections and addition of missing libraries (Error messages after
rebuild) save the project again.

17

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs Set up programming system via templates

► Follow this principle to step by step (!) add further functions from other projects and check the
results.

► [Project] > [Save] and
[Project] > [Rebuild all].

18

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs ifm demo programs

2.3 ifm demo programs

Demo programs for controller .. 18
3982

In the directory
 • DEMO_PLC_DVD... (for Controller) or

 • DEMO_PDM_DVD... (für PDMs)

under C:\\CoDeSys V\Projects\

we explain certain functions in tested demo programs. If required, these functions can be implemented
in own projects. Structures and variables of the ifm demo programs match those in the ifm templates.

Each demo program shows just one topic. For the Controller as well some visualisations are shown
which demonstrate the tested function on the PC screen.

Comments in the function elements and in the variable lists help you adapt the demo programs to your
project.

If not stated otherwise the demo programs apply to all controllers or to all PDMs.

The demo programs described here apply for:
 • CODESYS from version 2.3.9.6
 • on the ecomatmobile DVD "Software, tools and documentation" from version 020000

>

2.3.1 Demo programs for controller
3995

Demo program Function

CR2500Demo_CanTool_xx.pro separate for PDM360, PDM360compact, PDM360smart and
Controller:

Contains FBs to set and analyse the CAN interface.

CR2500Demo_ClockFu_xx.pro
CR2500Demo_ClockKo_xx.pro
CR2500Demo_ClockSt_xx.pro

Clock generator for Controller as a function of a value on an
analogue input:
Fu = in function block diagram
K0 = in ladder diagram
St = in structured text

CR2500Demo_CR1500_xx.pro Connection of a keypad module CR1500 as slave of a Controller
(CANopen master).

CR2500Demo_CR2012_xx.pro I/O cabinet module CR2012 as slave of a Controller (CANopen
master),

Connection of a joystick with direction switch and reference
medium voltage.

CR2500Demo_CR2016_xx.pro I/O cabinet module CR2016 as slave of a Controller (CANopen
master),

4 x frequency input,
4 x digital input minus switching,
4 x digital input plus switching,
4 x analogue input ratiometric,
4 x PWM1000 output and
12 x digital output.

CR2500Demo_CR2031_xx.pro I/O compact module CR2031 as slave of a Controller (CANopen
master),

Current measurement on the PWM outputs

CR2500Demo_CR2032_xx.pro I/O compact module CR2032 as slave of a Controller (CANopen
master),

4 x digital input,
4 x digital input analogue evaluation,
4 x digital output,
4 x PWM output.

19

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Templates and demo programs ifm demo programs

Demo program Function

CR2500Demo_CR2033_xx.pro I/O compact module CR2033 as slave of a Controller (CANopen
master),

4 x digital input,
4 x digital input analogue evaluation,
4 x digital output,

CR2500Demo_CR2101_xx.pro Inclination sensor CR2101 as slave of a Controller (CANopen
master).

CR2500Demo_CR2102_xx.pro Inclination sensor CR2102 as slave of a Controller (CANopen
master).

CR2500Demo_CR2511_xx.pro I/O smart module CR2511 as slave of a Controller (CANopen
master),

8 x PWM output current-controlled.

CR2500Demo_CR2512_xx.pro I/O smart module CR2512 as slave of a Controller (CANopen
master),

8 x PWM output.
Display of the current current for each channel pair.

CR2500Demo_CR2513_xx.pro I/O smart module CR2513 as slave of a Controller (CANopen
master),

4 x digital input,
4 x digital output,
4 x analogue input 0...10 V.

CR2500demo_input_from_pdm_CANopen_xx.pro

Use system variables via CANopen:
 • HANDLE,
 • INPUT_VALUE,
 • LENGHT

CR2500demo_input_from_pdm_Layer2_xx.pro

Use system variables via CAN-Layer2:
 • HANDLE,
 • INPUT_VALUE,
 • LENGHT

CR2500Demo_Interrupt_xx.pro Example with SET_INTERRUPT_XMS.

CR2500Demo_Operating_hours_xx.pro Example of an operating hours counter with interface to a PDM.

CR2500Demo_PWM_xx.pro Converts a potentiometer value on an input into a normed value
on an output with the following function elements:
 • INPUT_VOLTAGE,
 • NORM,
 • PWM100.

CR2500Demo_RS232_xx.pro Example for the reception of data on the serial interface by
means of the Windows hyper terminal.

StartersetDemo.pro

StartersetDemo2.pro
StartersetDemo2_fertig.pro

Various e-learning exercises with the starter set EC2074.

_xx = indication of the demo version

>

20

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description General about CAN

3 Using CAN – description

General about CAN ... 20
CAN interfaces .. 28
CAN: exchange of data ... 29
Technical details on CANopen .. 30
CANopen network variables .. 75
Summary CAN / CANopen / network variables ... 81
CAN for the drive engineering ... 82
CAN / CANopen: errors and error handling .. 86

13743

>

3.1 General about CAN

CAN: hardware .. 21
CAN: software ... 25

1164

The CAN bus (Controller Area Network) belongs to the fieldbuses.

It is an asynchronous serial bus system which was developed for the networking of control devices in
automotives by Bosch in 1983 and presented together with Intel in 1985 to reduce cable harnesses
(up to 2 km per vehicle) thus saving weight.

21

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description General about CAN

3.1.1 CAN: hardware
14103

>

Topology
1244

The CAN network is set up in a line structure. A limited number of spurs is allowed.

Moreover is possible:
 • a star type bus (e.g. central locking).

 NOTE

Prevent falsification of the signal quality due to signal echoes at the cable ends:

► Terminate the CAN bus line at both ends using terminating resistors of > 120 !

The devices of ifm electronic gmbh equipped with a CAN interface have no terminating resistors.

Together with the terminating resistors the overall resistance (measured between CAN_H and

CAN_L) of the voltage-free CAN bus line should be about 60±5 .

The disadvantage of spurs and star-type bus is that the wave resistance is difficult to determine. In the
worst case the bus no longer functions.

>

Network structure
1178

The ISO 11898 standard assumes a line structure of the CAN network.

Figure: CAN network structure line topology

 The internal resistance of a CAN interface is approx. 40...45 k. With 32 devices on the CAN bus

the resulting resistance in the network is only 1.25...1.4 k.

 NOTE

Prevent falsification of the signal quality due to signal echoes at the cable ends:

► Terminate the CAN bus line at both ends using terminating resistors of > 120 !

The devices of ifm electronic gmbh equipped with a CAN interface have no terminating resistors.

Together with the terminating resistors the overall resistance (measured between CAN_H and

CAN_L) of the voltage-free CAN bus line should be about 60±5 .

22

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description General about CAN

Spurs
13013

Depending on the total cable length and the time sequences on the bus, signal reflections may result.
This is why spurs to the bus participants (node 1...n) should be avoided.

If spurs are not avoidable:
 • Individual spurs of a length of up to 2 m (referred to 125 kbits/s) are considered to be uncritical.
 • The sum of all spurs in the whole system should not exceed 30 m.

► In special cases the cable lengths of the line and spurs must be calculated exactly.

>

CAN bus level
1179

The CAN bus is in the inactive (recessive) state if the output transistor pairs are switched off in all bus
participants. If at least one transistor pair is switched on, a bit is transferred to the bus. This activates
the bus (dominant). A current flows through the terminating resistors and generates a difference
voltage between the two bus cables. The recessive and dominant states are converted into voltages in
the bus nodes and detected by the receiver circuits.

Figure: CAN bus level

This differential transmission with common return considerably improves the transmission security.
Noise voltages which interfere with the system externally or shifts of the ground potential influence
both signal cables with the same interference. These influences are therefore not considered when the
difference is formed in the receiver.

23

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description General about CAN

Bus cable length
1180

The length of the bus cable depends on:
 • type of the bus cable (cable, connector),
 • cable resistance,
 • required transmission rate (baud rate),
 • length of the spurs.

To simplify matters, the following dependence between bus length and baud rate can be assumed:

Figure:
bus cable length

Baud rate [kBit/s] Bus length [m] Bit time nominal [µs]

1 000 40 1

800 50 1,25

500 100 2

250 250 4

125 500 8

62,5 1 000 20

20 2 500 50

10 5 000 100

Table: Dependencies bus length / baud rate / bit time

24

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description General about CAN

Wire cross-sections
1181

► For the layout of the CAN network the wire cross-section of the bus cable used must also be taken
into account.

The following table describes the dependence of the wire cross-section referred to the cable length
and the number of the connected nodes.

Cable length [m]
Wire cross-section [mm2]

at 32 nodes at 64 nodes at 100 nodes

< 100 0.25 0.25 0.25

< 250 0.34 0.50 0.50

< 500 0.75 0.75 1.00

Depending on the EMC requirements the bus cables can be laid out as follows:
 • in parallel with / without shield
 • as twisted pair with / without shield

25

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description General about CAN

3.1.2 CAN: software

IDs (addresses) in CAN ... 26
14104

26

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description General about CAN

>

IDs (addresses) in CAN
15448

In CANopen there are different types of identifications (here: IDs):

 COB ID
The Communication Object Identifier addresses the message (= the communication object). A
communication object consists of a network-wide CAN message.
The lower the COB ID, the higher the priority of the message.

 Download ID
The download ID designates the identification for the program download and the maintenance
access in CODESYS.
For this, ifm uses the SDO mechanism from the CANopen protocol.
The software adds the download ID to the basis address.

 Node ID
The Node identifier is a unique identifier for CANopen devices in the CAN network. The Node ID
is also part of some predefined connection sets (→ Function code / Predefined Connectionset
(→ p. 67)). On the basis of the node ID the COB IDs are determined if the predefined connection
settings are used.

 The node ID and the download ID must be different in the same CAN network!
13182

Comparison of download ID vs. node ID:

Controller program download CANopen

Download ID COB ID SDO Node ID COB ID SDO

1…127
TX: 0x580 + download ID

1…127
TX: 0x580 + node ID

RX: 0x600 + download ID RX: 0x600 + node ID

TX = slave sends to master
RX = slave receives from master

 NOTE

The CAN download ID of the device must match the CAN download ID set in CODESYS!

In the same CAN network the CAN download IDs must be unique!

The same CAN download ID may be assigned to the different CAN interfaces of a device, provided
that these CAN interfaces are connected to separate CAN networks.

27

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description General about CAN

>

COB-ID
18384
18379

Depending of the type the following CAN identifiers are free available for the data transfer:

COB-ID (base) COB-ID (extended)

11 bits 29 bits

COB identifier: 0...2 047 COB identifier: 0...536 870 911

Standard applications
Engine management (SAE J1939),

Truck & Trailer interface (ISO 11992)

18382

Example 11 bits COB-ID (base):

S
O
F

COB-ID (base)

Bit 28 ... bit 18

R
T
R

I
D
E

0 0 0 0 0 1 1 1 1 1 1 1 0 0

 0 7 F

Example 29 bits COB-ID (extended):

S
O
F

COB-ID (base)

Bit 28 ... bit 18

S
RR

I
D
E

COB-ID (extended)

Bit 17 ... bit 0

R
T
R

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 1 F C 0 0 0 0

Legend:
SOF = Start of frame
edge of recessive to dominant

RTR = Remote transmission request
dominant: this message sends data
recessive: this message requests data

IDE = Identifier extension flag
dominant: after this control bits follows
recessive: after this the second part of the 29 bits identifier follows

SRR = Substitute remote request
recessive: extended CAN-ID: replaces the RTR bit at this position

28

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN interfaces

>

3.2 CAN interfaces

CAN: interfaces and protocols ... 28
14101

Connections and data → data sheet

>

3.2.1 CAN: interfaces and protocols
18060

The devices are equipped with several CAN interfaces depending on the hardware design. Basically,
all interfaces can be used with the following functions independently of each other:
 • Layer 2: CAN at level 2
 • CANopen master
 • CANopen slave
 • CANopen network variables (via CODESYS)
 • SAE J1939 (for drive management)
 • Bus load detection
 • Error frame counter
 • Download interface
 • 100 % bus load without package loss

If several CANopen-capable interfaces are available, then the following applies for the assignment of
the CANopen protocol to the CAN interface (depending on the device):

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

the sequence in which you add the sub-elements in the
controller configuration

the selection of the CAN interface to which you add the sub-
element

29

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN: exchange of data

>

3.3 CAN: exchange of data
19015

CAN data is exchanged via the CAN protocol of the link layer (level 2) of the seven-layer ISO/OSI
reference model specified in the international standard ISO 11898.

Every bus participant can transmit messages (multimaster capability). The exchange of data functions
similarly to radio. Data is transferred on the bus without transmitter or address. The data is only
marked by the identifier. It is the task of every participant to receive the transmitted data and to check
by means of the identifier whether the data is relevant for this participant. This procedure is carried out
automatically by the CAN controller together with the runtime system.

For the normal exchange of CAN data the programmer only has to make the data objects with their
identifiers known to the system when designing the software. This is done via the FBs for CAN
transmit und CAN receive:

 CAN POUs based on layer 2 (RAW CAN):
simple functions.

 CAN POUs based on SAE J1939:
high class functions for the engine management.

 CAN POUs based on CANopen:
complex CAN functions.

 CANopen safety POUs (optional):
CAN functions for safety applications with SafetyControllers.

Using these FBs the following units are combined into a data object:
 • the useful data,
 • the frame type (optional),
 • selected identifier (ID).

These data objects participate in the exchange of data via the CAN bus. The transmit and receive
objects can be defined from all valid IEC data types (e.g. BOOL, WORD, INT, ARRAY).

The CAN message consists of a COB identifier (COB-ID (→ p. 27)) and maximum 8 data bytes. The ID
does not represent the transmit or receive module but identifies the message. To transmit data it is
necessary that a transmit object is declared in the transmit module and a receive object in at least one
other module. Both declarations must be assigned to the same identifier and the same message type
(base or extended).

>

3.3.1 Data reception
19016

In principle the received data objects are automatically stored in a buffer (i.e. without influence of the
user).

Each identifier has such a buffer (queue). Depending on the application software this buffer is emptied
according to the FiFo principle (First In, First Out) via the device-specific CAN receive FB.

>

3.3.2 Transmit data
19017

By calling the device-specific CAN transmit FB the application program transmits exactly one CAN
message to the buffer (queue). As feedback you are informed whether there was still enough space in
the buffer and whether the message was successfully transferred. The buffer autonomously transfers
the message to the CAN controller, which transmits it on the bus.

The transmit order is denied if the buffer is already full. The transmit order must then be repeated by
the application program. This information is indicated to the programmer by a bit.

In the buffer, no transmit priority is assigned to the messages based on their COB-ID (→ p. 27). The
programmer must therefore carefully assign the order in which he transfers the messages.

30

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

3.4 Technical details on CANopen

CANopen network configuration, status and error handling ... 30
CANopen support by CoDeSys ... 31
CANopen master ... 32
CANopen slave .. 55
CANopen tables .. 65

13822

>

3.4.1 CANopen network configuration, status and error handling
13824

The network configuration and parameter setting of the connected devices are carried out via the
programming software CODESYS.

For some devices, the error messages can only be reached via nested variable structures in the
CANopen stack.

The documentation below shows you the structure and use of the network configuration.

The following chapters describe the internal function elements of the CODESYS CANopen stack and
their use. They also give information of how to use the network configurator.

 NOTE

It is absolutely necessary to use only the corresponding device-specific library. The context can be
seen from the integrated article number of the device.
Example CR0032 with CANopen master for CAN interface 1:
 → ifm_CR0032_CANopen1Master_Vxxyyzz.lib

→ device manual, chapter 'Set up target'

When other libraries are used the device can no longer function correctly.

31

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

3.4.2 CANopen support by CoDeSys
1857

>

General information about CANopen with CODESYS
13826

CODESYS is one of the leading systems for programming control systems to the international
standard IEC 61131. To make CODESYS more interesting for users many important functions were
integrated in the programming system, among them a configurator for CANopen. This CANopen
configurator allows you to configure CANopen networks (with some restrictions) under CODESYS.

An ecomatmobile controller can be used as a CANopen master and as a CANopen slave.

 NOTE

For all ecomat mobile controllers and PDM360smart you must use the 3S CANopen libraries with
the following addition: "OptTableEx"

If a new project is created, these libraries are in general automatically loaded. If you add the libraries
via the library manager, you must ensure a correct selection.

The CANopen libraries without this addition are used for other programmable ifm devices.

>

CANopen terms and implementation
1858

In respect of the transmission of process data in CANopen there are no masters and slaves in a CAN
network. In CANopen there is, however, a master/slave architecture for the network management
(NMT) and for the configuration.

The CAN protocol (below the CANopen protocol) does not know any master/slave relationship.

Implementation assumes that a CAN network serves as periphery of a CODESYS programmable
controller.

The master is an NMT master and configuration master. Normally the master ensures that the network
is put into operation. The master takes the initiative to start the individual nodes (= network nodes)
known via the configuration. These nodes are called slaves.

To bring the master closer to the status of a CANopen slave an object directory was introduced for the
master. The master can also act as an SDO server (SDO = Service Data Object) and not only as SDO
client in the configuration phase of the slaves.

32

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

3.4.3 CANopen master

CANopen libraries ... 32
Create a CANopen project .. 34
Add and configure CANopen slaves ... 39
Master at runtime ... 44
Start CANopen network ... 47
Network states ... 49

1859

>

CANopen libraries

Libraries: required by the system for CANopen .. 32
Functions of the CANopen libraries ... 33

18033

>

Libraries: required by the system for CANopen
14356

The following libraries are automatically integrated in the CODESYS project when the CANopen
functionality is used:
 • the CODESYS library 3S_CanDrvOptTableEx.LIB

 • the CODESYS library 3S_CANopenMasterOptTableEx.LIB

 • the CODESYS library 3S_CANopenManagerOptTableEx.LIB

 • the CODESYS library 3S_CanOpenDeviceOptTableEx.LIB

 • the CODESYS library 3S_CanOpenNetVarOptTableEx.LIB

 • the CODESYS library SysLibCallback.LIB

 The contained function blocks and functions must NOT be called directly in the code of the
application program!

33

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Functions of the CANopen libraries
1990

The following functions defined in CANopen are at present supported by the CODESYS CANopen
library:

 Transmitting PDOs: master transmits to slaves (slave = node, device)
 • transmitting event-controlled (i.e. in case of a change),
 • transmitting time-controlled (RepeatTimer) or
 • transmitting as synchronous PDOs, i.e. always when a SYNC was transmitted by the master.
An external SYNC source can also be used to initiate transmission of synchronous PDOs.

 Receiving PDOs: master receives from slave
Depending on the slave: event-controlled, request-controlled, acyclic and cyclic.

 PDO mapping
Assignment between a local object directory and PDOs from/to the CANopen slave (if supported
by the slave).

 Transmitting and receiving SDOs (unsegmented, i.e. 4 bytes per entry in the object directory)

 • automatic configuration of all slaves via SDOs at the system start.
 • application-controlled transmission and reception of SDOs to/from configured slaves.

 Synchronisation

Automatic transmission of SYNC messages by the CANopen master.

 Nodeguarding
Automatic transmission of guarding messages and lifetime monitoring for every slave configured
accordingly.

 We recommend: It is better to work with the heartbeat function for current devices since then
the bus load is lower.

 Heartbeat
Automatic transmission and monitoring of heartbeat messages.

The following functions defined in CANopen are at present not supported by the CODESYS CANopen
library:

 Dynamic identifier assignment

 Dynamic SDO connections

 SDO transfer block by block (can be implemented for some ifm devices by means of function

blocks in the respective ifm device library)

 segmented SDO transfer (can be implemented by means of function blocks in the respective ifm
device library)

 All options of the CANopen protocol which are not mentioned above.

The following functions are supported by the ifm CANopen library:

 Emergency
Reception of emergency messages from the configured slaves and message storage.

 Set Node-ID and baud rate in the slaves
By calling a simple function, node ID and baud rate of a slave can be set at runtime of the
application.

34

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Create a CANopen project
19021

Below the creation of a new project with a CANopen master is described step by step. It is assumed
that you have already installed CODESYS on your processor and the target and EDS files have also
been correctly installed or copied.

You will find a detailed description about the adjustment and application of the controller and
CANopen configuration dialogue here:
 • in the CODESYS manual see [Ressourcen] > [Steuerungskonfiguration]
 • in the CODESYS online help.

► Add the CANopen master in the controller configuration after creating a new project (→ device
manual, chapter 'Set up the target'):

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

► Right mouse click on the first line
("CRnnnn Configuration Vnn")

► [Unterelement anhängen] > [CANopen Master]

► At the requested CAN interface:
Right mouse click on [CANopen Interface]

► [Unterelement anhängen] > [CANopen Master]

If several CANopen-capable interfaces are available, then the following applies for the assignment of
the CANopen protocol to the CAN interface (depending on the device):

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

the sequence in which you add the sub-elements in the
controller configuration

the selection of the CAN interface to which you add the sub-
element

Example with CR0033:

Example with CR1081:

> The following libraries and software modules are automatically integrated:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

The STANDARD.LIB which provides the standard functions

for the controller defined in IEC 61131,

The STANDARD.LIB which provides the standard functions for

the controller defined in IEC 61131,

The 3S_CanOpenManager.LIB which provides the

CANopen basic functionalities

(if needed 3S_CanOpenManagerOptTable.LIB for C167

controller),

–

one or several of the libraries 3S_CANopenNetVar.LIB,

3S_CANopenDevice.LIB and 3S_CANopenMaster.LIB (if

needed, 3S_...OptTable.LIB für C167-Controller),

depending on the requested functionality,

–

the system libraries, e.g.: SysLibSem.LIB and

SysLibCallback.LIB.

the system libraries, e.g.: SysLibSem.LIB and

SysLibCallback.LIB.

35

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

► To use the prepared network diagnostics, status and EMCY function, add the ifm CANopen
master library (or the ifm CANopen_NT library) manually in the library manager. Without this
library the network information must be directly read from the nested structures of the 3S
CANopen libraries.

► Additionally, integrate the following libraries and software modules:

 The device library for the corresponding hardware, e.g. ifm_CR0032_Vxxyyzz.LIB. This

library provides all device-specific functions.

 EDS files for all slaves to be operated on the network. The EDS files for all ifm CANopen
slaves are provided by ifm electronic gmbh.
For the EDS files of other manufacturers' nodes, contact the corresponding
manufacturer.

36

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

CANopen master: Tab [CAN parameters]
1967

► Set the most important parameters for the master in this dialogue window.

Example: Control configuration for CR0233 CANopen master at CAN interface 1

Legend:

37

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

CAN parameters: Baud rate
10028

► Select the baud rate for the master.

 The baud rate must correspond to the transmission speed of the other network participants.

>

CAN parameters: Communication Cycle Period/Sync. Window Length
10029

After expiry of the [Communication Cycle Period] a SYNC message is transmitted by the master.

The [Sync. Window Length] indicates the time during which synchronous PDOs are transmitted by the
other network participants and must be received by the master.

As in most applications no special requirements are made for the SYNC object, the same time can be
set for [Communication Cycle Period] and [Sync. Window Length].
Please ensure the time is entered in [µs] (the value 50 000 corresponds to 50 ms).

38

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

CAN parameters: Sync. COB ID
10030

In this field the identifier for the SYNC message can be set. It is always transmitted after the
communication cycle period has elapsed. The default value is 128 and should normally not be
changed. To activate transmission of the SYNC message, the checkbox [activate] must be set.

 NOTE

The SYNC message is always generated at the start of a program cycle. The inputs are then read,
the program is processed, the outputs are written to and then all synchronous PDOs are transmitted.

Please note that the SYNC time becomes longer if the set SNYC time is shorter than the program
cycle time.

Example: communication cycle period = 10 ms and program cycle time = 30 ms.
The SYNC message is only transmitted after 30 ms.

>

CAN parameters: Node ID
10031

► Enter the node number (not the download ID!) of the master in this field.

The node number may only occur once in the network, otherwise the communication is disturbed.

>

CAN parameters: Automatic startup
10032

After successful configuration the network and the connected nodes are set to the state [operational]
and then started.

If the checkbox is not activated, the network must be started manually.

>

CAN parameters: Heartbeat
10033

If the other participants in the network support heartbeat, the option [support DSP301, V4.01...] can be
selected.

If necessary, the master can generate its own heartbeat signal after the set time has elapsed.

39

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Add and configure CANopen slaves

CANopen slave: Tab [CAN parameters] ... 40
Tab [Receive PDO-Mapping] and [Send PDO-Mapping] .. 42
CANopen slave: Register [Service Data Objects] ... 43

1861

Next you can add the CANopen slaves. To do so, you must call again the dialogue in the controller
configuration [Insert] > [Append subelement]. A list of the CANopen device descriptions (EDS files)
stored in the directory PLC_CONF is available. By selecting the corresponding device it is directly
added to the tree of the controller configuration.

Example: PLC configuration for CR0020 CANopen master with connected I/O CompactModule

 NOTE

If a slave is added via the configuration dialogue in CoDeSys, source code is dynamically integrated
in the application program for every node. At the same time every additionally inserted slave extends
the cycle time of the application program. This means: In a network with many slaves the master can
process no further time-critical tasks (e.g. FB OCC_TASK).

A network with 27 slaves has a basic cycle time of 30 ms.

Please note that the maximum time for a PLC cycle of approx. 50 ms should not be exceeded
(watchdog time: 100 ms).

40

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

CANopen slave: Tab [CAN parameters]
1968

>

CAN parameters: Node ID
10036

The node ID is used to clearly identify the CAN module and corresponds to the number on the module
set between 1 and 127.

The ID is entered decimally and is automatically increased by 1 if a new module is added.

>

CAN parameters: Write DCF
10037

If [Write DCF] is activated, a DCF file is created after adding an EDS file to the set directory for
compilation files. The name of the DCF file consists of the name of the EDS file and appended node
ID.

>

CAN parameters: Create all SDOs
10038

If this option is activated, SDOs are generated for all communication objects.

Default values are not written again!

>

CAN parameters: Node reset
10039

The slave is reset ("load" and NMT command "Reset Node") during initialisation of the CANopen
network after the master has been rebooted.

Then the slave is configured.

>

CAN parameters: Optional device
10040

If the option [optional device] is activated, the master tries only once to read from this node. In case of
a missing response, the node is ignored and the master goes to the normal operating state.

If the slave is connected to the network and detected at a later point in time, it is automatically started.
To do so, you must have selected the option [Automatic startup] in the CAN parameters of the master.

>

CAN parameters: No initialization
10041

If this option is activated, the master immediately takes the node into operation without transmitting
configuration SDOs. (Nevertheless, the SDO data is generated and stored in the controller.)

>

CAN parameters: Nodeguarding / heartbeat settings
10042

Depending on the device you can choose:
 • [nodeguarding] and [life time factor] must be set OR
 • [heartbeat] must be set.
If both are set, only heartbeat is executed.

We recommend: It is better to work with the heartbeat function for current devices since then the bus
load is lower.

>

CAN parameters: Emergency telegram
10043

This option is normally selected. The EMCY messages are transferred with the specified identifier.

41

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

CAN parameters: Communication cycle
10044

In special applications a monitoring time for the SYNC messages generated by the master can be set
here.

Please note that this time must be longer than the SYNC time of the master. The optimum value must
be determined experimentally.

In most cases nodeguarding or heartbeat are sufficient for node monitoring.

>

CAN parameters: Info
18062

Display the description in the EDS file for this slave:

► Click on the button [Info]:

Example: Info about slave CR2031

► Close display again with [OK].

42

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Tab [Receive PDO-Mapping] and [Send PDO-Mapping]
1969

With the tabs [Receive PDO-Mapping] and [Send PDO-Mapping] in the configuration dialogue of a
CAN module the module mapping (assignment between local object directory and PDOs from/to the
CANopen slave) described in the EDS file can be changed (if supported by the CAN module).

All [mappable] objects of the EDS file are available on the left and can be added to or removed from
the PDOs (Process Data Objects) on the right.

The [StandardDataTypes] can be added to generate spaces in the PDO.

>

PDO-Mapping: Insert
10046

With the button [Insert] you can generate more PDOs and insert the corresponding objects. The inputs
and outputs are assigned to the IEC addresses via the inserted PDOs.

In the controller configuration the settings made can be seen after closing the dialogue. The individual
objects can be given symbolic names.

>

PDO-Mapping: Properties
10047

The PDO properties defined in the standard can be edited in a dialogue via properties.

COB-ID Every PDO message requires a clear COB ID (communication object identifier). If an option is not
supported by the module or the value must not be changed, the field is grey and cannot be edited.

Inhibit Time The inhibit time (100 µs) is the minimum time between two messages of this PDO so that the
messages which are transferred when the value is changed are not transmitted too often. The unit is
100 µs.

Transmission Type For transmission type you receive a selection of possible transmission modes for this module:

acyclic – synchronous
After a change the PDO is transferred with the next SYNC.

cyclic – synchronous
The PDO is transferred synchronously. [Number of SYNCs] indicates the number of the
synchronisation messages between two transmissions of this PDO.

asynchronous – device profile specific
The PDO is transmitted on event, i.e. when the value is changed. The device profile defines which data
can be transferred in this way.

asynchronous – manufacturer specific
The PDO is transmitted on event, i.e. when the value is changed. The device manufacturer defines
which data is transferred in this way.

(a)synchronous – RTR only
These services are not implemented.

Number of SYNCs
Depending on the transmission type this field can be edited to enter the number of synchronisation
messages (definition in the CAN parameter dialogue of [Com. Cycle Period], [Sync Window Length],
[Sync. COB ID]) after which the PDO is to be transmitted again.

Event-Time
Depending on the transmission type the maximum period in milliseconds [ms] required between two
transmissions of the PDO is indicated in this field.

43

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

CANopen slave: Register [Service Data Objects]
18036

Here all objects of the EDS or DCF file are listed which are within the range from index
0x2000...0x9FFF and defined as writable.

Index, name, current value, type and default are indicated for every object.
Only the value in [Wert] can be changed.

>

SDOs: Change value
18039

The value in [Wert] can be changed:

► double-click on the requested entry.

► Enter the new value.

► Confirm the change with [Eingabe] or reject with [ESC].

During the initialisation of the CAN:

> The values that differ from the default values are transferred to the CAN modules in the form of
SDOs (Service Data Objects).

> Consequently, these values have a direct influence on the object directory of the CANopen slave.

> These values are usually rewritten with each start of the application program – irrespective of
whether they are permanently stored in the CANopen slave.

> If the value was deleted without entering a new value, the default value will be transmitted during
initialisation.

44

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Master at runtime

Reset of all configured slaves on the bus at the system start ... 44
Polling of the slave device type ... 45
Configuration of all correctly detected devices .. 45
Automatic configuration of slaves .. 45
Start of all slaves configured without errors .. 45
Cyclical transmission of the SYNC message .. 45
Node guarding with lifetime monitoring ... 46
Heartbeat from master to the slaves ... 46
Receiving emergency messages .. 46

8569

Here you find information about the functionality of the CANopen master libraries at runtime.

The CANopen master library provides the CODESYS application with implicit services which are
sufficient for most applications. These services are integrated for users in a transparent manner and
are available in the application without additional calls. The following description assumes that the
CANopenMaster library (or the CANopen_NT library) was manually added to the library manager to
use the network diagnostic, status and EMCY functions.

Services of the CANopen master library:

>

Reset of all configured slaves on the bus at the system start
19027

The individual NMT commands are described in the CAN document DSP301.
According to CANopen, NMT stands for Network Managment.

>

Reset slaves one by one
19029

To reset the slaves, the NMT command "Reset Node" is used as standard, explicitly for each slave
separately.

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

with FB CANx_MASTER_STATUS:
 • GLOBAL_START = FALSE
 • RESET_ALL_NODES = FALSE

with FB CANOPEN_NMTSERVICES:
 • NODE = node ID of the slave
 • NMTSERVICE = 3

>

Reset all slaves at once
19031

In order to avoid overload of slaves having less powerful CAN controllers, it is useful to reset all
connected slaves at once using the command "Reset All Nodes".

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

with FB CANx_MASTER_STATUS:
 • GLOBAL_START = TRUE
 • RESET_ALL_NODES = TRUE

with FB CANOPEN_NMTSERVICES:
 • NODE = 0
 • NMTSERVICE = 3

45

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Polling of the slave device type
8021

Polling of the slave device type using SDO (polling for object 0x1000) and comparison with the
configured slave ID:

> The request is repeated after 0.5 s if ...
 • no device type was received
 • AND the slave was not identified as optional in the configuration
 • AND the timeout has not elapsed.
Indication of an error status for the slaves from which a wrong device type was received.

>

Configuration of all correctly detected devices
8022

Every SDO is monitored for a response and repeated if the slave does not respond within the
monitoring time.

>

Automatic configuration of slaves
8023

Automatic configuration of slaves using SDOs while the bus is in operation:
Prerequisite: The slave logged in the master via a bootup message.

>

Start of all slaves configured without errors
19032

Start of all correctly configured slaves after the end of the configuration of the corresponding slave:

>

Start slaves one by one
19034

The NMT command "Start Node" is usually used to start the slaves.

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

with FB CANx_MASTER_STATUS:
 • GLOBAL_START = FALSE
 • START_ALL_NODES = FALSE

with FB CANOPEN_NMTSERVICES:
 • NODE = node ID of the slave
 • NMTSERVICE = 2

>

Start all slaves at once
19036

As is the case for the "reset", this command can be replaced by "Start All Nodes".

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

with FB CANx_MASTER_STATUS:
 • GLOBAL_START = TRUE
 • START_ALL_NODES = TRUE

with FB CANOPEN_NMTSERVICES:
 • NODE = 0
 • NMTSERVICE = 2

>

Cyclical transmission of the SYNC message
8025

This value can only be set during the configuration.

46

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Node guarding with lifetime monitoring
19038

Our recommendation: It is better to work with the heartbeat function for current devices since then the
bus load is lower.

Node guarding with lifetime monitoring for every slave can be set:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

The FB CANx_MASTER_STATUS shows the error status
of max. 8 slaves:

> ERROR_CONTROL = list of missing network nodes
(guard or heartbeat error)

List all nodes in an array for which the master has detected an
error with FB CANOPEN_GETGUARDHBERRLIST:
guarding error, heartbeat error

> N_NODES = number of nodes with heartbeat or guarding
errors

> NODEID = list of node IDs with heartbeat of guarding error

>

Heartbeat from master to the slaves
19039

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

The FB CANx_MASTER_STATUS shows the error status
of max. 8 slaves:

> ERROR_CONTROL = list of missing network nodes
(guard or heartbeat error)

List all nodes in an array for which the master has detected an
error with FB CANOPEN_GETGUARDHBERRLIST:
guarding error, heartbeat error

> N_NODES = number of nodes with heartbeat or guarding
errors

> NODEID = list of node IDs with heartbeat of guarding error

>

Receiving emergency messages
19042

Receiving emergency messages for each slave with storage of the last received emergency
messages:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

Read error messages with FB CANx_MASTER_STATUS:

> EMERGENCY_OBJECT_SLAVES = list of current
EMCY messages

> GET_EMERGENCY = last generated EMCY message

Read error messages with FB
CANOPEN_GETEMCYMESSAGES:

> N_MSGS = number of accumulated messages

> EMCY = list of emergency messages
The most recent entry is in index 0

47

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Start CANopen network
19048

Here you find information about how to start the CANopen network.

After downloading the project to the controller or a reset of the application, the master starts up the
CAN network again. This always happens in the same sequence of actions:

 All slaves are reset unless they are marked as [nicht initialisieren] in the configurator. They are
reset one by one using the NMT command "Reset Node" (0x81) with the node ID of the slave.
→ chapter Start of all slaves configured without errors (→ p. 45)

 All slaves are configured. To do so, the object 0x1000 of the slave is polled.

 If the slave responds within the monitoring time of 0.5 seconds:
> the next corresponding configuration SDO is sent.

 If a slave is configured as [optional] and does not respond within the monitoring time to the
polling for object 0x1000:
> it is marked as 'not available' and
> no further SDOs are sent to it.

 If a slave responds to the polling for object 0x1000 with a different type than the configured
one (in the lower 16 bits):
> it will not be configured and
> it will be marked as 'wrong type'.

 All SDOs are repeated as long as a response of the slave was seen within the monitoring time.
The application program can monitor start-up of the individual slaves.

► If necessary, cancel the initialisation of a slave, if...
 • slave is not present and
 • slave is not configured as [optional]:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

Set the flag SET_TIMEOUT_STATE = TRUE of the FB
CANx_MASTER_STATUS in the array
NODE_STATE_SLAVE

When the timeout has elapsed, the FB stops waiting.

► If necessary, skip the initialisation of a slave that has responded to the polling for object 0x1000
with a different type than the configured one:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

Set the flag SET_NODE_STATE = TRUE of the FB
CANx_MASTER_STATUS in the array
NODE_STATE_SLAVE

with FB CANOPEN_NMTSERVICES:
 • NODE = node ID of the slave
 • NMTSERVICE = 1

> Thereby set the slave to the PRE-OPERATIONAL state.

48

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

 If the slave is later set to the OPERATIONAL state:
> the master sends no PDOs to the slave
> the PDOs sent by the slave are ignored.

 If the master has configured a heartbeat time that is not 0:
> the heartbeat is generated immediately after the master controller is started.

 After all slaves have obtained their configuration SDOs:
> the guarding begins for slaves with configured node guarding.

 If the master was configured to [automatisch starten]:
> the NMT command "Start Remote Node" (0x01) is used
> each slave is started individually by the master.

 If the flag GLOBAL_START was set:
> the NMT command is used with node ID 0
> all slaves are started with a "Start all Nodes".

 At least once all configured TX-PDOs are sent
(for the slaves, these are RX-PDOs).

► It [automatisch starten] is deactivated, start each slave individually:
 • via the flag START_NODE in the NODE_STATE_SLAVE array or
 • → chapter Start of all slaves configured without errors (→ p. 45).

49

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Network states

Boot up of the CANopen master ... 49
Boot up of the CANopen slaves .. 50
Start-up of the network without [Automatic startup] .. 50
The object directory of the CANopen master .. 52

19050

Here you read how to interpret the states of the CANopen network and how to react.

For the start-up of the CANopen network (→ Chapter Start CANopen network (→ p. 47)) and during
operation the individual function blocks of the library pass different states.

 NOTE

In the monitor mode (online mode) of CODESYS the states of the CAN network can be seen in the
global variable list "CANOpen implicit variables". This requires exact knowledge of CANopen and the
structure of the CODESYS CANopen libraries.

To facilitate the access, the following FB is available from the CANopen master library (specific for
device and CAN channel):

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

CANx_MASTER_STATUS CANOPEN_GETSTATE

>

Boot up of the CANopen master
19056

During boot-up of the CAN network, the master passes different states which you can read here:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

FB CANx_MASTER_STATUS:

> NODE_STATE = current status of the CANopen
master

FB CANOPEN_GETSTATE:

> MASTERSTATE = internal state of the master

> CANSTATE = status of the CANopen network

Details→ chapter NMT state for CANopen master (→ p. 72)

Whenever a slave does not respond to an SDO request (upload or download), the request is repeated.
The master leaves state 3, as described above, but not before all SDOs have been transmitted
successfully. So it can be detected whether a slave is missing or whether the master has not correctly
received all SDOs. It is of no importance for the master whether a slave responds with an
acknowledgement or an abort. It is only important for the master whether he received a response at
all.

An exception is a slave marked as [optional]. Optional slaves are asked only once about their object
0x1000. If they do not respond within 0.5 s, the slave is first ignored by the master and the master
goes to state 5 without further reaction of this slave.

50

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Boot up of the CANopen slaves
19057

You can see the status of a slave here (from the master's view):

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

FB CANx_SLAVE_STATUS:

> NODE_STATE = current status of the CANopen slave

FB CANOPEN_GETNMTSTATESLAVE:

> NMTSTATE = network operating status of the node

Details→ chapter NMT state for CANopen slave (→ p. 73)

>

Start-up of the network without [Automatic startup]
8583

Sometimes it is necessary that the application determines the instant to start the CANopen slaves. To
do so, the option [Automatic startup] of the CANopen master must be deactivated in the configuration.
It is then up to the application to start the slaves.

>

Starting the network with GLOBAL_START
19073

In a CAN network with many participants (in most cases more than 8) it often happens that NMT
messages in quick succession are not detected by all (mostly slow) IO nodes (e.g. CompactModules
CR2013). The reason for this is that these nodes must listen to all messages with the ID 0. NMT
messages transmitted at too short intervals overload the receive buffer of such nodes.

A help for this is to reduce the number of NMT messages in quick succession:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

with FB CANx_MASTER_STATUS:

► GLOBAL_START = TRUE

with FB CANOPEN_SETSTATE:

► GlobalStart = TRUE

> The CANopen master library uses the command "Start All Nodes" instead of starting all nodes
individually using the command "Start Node".

> GLOBAL_START is executed only once when the network is initialised.

> If this input is set, the controller also starts nodes with status 98 (see above). However, the PDOs
for these nodes remain deactivated.

>

Starting the network with START_ALL_NODES
19074

If the network is not started automatically with GLOBAL_START, each node can be started one by
one.

If this is not requested, the option is as follows:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

with FB CANx_MASTER_STATUS:
 • GLOBAL_START = FALSE
 • START_ALL_NODES = FALSE

with FB CANOPEN_NMTSERVICES:
 • NODE = node ID of the slave
 • NMTSERVICE = 2

 START_ALL_NODES is typically set by the application program at runtime.

> If this input is set, nodes with status 98 (see above) are started. However, the PDOs for these
nodes remain deactivated.

51

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Initialisation of the network with RESET_ALL_NODES
19075

The same reasons which apply to the command "Start All Nodes" also apply to the NMT command
"Reset All Nodes" (instead of "Reset Nodes" for every individual node).

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

with FB CANx_MASTER_STATUS:
 • GLOBAL_START = TRUE
 • RESET_ALL_NODES = TRUE

with FB CANOPEN_NMTSERVICES:
 • NODE = 0
 • NMTSERVICE = 3

> This resets all nodes once and simultaneously.

>

Access to the status of the CANopen master
19076

You should poll the status of the master so that the application code is not processed before the IO
network is ready. The following code fragment example shows one option:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

Variable declaration

VAR
 FB_MasterStatus := CR0020_MASTER_STATUS;
 :
END_VAR

Variable declaration

VAR
 FB_MasterStatus : CANOPEN_GETSTATE;
 ...
END_VAR

Program code

IF FB_MasterStatus.NODE_STATE = 5 THEN
 <application code>
END_IF

Program code

IF FB_MasterStatus.MASTERSTATE = 5 THEN
 <application code>
END_IF

By setting the flag TIME_OUT_STATE in the array
NODE_STATE_SLAVE of the FB
CANx_MASTER_STATUS the application can react and,
for example, jump the non configurable node.

By setting the value for the input NODE of the FB
CANOPEN_GETSTATE, the application can react and skip, for
example, the node that cannot be configured.

52

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

The object directory of the CANopen master

Access to the object directory (controllers) ... 53
Access to the object directory (others) .. 54

19156

In some cases it is helpful if the CANopen master has its own object directory. This enables, for
example, the exchange of data of the application with other CAN nodes.

The object directory of the master is generated using an EDS file named CRnnnnMasterODEntry.EDS
during compilation and is given default values. This EDS file is stored in the directory
CoDeSys Vn\Library\PLCconf. The content of the EDS file can be viewed via the button [EDS...] in

the configuration window [CAN parameters].

Even if the object directory is not available, the master can be used without restrictions.

53

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Access to the object directory (controllers)
19157

For all controllers (except for CR04nn, CR253n) the following applies:

The object directory is accessed by the application via an array with the following structure:

Structure element Description

.dwIdxSubIdxF Structure of the component 0xiiiissff:
iiii – index (2 bytes, bits 16...31), Idx
ss – sub-index (1 byte, bits 8...15), SubIdx
ff – flags (1 byte, bits 0...7), F

Meaning of the flag bits:
bit 0: write
bit 1: content is a pointer to an address
bit 2: mappable
bit 3: swap
bit 4: signed value
bit 5: floating point
bit 6: contains more sub-indices

.dwContent contains the contents of the entry

.wLen length of the data

.byAttrib initially intended as access authorisation
can be freely used by the application of the master

.byAccess in the past access authorisation
can be freely used by the application of the master

On the platform CODESYS has no editor for this object directory.

The EDS file only determines the objects used to create the object directory. The entries are always
generated with length 4 and the flags (least significant byte of the component of an object directory
entry .dwIdxSubIdxF) are always given the value 1. This means both bytes have the value 0x41.

If an object directory is available in the master, the master can act as SDO server in the network.
Whenever a client accesses an entry of the object directory by writing, this is indicated to the
application via the flag OD_CHANGED in CANx_MASTER_STATUS. After evaluation this flag must
be reset.

The application can use the object directory by directly writing to or reading the entries or by pointing
the entries to IEC variables. This means: when reading/writing to another node these IEC variables
are directly accessed.

If index and sub-index of the object directory are known, an entry can be addressed as follows:

I := GetODMEntryValue(16#iiiiss00, pCanOpenMaster[0].wODMFirstIdx,
pCanOpenMaster[0].wODMFirstIdx + pCanOpenMaster[0].wODMCount;

For "iii" the index must be used and for "ss" the sub-index (as hex values).

54

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

The number of the array entry is available in I. You can now directly access the components of the
entry.
It is sufficient to enter address, length and flags so that this entry can be directly transferred to an IEC
variable:

ODMEntries[I].dwContent := ADR(<variable name>);

ODMEntries[I].wLen := sizeof(<variable name>);

ODMEntries[I].dwIdxSubIdxF := ODMEntries[I].dwIdxSubIdxF OR OD_ENTRYFLG_WRITE OR
OD_ENTRYFLG_ISPOINTER;

It is sufficient to change the content of ".dwContent" to change only the content of the entry.

>

Access to the object directory (others)
19158

For all CR04nn, CR1nnn, CR253n the following applies:

The object directory is accessed by the application via function blocks:
 • CANOPEN_GETODCHANGEDFLAG,
 • CANOPEN_READOBJECTDICT,
 • CANOPEN_WRITEOBJECTDICT.

On the platform CODESYS has no editor for this object directory.

The EDS file only determines the objects used to create the object directory.

If an object directory is available in the master, the master can act as SDO server in the network.
Whenever a client accesses an entry of the object directory by writing, this is indicated to the
application via the flag ODCHANGED in CANOPEN_GETODCHANGEDFLAG. After evaluation this
flag must be reset by the input RESETFLAG=TRUE.

The application can use the object directory by directly writing to or reading the entries.

55

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

3.4.4 CANopen slave

Functionality of the CANopen slave library ... 56
Configure CANopen slave ... 57
Access to the CANopen slave at runtime .. 63

1865

A CODESYS programmable controller can also be a CANopen slave in a CAN network.

56

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Functionality of the CANopen slave library
19161

The CANopen slave library in combination with the CANopen configurator provides the user with the
following options:

 In CODESYS: configuration of the properties for nodeguarding/heartbeat, emergency, node ID
and baud rate at which the device is to operate.

 Together with the parameter manager in CODESYS, a default PDO mapping can be created
which can be changed by the master at runtime. The configuration of the PDO mapping is
changed by the master during the configuration phase. By means of mapping IEC variables of the
application can be mapped to PDOs. This means IEC variables are assigned to the PDOs to be
able to easily evaluate them in the application program.

 The CANopen slave library provides an object directory. The size of this object directory is defined
while compiling CODESYS. This directory contains all objects which describe the CANopen slave
and in addition the objects defined by the parameter manager. In the parameter manager only the
list types parameters and variables can be used for the CANopen slave.

 The CANopen slave manages the access to the object directory, i.e. it acts as SDO server on the
bus.

 The CANopen slave monitors nodeguarding or the heartbeat consumer time (always only of one
producer) and sets corresponding error flags for the application.

 An EDS file can be generated which describes the configured properties of the CANopen slave so
that the device can be integrated and configured as a slave under a CANopen master.

The CANopen slave library explicitly does not provide the following functionalities described in
CANopen (all options of the CANopen protocol which are not indicated here or in the above section
are not implemented either):

 Dynamic SDO and PDO identifiers

 SDO block transfer

 Automatic generation of emergency messages. Emergency messages must always be generated
by the application program. To do so, the CANopen slave library provides these FBs:

 For all controllers (except for CR04nn, CR253n) the following applies:

CANx_SLAVE_EMCY_HANDLER Handles the device-specific error status of the CANopen slave on CAN interface x:
 • error register (index 0x1001) and
 • error field (index 0x1003) of the CANopen object directory
x = 1...n = number of the CAN interface (depending on the device, → data sheet)

CANx_SLAVE_SEND_EMERGENCY Sends application-specific error status of the CANopen slave on CAN interface x
x = 1...n = number of the CAN interface (depending on the device, → data sheet)

 For all CR04nn, CR1nnn, CR253n the following applies:

CANOPEN_GETERRORREGISTER = Get CANopen error register
Reads the error registers 0x1001 and 0x1003 from the controller
The registers can be reset by setting the respective inputs.

CANOPEN_GETEMCYMESSAGES = Get CANopen emergency messages
Lists all emergency messages that have been received by the controller from other nodes in the
network since the last deletion of messages
The list can be reset by setting the according input.

CANOPEN_SENDEMCYMESSAGE = CANopen send emergency message
Sends an EMCY message. The message is assembled from the according parameters and
entered in register 0x1003

 Dynamic changes of the PDO properties are currently only accepted on arrival of a StartNode
NMT message, not with the mechanisms defined in CANopen.

57

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Configure CANopen slave

Tab [Base settings] .. 57
Tab [CAN settings] .. 59
Tab [Default PDO mapping] .. 60
Changing the standard mapping by the master configuration .. 62

19163
1980

Request: using the controller as CANopen slave:

► In the PLC configuration the CANopen slave must be added:
right click on the first line ("CRnnnn Configuration Vnn")
[Append Subelement] > [CANopen Slave...]

> If several CANopen-capable interfaces are available, then the following applies for the assignment
of the CANopen protocol to the CAN interface (depending on the device):
→ chapter 'CAN interfaces and CAN protocols'

> All required libraries are automatically added to the library manager.

>

Tab [Base settings]
1981

>

Base settings: Bus identifier
10049

Parameter is currently not used.

>

Base settings: Name of updatetask
10050

Name of the task where the CANopen slave is called.

>

Base settings: Generate EDS file
10051

If an EDS file is to be generated from the settings to be able to add the CANopen slave to any master
configuration, the option [Generate EDS file] must be activated and the name of a file must be
indicated. As an option a template file can be indicated whose entries are added to the EDS file of the
CANopen slave. In case of overlapping the template definitions are not overwritten.

58

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Example of an object directory
1991

The following entries could for example be in the object directory:

[FileInfo]

FileName=D:\CoDeSys\lib2\plcconf\MyTest.eds
FileVersion=1
FileRevision=1
Description=EDS for CoDeSys-Project: D:\CoDeSys\CANopenTestprojekte\TestHeartbeatODsettings_Device.pro
CreationTime=13:59
CreationDate=09-07-2005
CreatedBy=CoDeSys
ModificationTime=13:59
ModificationDate=09-07-2005
ModifiedBy=CoDeSys

[DeviceInfo]
VendorName=3S Smart Software Solutions GmbH
ProductName=TestHeartbeatODsettings_Device
ProductNumber=0x33535F44
ProductVersion=1
ProductRevision=1
OrderCode=xxxx.yyyy.zzzz

LMT_ManufacturerName=3S GmbH
LMT_ProductName=3S_Dev
BaudRate_10=1
BaudRate_20=1
BaudRate_50=1
BaudRate_100=1
BaudRate_125=1
BaudRate_250=1
BaudRate_500=1
BaudRate_800=1
BaudRate_1000=1
SimpleBootUpMaster=1
SimpleBootUpSlave=0
ExtendedBootUpMaster=1
ExtendedBootUpSlave=0

...

[1018sub0]
ParameterName=Number of entries
ObjectType=0x7
DataType=0x5
AccessType=ro
DefaultValue=2
PDOMapping=0

[1018sub1]
ParameterName=VendorID
ObjectType=0x7
DataType=0x7
AccessType=ro
DefaultValue=0x0
PDOMapping=0

[1018sub2]
ParameterName=Product Code
ObjectType=0x7

DataType=0x7
AccessType=ro
DefaultValue=0x0
PDOMapping=0

For the meaning of the individual objects please see the CANopen specification DS301.

In addition to the prescribed entries, the EDS file contains the definitions for SYNC, guarding,
emergency and heartbeat. If these objects are not used, the values are set to 0 (preset). But as the
objects are present in the object directory of the slave at runtime, they are written to in the EDS file.

The same goes for the entries for the communication and mapping parameters. All 8 possible sub-
indices of the mapping objects 0x16nn or 0x1Ann are present, but possibly not considered in the sub-
index 0.

 Bit mapping is not supported by the library!

59

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Tab [CAN settings]
1982

Here you can set the node ID and the baud rate.

Device type
(this is the default value of the object 0x1000 entered in the EDS) has 0x191 as default value
(standard IO device) and can be freely changed.
The index of the CAN controller results from the position of the CANopen slave in the controller
configuration.

The nodeguarding parameters, the heartbeat parameters and the emergency COB ID can also be
defined in this tab. The CANopen slave can only be configured for the monitoring of a heartbeat.
We recommend: It is better to work with the heartbeat function for current devices since then the bus
load is lower.

 NOTE

When applying guarding or heartbeat AND
when creating an EDS file for integration with a CANopen master:

► enter guard time = 0
enter life time factor = 0
enter heartbeat time = 0

> The values set for the CANopen master are transmitted to the CANopen slave during
configuration. Thus, the CANopen master has safely activated the guarding or heartbeat for this
node.

60

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Tab [Default PDO mapping]
1983

In this tab the assignment between local object directory (OD editor) and PDOs transmitted/received
by the CANopen slave can be defined. Such an assignment is called "mapping".

In the object directory entries used (variable OD) the connection to variables of the application is made
between object index/sub-index. You only have to ensure that the sub-index 0 of an index containing
more than one sub-index contains the information concerning the number of the sub-indices.

61

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Example: list of variables
10052

On the first receive PDO (COB ID = 512 + node ID) of the CANopen slave the data für variable
PLC_PRG.a shall be received.

 Info

[Variables] and [parameters] can be selected as list type.

For the exchange of data (e.g. via PDOs or other entries in the object directory) a variable list is
created.

The parameter list should be used if you do not want to link object directory entries to application
variables. For the parameter list only the index 100616 / SubIdx 0 is currently predefined. In this entry
the value for the "Com. Cycle Period" can be entered by the master. This signals the absence of the
SYNC message.

So you have to create a variable list in the object directory (parameter manager) and link an index/sub-
index to the variable PLC_PRG.a.

► To do so, add a line to the variable list (a click on the right mouse button opens the context menu)
and enter a variable name (any name) as well as the index and sub-index.

► The only allowed access right for a receive PDO is [write only].

► Enter "PLC_PRG.a" in the column [variable] or press [F2] and select the variable.

 NOTE

Data to be read by the CANopen master (e.g. inputs, system variables) must have the access right
[read only].

Data to be written by the CANopen master (e.g. outputs in the slave) must have the access right
[write only].

SDO parameters to be written and at the same time to be read from and written to the slave
application by the CANopen master must have the access right [read-write].

62

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

To be able to open the parameter manager the parameter manager must be activated in the target
settings under [Network functionality]. The areas for index/sub-index already contain sensible values
and should not be changed.

In the default PDO mapping of the CANopen slave the index/sub-index entry is then assigned to a
receive PDO as mapping entry. The PDO properties can be defined via the dialogue known from
chapter Add and configure CANopen slaves (→ p. 39).

Only objects from the parameter manager with the attributes [read only] or [write only] are marked in
the possibly generated EDS file as mappable (= can be assigned) and occur in the list of the
mappable objects. All other objects are not marked as mappable in the EDS file.

>

Changing the standard mapping by the master configuration
1984

You can change the default PDO mapping (in the CANopen slave configuration) within certain limits by
the master.

The following applies:
The CANopen slave can only recreate entries in the object directory which are already available in the
standard mapping (default PDO mapping in the CANopen slave configuration).
For a PDO, for example, which contains a mapped object in the default PDO mapping no second
object can be mapped in the master configuration.

So the mapping changed by the master configuration can at most contain the PDOs available in the
standard mapping. Within these PDOs there are 8 mapping entries (sub-indices).

Possible errors which may occur are not displayed, i.e. the supernumerary PDO definitions /
supernumerary mapping entries are processed as if not present.

In the master the PDOs must always be created as follows:
 • starting from 0x1400 (receive PDO communication parameter) or
 • starting from 0x1800 (transmit PDO communication parameter)
 • and follow each other without interruption.

63

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Access to the CANopen slave at runtime
1985

>

Setting the node number of a CANopen slave
19165

The node number can be set at the CANopen slave during the runtime of the application program:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

use the FB CANx_SLAVE_NODEID from the CANopen
slave library

the FB CANOPEN_SETSTATE from the library
ifm_CANopen_NT_Vxxyyzz.LIB panels

>

Setting the baud rate of a CANopen slave
19166

The baud rate can be set at the CANopen slave during the runtime of the application program:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

use one of the following FBs from the device
ifm_CRnnnn_Vxxyyzz.LIB library:

 • CAN1_BAUDRATE or
 • CAN1_EXT or
 • CANx.

use the FB CANOPEN_ENABLE from the
ifm_CANopen_NT_Vxxyyzz.LIB library

>

Access to the OD entries by the application program
19167

As standard, there are entries in the object directory which are mapped to variables (parameter
manager).

However, there are also automatically generated entries of the CANopen slave which cannot be
mapped to the contents of a variable via the parameter manager. These entries are available here:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

use the FB CANx_SLAVE_STATUS from the CANopen
slave library

 • CANOPEN_READOBJECTDICT
 • CANOPEN_WRITEOBJECTDICT
from the library ifm_CANopen_NT_Vxxyyzz.LIB

>

Change the PDO properties at runtime
1988

If the properties of a PDO are to be changed at runtime, this is done by another node via SDO write
access as described by CANopen.

As an alternative, it is possible to directly write a new property, e.g. the "event time" of a send PDO
and then transmit a command "StartNode-NMT" to the node although it has already been started. As a
result of this the device reinterprets the values in the object directory.

64

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Send emergency messages via the application program
19168

Send an emergency message from the application program:

 For all controllers (except for CR04nn, CR253n) the following applies:

CANx_SLAVE_EMCY_HANDLER Handles the device-specific error status of the CANopen slave on CAN interface x:
 • error register (index 0x1001) and
 • error field (index 0x1003) of the CANopen object directory
x = 1...n = number of the CAN interface (depending on the device, → data sheet)

CANx_SLAVE_SEND_EMERGENCY Sends application-specific error status of the CANopen slave on CAN interface x
x = 1...n = number of the CAN interface (depending on the device, → data sheet)

 For all CR04nn, CR1nnn, CR253n the following applies:

CANOPEN_GETERRORREGISTER = Get CANopen error register
Reads the error registers 0x1001 and 0x1003 from the controller
The registers can be reset by setting the respective inputs.

CANOPEN_GETEMCYMESSAGES = Get CANopen emergency messages
Lists all emergency messages that have been received by the controller from other nodes in the
network since the last deletion of messages
The list can be reset by setting the according input.

CANOPEN_SENDEMCYMESSAGE = CANopen send emergency message
Sends an EMCY message. The message is assembled from the according parameters and
entered in register 0x1003

65

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

3.4.5 CANopen tables

Structure of CANopen messages .. 65
Boot-up message .. 70
Network management (NMT) .. 71

9941

The following tables will inform you about important values and settings of the CANopen interfaces.

>

Structure of CANopen messages

Structure of the COB ID .. 66
Function code / Predefined Connectionset ... 67
SDO command bytes .. 68
SDO abort code ... 69

9971

A CANopen message consists of the COB ID and up to 8-byte data:

COB ID DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

X

Details are given in the following chapters.

 Please note the reversed byte order! (Little Endian or Intel format)

Examples:

Value [hex] Data type Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

12 BYTE 1 2 – – – – – – – – – – – – – –

1234 WORD 3 4 1 2 – – – – – – – – – – – –

12345678 DWORD 7 8 5 6 3 4 1 2 – – – – – – – –

66

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Structure of the COB ID
9972

The first part of a message is the COB ID. Structure of the 11-bit COB ID:

Nibble 0 Nibble 1 Nibble 2

11 10 9 8 7 6 5 4 3 2 1 0

-- 3 2 1 0 6 5 4 3 2 1 0

-- function code node ID

The COB ID consists of the Function code / Predefined Connectionset (→ p. 67) and the node ID.

Example:
Communication object = TPDO1 (TX)
Node number of the device = 0x020 = 32

Calculation:
Function code for the communication object TPDO1 = 0x03
Significance of the function code in the 11-bit COB ID = 0x03 • 0x80 = 0x180

Add the node number (0x020) the COB ID is: 0x1A0

1 A 0

3 2 1 0 3 2 1 0 3 2 1 0

0 0 0 1 1 0 1 0 0 0 0 0

-- 0x03 = 3 0x020 = 32

67

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Function code / Predefined Connectionset
9966

In the "CANopen Predefined Connectionset" some function codes are predefined.

When using the predefined connectionset you can operate a CANopen network of up to
127 participants without the risk of a double assignment of COB IDs.

Broadcast or multicast messages:

Communication object Function code [hex] COB ID [hex] Related parameter objects [hex]

NMT 0 000

SYNC 1 080 1005, 1006, 1007, 1028

TIME 2 100 1012, 1013

Point-to-point messages:

Communication object Function code [hex] COB ID [hex] Related parameter objects [hex]

EMERGENCY 1 080 + node ID 1014, 1015

TPDO1 (TX) 3 180 + node ID 1800

RPDO1 (RX) 4 20016 + node ID 1400

TPDO2 (TX) 5 280 + node ID 1801

RPDO2 (RX) 6 30016 + node ID 1401

TPDO3 (TX) 7 380 + node ID 1802

RPDO3 (RX) 8 400 + node ID 1402

TPDO4 (TX) 9 480 + node ID 1803

RPDO4 (RX) A 500 + node ID 1403

Default SSDO (TX) B 58016 + node ID 1200

Default CSDO (RX) C 60016 + node ID 1280

NMT Error Control E 70016 + node ID 1016, 1017

TX = slave sends to master
RX = slave receives from master

SSDO = server SDO
CSDO = client SDO

68

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

SDO command bytes
9968

Structure of an SDO message:

COB-ID DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

XXX 8 Command Index Sub index
Data

depending on the data to be transmitted

 Please note the reversed byte order! (Little Endian or Intel format)

An SDO COB ID consists of:

CANopen

Node ID COB ID SDO

1…127
TX: 0x580 + node ID

RX: 0x600 + node ID

TX = slave sends to master
RX = slave receives from master

 DLC = Data Length Code = in CANopen the number of the data bytes in a message.
For →SDO: DLC = 8

SDO command bytes:

Command
hex | dec

Message Data length Description

21 33 request more than 4 bytes send data to slave

22 34 request 1…4 bytes send data to slave

23 35 request 4 bytes send data to slave

27 39 request 3 bytes send data to slave

2B 43 request 2 bytes send data to slave

2F 47 request 1 byte send data to slave

40 64 request --- request data from slave

42 66 response 1…4 bytes send data from slave to master

43 67 response 4 bytes send data from slave to master

47 71 response 3 bytes send data from slave to master

4B 75 response 2 bytes send data from slave to master

4F 79 response 1 byte send data from slave to master

60 96 response ---
data transfer ok:
send confirmation of receipt from slave to master

80 128 response 4 bytes

data transfer failed
send abort message from slave to master

 chapter SDO abort code (→ p. 69)

69

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

SDO abort code
9970

 The SDO abort code is NOT part of the emergency message!

Abord code
[hex]

Description

0503 0000 toggle bit not alternated

0504 0000 SDO protocol timed out

0504 0001 client/server command specifier not valid or unknown

0504 0002 invalid block size (block mode only)

0504 0003 invalid sequence number (block mode only)

0504 0004 CRC error (block mode only)

0504 0005 out of memory

0601 0000 unsupported access to an object

0601 0001 attempt to read a write only object

0601 0002 attempt to write a read only object

0602 0000 object does not exist in the object dictionary

0604 0041 object cannot be mapped to the PDO

0604 0042 the number and length of the objects to be mapped would exceed PDO length

0604 0043 general parameter incompatibility reason

0604 0047 general internal incompatibility in the device

0606 0000 access failed due to an hardware error

0607 0010 data type does not match, length of service parameter does not match

0607 0012 data type does not match, length of service parameter too high

0607 0013 data type does not match, length of service parameter too low

0609 0011 sub-index does not exist

0609 0030 value range of parameter exceeded (only for write access)

0609 0031 value of parameter written too high

0609 0032 value of parameter written too low

0609 0036 maximum value is less than minimum value

0800 0000 general error

0800 0020 data cannot be transferred or stored to the application

0800 0021 data cannot be transferred or stored to the application because of local control

0800 0022 data cannot be transferred or stored to the application because of the present device state

0800 0023
object dictionary dynamic generation fails or no object dictionary is present
(e.g. object dictionary is generated from file and generation fails because of an file error)

70

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Boot-up message
9961

After booting, the CAN participate sends the boot-up message once:

 COB ID DLC Byte 1

hex 0x700 + node ID 0x1 0x00

dec 1 792 + node ID 1 0

The participant is now capable of communicating in the CAN network.

DLC = Data Length Code = in CANopen the number of the data bytes in a message.
For →SDO: DLC = 8

Example:

The node ID of the participant is 0x7D = 125.
The COP ID of the boot-up message is: 0x77D = 1 917

Deviation:

 There are devices that cannot send a [0x700 + Node ID] (these are devices that were built before
version 4 of the CANopen specification).
These devices send the following boot-up message and without status instead:

 COB ID DLC

hex 0x080 + node ID 0x0

dec 128 + node ID 0

71

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

Network management (NMT)

Network management commands ... 71
NMT state .. 72

9974

>

Network management commands
9962

With the following network management commands the user can influence the operating mode of
individual or all CAN participants. Structure:

COB ID DLC Byte 1 Byte 2

0x000 X Command Node ID

Node ID = 00 command valid for all nodes in the network at the same time

COB ID NMT command Description

0x000 0x01 = 01 Node ID start_remode_node Set the node to the "operational" state

0x000 0x02 = 02 Node ID stop_remode_node Set the node to the "STOPPED" state

0x000 0x80 = 128 Node ID enter_pre-operational Set the node to the "PRE-OPERATIONAL" state

0x000 0x81 = 129 Node ID reset_node Node reset

0x000 0x82 = 130 Node ID reset_communication Reset the CAN communication of the node

72

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

NMT state
9963

The status byte informs about the state of the CAN participant.

Graphics: state transitions under CANopen

Permitted transitions:

(1) State is automatically reached at power on

(2) Internal initialisation completed – node
automatically goes to PRE-OPERATIONAL

(3) NMT service "Start Remote Node"

(4) + (7) NMT service "Enter PRE-
OPERATIONAL"

(5) + (8) NMT service "Stop Remote Node"

(6) NMT service "Start Remote Node"

(9)...(11) NMT service "Reset Node"

(12)...(14) NMT service "Reset Communication"

>

NMT state for CANopen master
9964

 These statuses show the internal status of the CANopen master stack.
 They are not defined by the CANopen specification.

State
hex | dec

Description

00 0 not defined

01 1
Master waits for a boot-up message of the node.
OR: Master waits for the expiry of the given guard time.

02 2
 • Master waits for 300 ms.
 • Master requests the object 0x1000.
 • Then the state is set to 3.

03 3
The master configures its slaves. To do so, all SDOs generated by the configurator are transmitted to the
slaves one after the other. Then the master changes to status 5.

05 5
After transmission of all SDOs to the slaves the master goes to state 5 and remains in this state. State 5 is the
normal operating state for the master.

To read the node state out of the FB:

Used function block Node state is found here

CANx_MASTER_STATUS output NODE_STATE

CANOPEN_GETSTATE output MASTERSTATE

73

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

NMT state for CANopen slave
9965

State
hex | dec

Description

FF -1 The slave is reset by the NMT message "Reset Node" and automatically goes to state 1.

00 0 not defined

01 1
state = waiting for BOOTUP
After max. 2 s or immediately on reception of its boot up message the slave goes to state 2.

02 2
state = BOOTUP
After a delay of 0.5 s the slave automatically goes to state 3.

03 3

state = PREPARED
The slave is configured in state 3. The slave remains in state 3 as long as it has received all SDOs generated
by the configurator. It is not important whether during the slave configuration the response to SDO transfers is
abort (error) or whether the response to all SDO transfers is no error. Only the response as such received by
the slave is important – not its contents.

If in the configurator the option "Reset node" has been activated, a new reset of the node is carried out after
transmitting the object 0x1011 sub-index 1 which then contains the value "load". The slave is then polled
again with the upload of the object 0x1000.

Slaves with a problem during the configuration phase remain in state 3 or directly go to an error state
(state > 5) after the configuration phase.

04 4

state = PRE-OPERATIONAL
A node always goes to state 4 except for the following cases:

 it is an "optional" slave and it was detected as non available on the bus (polling for object 0x1000) OR:

 the slave is present but reacted to the polling for object 0x1000 with a type in the lower 16 bits other than
expected by the configurator.

05 5

state = OPERATIONAL
State 5 is the normal operating state of the slave: [Normal Operation].

If the master was configured to [Automatic startup], the slave starts in state 4 (i.e. a "start node" NMT
message is generated) and the slave goes automatically to state 5.

If the flag GLOBAL_START was set, the master waits until all slaves are in state 4. All slaves are then started
with the NMT command [Start All Nodes].

61 97

A node goes to state 97 if it is optional (optional device in the CAN configuration) and has not reacted to the
SDO polling for object 0x1000.

If the slave is connected to the network and detected at a later point in time, it is automatically started. To do
so, you must have selected the option [Automatic startup] in the CAN parameters of the master.

62 98 A node goes to state 98 if the device type (object 0x1000) does not correspond to the configured type.

63 99

In case of a nodeguarding timeout the slave is set to state 99.

As soon as the slave reacts again to nodeguard requests and the option [Automatic startup] is activated, it is
automatically started by the master. Depending on the status contained in the response to the nodeguard
requests, the node is newly configured or only started.

To start the slave manually it is sufficient to use the method [NodeStart].

Nodeguard messages are transmitted to the slave ...
 • if the slave is in state 4 or higher AND
 • if nodeguarding was configured.

To read the node state out of the FB:

Used function block Node state is found here

CANx_MASTER_STATUS
CANx_SLAVE_STATUS

output NODE_STATE

CANOPEN_GETSTATE output NODESTATE

74

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Technical details on CANopen

>

CANopen status of the node
1973

Node status according to CANopen (with these values the status is also coded by the node in the
corresponding messages).

Status
hex | dec

CANopen status: Description

00 0 BOOTUP BOOTUP message of the node

04 4 STOPPED
The node is in the status STOPPED. There is no exchange of data and the node
cannot be configured, either.

05 5 OPERATIONAL
The node is in the status OPERATIONAL and participates in the normal exchange
of data.

7F 127 PRE-OPERATIONAL
The node is in the status PRE-OPERATIONAL and can be configured by the
master.

If nodeguarding active: the most significant status bit toggles between the messages.

Read the node status from the function block:

Function block used Node status is found here

CANx_MASTER_STATUS Structure element LAST_STATE from the array NODE_STATE_SLAVE

CANx_SLAVE_STATUS Output NODE_STATE

CANOPEN_GETSTATE Output LASTNODESTATE

75

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CANopen network variables

>

3.5 CANopen network variables

General information ... 75
Configuration of CANopen network variables ... 76
Particularities for network variables ... 80

1868

>

3.5.1 General information
2076

CAN network variables are one option to exchange data between two or several controllers. For
users the mechanism should be easy to use. At present network variables are implemented on the
basis of CAN and Ethernet (UDP/IP).

The variable values are automatically exchanged on the basis of broadcast messages.
 • in UDP as broadcast messages,
 • in CAN as messages comparable to the PDOs of CANopen.

According to the protocol, these services are unconfirmed data transmission:
it is not checked whether the receiver receives the message.

Exchange of network variables corresponds to a "1 to n connection" (1 transmitter to n receivers).

 The CANopen object directory is another option to exchange variables. This is a 1 to 1 connection
using a confirmed protocol. The user can check whether the message arrived at the receiver. The
exchange is not carried out automatically but via the call of FBs from the application program.

 chapter The object directory of the CANopen master (→ p. 52)

76

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CANopen network variables

>

3.5.2 Configuration of CANopen network variables

Settings in the target settings .. 76
Settings in the global variable lists .. 77

1869

To use the network variables with CODESYS you need the following libraries:
 • 3s_CanDrv.lib

 • 3S_CANopenManager.lib

 • 3S_CANopenNetVar.lib

 • SysLibCallback.lib.

CODESYS automatically generates the required initialisation code and the call of the network blocks
at the start and end of the cycle.

>

Settings in the target settings
1994

Example: target settings for ClassicController CR0020

► Select the dialogue box [Target settings].

► Select the tab [Network functionality].

► Activate the check box [Support network variables].

► Enter the name of the requested network, here CAN, in [Names of supported network interfaces].

► To use network variables you must also add a CANopen master or CANopen slave (device) to the
controller configuration.

► Please note the particularities when using network variables for the corresponding device types.

 Chapter Particularities for network variables (→ p. 80)

77

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CANopen network variables

>

Settings in the global variable lists
1995

► Create a new global variable list. In this list the variables to be exchanged with other controllers
are defined.

► Open the dialogue with the menu point [Object Properties].

> The window [Properties] appears:

If you want to define the network properties:

► Click the button [Add network].
If you have configured several network connections, you can also configure here several
connections per variable list.

> The window [Properties] extends as follows:

Meaning of the options:

78

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CANopen network variables

>

Global variable list: Network type
10055

As network type you can enter one of the network names indicated in the target settings.
If you click on the button [Settings] next to it, you can select the CAN interface:

 1. CAN interface: value = 0
 2. CAN interface: value = 1
 etc.

>

Global variable list: Pack variables
10056

If this option is activated with [v], the variables are combined, if possible, in one transmisson unit. For
CAN the size of a transmission unit is 8 bytes.

If it is not possible to include all variables of the list in one transmission unit, several transmission units
are formed for this list.

If the option is not activated, every variable has its own transmission unit.

If [Transmit on change] is configured, it is checked separately for every transmission unit whether it
has been changed and must be transmitted.

>

Global variable list: List identifier (COB-ID)
10057

The basic identifier is used as a unique identification to exchange variable lists of different projects.
Variable lists with identical basic identifier are exchanged.

► Note that the definitions of the variable lists with the same basic identifier match in the different
projects.

 NOTE

In CAN networks the COB ID is directly used as identifier of the CAN messages. It is not checked
whether the identifier is also used in the remaining CAN configuration.

To ensure a correct exchange of data between two controllers the global variable lists in the two
projects must match. To ensure this you can use the feature [Link to file]. A project can export the
variable list file before compilation, the other projects should import this file before compilation.

In addition to simple data types a variable list can also contain structures and arrays. The elements
of these combined data types are transmitted separately.

► Strings must not be transmitted via network variables!
Otherwise a runtime error will occur and the watchdog will be activated.

If a variable list is larger than a PDO of the corresponding network, the data is split up to several
PDOs. Therefore it cannot be ensured that all data of the variable list is received in one cycle. Parts
of the variable list can be received in different cycles. This is also possible for variables with structure
and array types.

79

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CANopen network variables

>

Global variable list: Transmit checksum
10058

This option is not supported.

>

Global variable list: Acknowledgement
10059

This option is not supported.

>

Global variable list: Read
10060

The variable values of one (or several) controllers are read.

>

Global variable list: Write
10061

The variables of this list are transmitted to other controllers.

 NOTE

You should only select one of these options for every variable list, i.e. either only read or only write.

If you want to read or write several variables of a project, please use several variable lists (one for
reading, one for writing).

To get the same data structure for the communication between two participants you should copy the
variable list from one controller to the other.

In a network the same variable list should only be exchanged between two participants.

>

Global variable list: Cyclic transmission
10062

Only valid if [write] is activated. The values are transmitted in the specified [interval] irrespective of
whether they have changed.

>

Global variable list: Transmit on change
10063

The variable values are only transmitted if one of the values has been changed. With [Minimum gap]
(value > 0) a minimum time between the message packages can be defined.

>

Global variable list: Transmit on event
13327

If this option is selected, the CAN message is only transmitted if the indicated binary [variable] is set to
TRUE. This variable cannot be selected from the list of the defined variables via the input help.

80

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CANopen network variables

>

3.5.3 Particularities for network variables
11811

Network variables are supported on the following interface(s):
 • CAN 1 (value = 0)
 • CAN 2 (value = 1)
 • CAN 3 (value = 2)
 • CAN 4 (value = 3)

11818

 NOTE

► Enter the identifier of the network variables and of the receive PDOs as decimal values!

81

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description Summary CAN / CANopen / network variables

>

3.6 Summary CAN / CANopen / network variables
7946

 The COB ID of the network variables must differ from the CANopen slave ID in the controller
configuration and from the IDs of the transmit and receive blocks!

 If more than 8 bytes of network variables are put into one COB ID, CODESYS automatically
expands the data packet to several successive COB IDs. This can lead to conflicts with manually
defined COB IDs!

 Network variables cannot transport any string variables.

 Network variables can be transported...
 • if a variable becomes TRUE (Event),
 • in case of data changes in the network variable or
 • cyclically when the timer has elapsed

 The interval time is the period between transmissions if cyclical transmission has been selected.
The minimum distance is the waiting time between two transmissions, if the variable changes too
often.

 To reduce the bus load, split the messages via network variables or CANx_TRANSMIT to several
plc cycles using several events.

 In the controller configuration the values for [Com Cycle Period] and [Sync. Window Length]
should be identical.

 If [Com Cycle Period] is selected for a slave, the slave searches for a Sync object of the master
during exactly this period. This is why the value for [Com Cycle Period] must be higher than the
[Master Synch Time].

 We recommend to select "optional startup" for slaves and "automatic startup" for the network. This
reduces unnecessary bus load and allows a briefly lost slave to integrate into the network again.

 We recommend to set analogue inputs to "synchronous transmission" to avoid bus overload.

 Binary inputs, especially the irregularly switching ones, should best be set to "asynchronous
transmission" using an event timer.

 To be considered during the monitoring of the slave status:
 • after the start of the slaves it takes a while until the slaves are operational.
 • when the system is switched off, slaves can indicate an incorrect status change due to early
voltage loss.

82

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN for the drive engineering

>

3.7 CAN for the drive engineering

Identifier acc. to SAE J1939 .. 83
Example: Detailed message documentation ... 84
Example: Short message documentation ... 85

7678

With the standard J1939 the SAE offers to the user a CAN bus protocol for the drive engineering. The
CAN messages are transferred with a 29-bit identifier. Due to the longer identifier numerous messages
can be directly assigned to the identifier.

For writing the protocol this advantage was used and certain messages were combined in ID groups.
The ID assignment is specified in the standards SAE J1939 and ISO 11992. The protocol of
ISO 11992 is based on the protocol of SAE J1939.

Standard Application area

SAE J1939 Engine management

ISO 11992 Truck & Trailer Interface

As for the software protocol the two standards do not differ because ISO 11992 is based on
SAE J1939. Concerning the hardware interface, however, there is one difference: higher voltage level
for ISO 11992.

 To use the functions to SAE J1939 / ISO 11992 the protocol description of the aggregate
manufacturer (e.g. for engines, gears) is definitely needed. For the messages implemented in the
aggregate control device this description must be used because not every manufacturer implements
all messages or implementation is not useful for all aggregates.

The following information and tools should be available to develop programs for functions to
SAE J1939:
 • list of the data to be used by the aggregates
 • overview list of the aggregate manufacturer with all relevant data
 • CAN monitor with 29-bit support
 • if required, the standard SAE J1939

83

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN for the drive engineering

>

3.7.1 Identifier acc. to SAE J1939
7675

For the data exchange with SAE J1939 the 29 bit identifiers are determinant. This identifier is pictured
schematically as follows:

A
S
O
F

Identifier 11 bits
S
R
R

I
D
E

Identifier 18 bits
R
T
R

B

S
O
F

Priority R
D
P

PDU format (PF)
6+2 bits

S
R
R

I
D
E

still PF
PDU specific (PS)

 destination address
group extern or proprietary

Source address
R
T
R

1 3 2 1 1 1 8 7 6 5 4 3 1 1 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 1

C 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

D -
2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

- -
1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0 -

Legend:

A = CAN extended message format
B = J1939 message format
C = J1939 message bit position
D = CAN 29 bit ID position

SOF = Start of frame
SRR = Substitute remote request
IDE = Identifier extension flag
RTR = Remote transmission request
PDU = Protocol Data Unit
PGN = Parameter Group Number = PDU format (PF) + PDU source (PS)

(COB-ID (→ p. 27))

To do so, the 3 essentially communication methods with SAE J1939 are to be respected:
 • destination specific communication with PDU1 (PDU format 0...239)
 • broadcast communication with PDU2 (PDU format 240...255)
 • proprietary communication with PDU1 or PDU2

84

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN for the drive engineering

>

3.7.2 Example: Detailed message documentation
7679

ETC1: Electronic Transmission Controller #1 (3.3.5)
Value = 0x0CF00203
The following details result:

Designation Parameter Value in the example above

transmission repetition rate RPT 10 ms

data length LEN 8 bytes

PDU format PF 240

PDU specific PS 2

default priority PRIO 3

data page PG 0

source address
destination address

SA
DA

3

parameter group number PGN 0x00F002

identifier ID 0x0CF00203

data field
SRC
DST

Array address
(Meaning of the data bytes 1...8 à manufacturer's documentation)

As in the example of the manufacturer all relevant data has already been prepared, it can be directly
transferred to the function blocks.

Depending on the required function the corresponding values are set. For the fields SA / DA or SRC /
DST the meaning (but not the value) changes according to the receive or transmit function.

The individual data bytes must be read from the array and processed according to their meaning.

85

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN for the drive engineering

>

3.7.3 Example: Short message documentation
7680

But even if the aggregate manufacturer only provides a short documentation, the FB parameters can
be derived from the identifier. In addition to the ID, the "transmission repetition rate" and the meaning
of the data fields are also always needed.

If the protocol messages are not manufacturer-specific, the standard SAE J1939 or ISO 11992 can
also serve as information source.

Structure of the identifier 0x0CF00203:

DATA PRIO, reserv., PG PF PS SA / DA

hex 0C F0 02 03

dec → following table 240 2 3

As these values are hexadecimal numbers of which individual bits are sometimes needed, the
numbers must be further broken down:

DATA PRIO, reserv., PG

hex 0C

bin 0000 1100

That is separated into:

DATA not relevant PRIO reserved PG

bin 000 011 0 0

dec --- 3 0 0

Other typical combinations for "PRIO, reserv., PG"

0x18:

DATA PRIO, reserv., PG

hex 18

bin 0001 1000

That is separated into:

DATA not relevant PRIO reserved PG

bin 000 110 0 0

dec --- 6 0 0

0x1C:

DATA PRIO, reserv., PG

hex 1c

bin 0001 1100

That is separated into:

DATA not relevant PRIO reserved PG

bin 000 111 0 0

dec --- 7 0 0

86

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

3.8 CAN / CANopen: errors and error handling

CAN errors ... 87
CANopen errors ... 89

1171

The error mechanisms described are automatically processed by the CAN controller integrated in the
controller. This cannot be influenced by the user. (Depending on the application) the programmer
should react to signalled errors in the application software.

Goal of the CAN error mechanisms:

 Ensuring uniform data objects in the complete CAN network

 Permanent functionality of the network even in case of a faulty CAN participant

 Differentiation between temporary and permanent disturbance of a CAN participant

 Localisation and self-deactivation of a faulty participant in 2 steps:
 • error passive
 • disconnection from the bus (bus off)
This gives a temporarily disturbed participant a "rest".

To give the interested user an overview of the behaviour of the CAN controller in case of an error,
error handling is easily described below. After error detection the information is automatically prepared
and made available to the programmer as CAN error bits in the application software.

87

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

3.8.1 CAN errors
8589

>

Error message
1172

If a bus participant detects an error condition, it immediately transmits an error message. The
transmission is then aborted or the correct messages already received by other participants are
rejected. This ensures that correct and uniform data is available to all participants. Since the error
message is directly transmitted the sender can immediately start to repeat the disturbed message as
opposed to other fieldbus systems (they wait until a defined acknowledgement time has elapsed). This
is one of the most important features of CAN.

One of the basic problems of serial data transmission is that a permanently disturbed or faulty bus
participant can block the complete system. Error handling for CAN would increase such a risk. To
exclude this, a mechanism is required which detects the fault of a participant and disconnects this
participant from the bus, if necessary.

>

Error counter
1173

A transmit and receive error counter are integrated in the CAN controller. They are counted up
(incremented) for every faulty transmit or receive operation. If a transmission was correct, these
counters are counted down (decremented).

However, the error counters are more incremented in case of an error than decremented in case of
success. Over a defined period this can lead to a considerable increase of the counts even if the
number of the undisturbed messages is greater than the number of the disturbed messages. Longer
undisturbed periods slowly reduce the counts. So the counts indicate the relative frequency of
disturbed messages.

If the participant itself is the first to detect errors (= self-inflicted errors), the error is more severely
"punished" for this participant than for other bus participants. To do so, the counter is incremented by
a higher amount.

If the count of a participant exceeds a defined value, it can be assumed that this participant is faulty.
To prevent this participant from disturbing bus communication by active error messages (error active),
it is switched to "error passive".

Figure: mechanism of the error counter

error active

 Participant, error active (→ p. 88)

error passive

 participant error passive (→ p. 88)

bus off

 participant bus off (→ p. 88)

CAN restart

 participant, bus off

88

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

Participant, error active
1174

An error active participant participates in the bus communication without restriction and is allowed to
signal detected errors by transmitting the active error message. As already described the transmitted
message is destroyed.

>

participant error passive
19173

An error passive participant can also still communicate without restriction. However, it is only allowed
to identify a detected error by a passive error flag, which does not interfere with the bus
communication. An error passive participant becomes error active again if it is below a defined count
value.

About the reaction in the application program:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

In case of an error counter value > 96:
System variable CANx_WARNING = TRUE.

In case the warning threshold for the TX error counter is
exceeded:
in the FB CAN_STATUS, the output WARNING_TX becomes =
TRUE

In case the warning threshold for the RX error counter is
exceeded:
in the FB CAN_STATUS, the output WARNING_RX becomes =
TRUE

In this state, the participant is error passive.

>

participant bus off
19174

If the error count value continues to be incremented, the participant is disconnected from the bus (bus
off) after exceeding a maximum count value.

About the reaction in the application program:

For all controllers (except for CR04nn, CR253n) the following
applies:

For all CR04nn, CR1nnn, CR253n the following applies:

The system variable CANx_BUSOFF = TRUE

In case the upper threshold for the TX error counter is
exceeded:
in the FB CAN_STATUS, the output BUSOFF becomes = TRUE

In case the upper threshold for the RX error counter is
exceeded:
in the FB CAN_STATUS, the output BUSOFF becomes = TRUE

> The error CANx_BUSOFF is automatically handled
and reset by the runtime system.

If a precise error treatment and evaluation is to take place
via the application program:

► Use the FB CANx_ERRORHANDLER!

> The error BUSOFF is treated automatically by the runtime
system (recovery).
Attempted reboot of the corresponding CAN interface up to
4 times every second.

> If the bus-off is not repaired after the 4th attempt, the
device cuts itself off from the interface and no longer
participates in the bus traffic.

► Always reset the bus error indication in the application program:

► Explicitly reset the error CANx_BUSOFF in the
application program!

► Set the input CLEAR = TRUE in the FB CAN_STATUS.

> The error indication is reset.

If these errors are no longer initially set in the next cycle:

> the bus-off is repaired

> the device is ERROR ACTIVE again, i.e. it participates as
usual in the bus communication.

89

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

3.8.2 CANopen errors

Structure of an EMCY message .. 89
Manufacturer specific information ... 94

11670

>

Structure of an EMCY message

A distinction is made between the following errors: .. 90
Emergency messages ... 90
Identifier ... 90
EMCY error code ... 90
Overview CANopen error codes .. 91
Object 0x1001 (error register) ... 92
Object 0x1003 (error field) ... 92
Signalling of device errors ... 93

19177

Under CANopen error states are indicated via a simple standardised mechanism. For a CANopen
device every occurrence of an error is indicated via a special message which details the error.

If an error or its cause disappears after a certain time, this event is also indicated via the EMCY
message. The errors occurred last are stored in the object directory (object 0x1003) and can be read
via an SDO access (→ CANx_SDO_READ). In addition, the current error situation is reflected in the error
register (object 0x1001).

Read the errors via SDO access:

 For all controllers (except for CR04nn, CR253n) the following applies:

CANx_SDO_READ CAN interface x: Reads the SDO with the indicated indices from the node
x = 1...n = number of the CAN interface (depending on the device, → data sheet)

 For all CR04nn, CR1nnn, CR253n the following applies:

CANOPEN_SDOREAD = CANopen read SDO
Reads an "Expedited SDO" = Expedited Service Data Object

CANOPEN_SDOREADBLOCK = CANopen read SDO block
Reads the indicated entry in the object directory of a node in the network via SDO block transfer

CANOPEN_SDOREADMULTI = CANopen read SDO multi
Reads the indicated entry in the object directory of a node in the network

90

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

A distinction is made between the following errors:
8046

Communication error (examples:)

 The CAN controller signals CAN errors.
(The frequent occurrence is an indication of physical problems. These errors can considerably
affect the transmission behaviour and thus the data rate of a network.)

 Life guarding or heartbeat error

 SYNC error (slave only)

Application error (examples:)

 Short circuit or wire break

 Temperature too high

>

Emergency messages
9973

Device errors in the slave or problems in the CAN bus trigger emergency messages:

COB ID DLC Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x80 +
node ID

 error code
object

0x1001
device-specific

 Please note the reversed byte order! (Little Endian or Intel format)

>

Identifier
8048

The identifier for the error message consists of the sum of the following elements:

EMCY default identifier 128 (0x80)
+
node ID

>

EMCY error code
8049

It gives detailed information which error occurred. A list of possible error codes has already been
defined in the communication profile. Error codes which only apply to a certain device class are
defined in the corresponding device profile of this device class.

91

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

Overview CANopen error codes
545

Error Code (hex) Meaning

00xx Reset or no error

10xx Generic error

20xx Current

21xx Current, device input side

22xx Current inside the device

23xx Current, device output side

30xx Voltage

31xx Mains voltage

32xx Voltage inside the device

33xx Output voltage

40xx Temperature

41xx Ambient temperature

42xx Device temperature

50xx Device hardware

60xx Device software

61xx Internal software

62xx User software

63xx Data set

70xx Additional modules

80xx Monitoring

81xx Communication

8110 CAN overrun-objects lost

8120 CAN in error passiv mode

8130 Life guard error or heartbeat error

8140 Recovered from bus off

8150 Transmit COB-ID collision

82xx Protocol error

8210 PDO not processed due to length error

8220 PDO length exceeded

90xx External error

F0xx Additional functions

FFxx Device specific

92

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

Object 0x1001 (error register)
8547

This object reflects the general error state of a CANopen device. The device is to be considered as
error free if the object 0x1001 signals no error any more.

Bit Meaning (Bedeutung)

0 generic error

1 current

2 voltage

3 temperature

4 communication error

5 device profile specific

6 reserved – always 0

7 manufacturer specific

For an error message more than one bit in the error register can be set at the same time.

Example: CR2033, message "wire break" at channel 2 (installation manual of the device):

COB-ID DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

0x80 +
node ID

 00 FF 81 10 00 00 00 00

Error code = 0xFF00

Error register = 0x81 = 0b1000 0001, thus it consists of the following errors:
 • generic error
 • manufacturer specific

Concerned channel = 0x0010 = 0b0000 0000 0001 0000 = wire break channel 2

>

Object 0x1003 (error field)
8050

The object 0x1003 represents the error memory of a device. The sub-indices contain the errors
occurred last which triggered an error message.

If a new error occurs, its EMCY error code is always stored in the sub-index 0x01. All other older
errors are moved back one position in the error memory, i.e. the sub-index is incremented by 1. If all
supported sub-indices are used, the oldest error is deleted. The sub-index 0x00 is increased to the
number of the stored errors. After all errors have been rectified the value "0" is written to the error field
of the sub-index 0x01.

To delete the error memory the value "0" can be written to the sub-index 0x00. Other values must not
be entered.

93

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

Signalling of device errors
19178

As described, EMCY messages are transmitted if errors occur in a device. In contrast to
programmable devices error messages are automatically transmitted by decentralised input/output
modules (e.g. CompactModules CR2033).
Corresponding error codes → corresponding device manual.

Programmable devices only generate an EMCY message automatically (e.g. for "short circuit on
output Q07" if one of the following FBs is integrated in the application program:

 For all controllers (except for CR04nn, CR253n) the following applies:

CANx_MASTER_EMCY_HANDLER Handles the device-specific error status of the CANopen master on CAN interface x
x = 1...n = number of the CAN interface (depending on the device, → data sheet)

CANx_SLAVE_EMCY_HANDLER Handles the device-specific error status of the CANopen slave on CAN interface x:
 • error register (index 0x1001) and
 • error field (index 0x1003) of the CANopen object directory
x = 1...n = number of the CAN interface (depending on the device, → data sheet)

 For all CR04nn, CR1nnn, CR253n the following applies:

CANOPEN_GETERRORREGISTER = Get CANopen error register
Reads the error registers 0x1001 and 0x1003 from the controller
The registers can be reset by setting the respective inputs.

CANOPEN_GETEMCYMESSAGES = Get CANopen emergency messages
Lists all emergency messages that have been received by the controller from other nodes in the
network since the last deletion of messages
The list can be reset by setting the according input.

Overview of the automatically transmitted EMCY error codes for all ecomatmobile devices
programmable with CODESYS → chapter Overview CANopen error codes (→ p. 91).

If in addition application-specific errors are to be transmitted by the application program, one of the
following FBs is used:

 For all controllers (except for CR04nn, CR253n) the following applies:

CANx_MASTER_SEND_EMERGENCY Sends application-specific error status of the CANopen master on CAN interface x
x = 1...n = number of the CAN interface (depending on the device, → data sheet)

CANx_SLAVE_SEND_EMERGENCY Sends application-specific error status of the CANopen slave on CAN interface x
x = 1...n = number of the CAN interface (depending on the device, → data sheet)

 For all CR04nn, CR1nnn, CR253n the following applies:

CANOPEN_SENDEMCYMESSAGE = CANopen send emergency message
Sends an EMCY message. The message is assembled from the according parameters and
entered in register 0x1003

94

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

Manufacturer specific information
8548

A device manufacturer can indicate additional error information. The format can be freely selected.

Example:

In a device two errors occur and are signalled via the bus:

 - Short circuit of the outputs:
 Error code 0x2308,
 the value 0x03 (0b0000 0011) is entered in the object 0x1001
 (generic error and current error)

 - CAN overrun:
 Error code 0x8110,
 the value 0x13 (0b0001 0011) is entered in the object 0x1001
 (generic error, current error and communication error)

>> CAN overrun processed:
 Error code 0x0000,
 the value 0x03 (0b0000 0011) is entered in the object 0x1001
 (generic error, current error, communication error reset)
It can be seen only from this information that the communication error is no longer present.

>

Overview of CANopen EMCY codes (standard page)
18071

 For all controllers (except for CR04nn, CR253n) the following applies:
The following EMCY messages are sent automatically when the FB
CANx_MASTER_EMCY_HANDLER is called cyclically.

 For all CR04nn, CR1nnn, CR253n the following applies:
In the CANopen stack, none of these EMCY codes has a fixed implementation yet. Suggestion:
 Generate these EMCY codes with the FB CANOPEN_SENDEMCYMESSAGE.

EMCY code
object 0x1003

Object
0x1001

Manufactor specific information

Byte 0
[hex]

Byte 1
[hex]

Byte 2
[hex]

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Description

00 21 03 wire break, inputs

08 21 03 short circuit, inputs

10 21 03 overcurrent 0…20 mA

00 23 03 wire break, outputs

08 23 03 short circuit, outputs

10 23 03 overload, outputs

00 31 05 supply voltage VBBS

00 33 05 output voltage VBBO

08 33 05 output voltage VBBR

00 42 09 Excess temperature

The entries for bytes 3...7 depend on the concrete distribution of inputs and outputs of the device (→ Programming manual).

95

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

Overview of CANopen EMCY codes (extended page)
18072

 For all controllers (except for CR04nn, CR253n) the following applies:
The following EMCY messages are sent automatically when the FB
CANx_MASTER_EMCY_HANDLER is called cyclically.

 For all CR04nn, CR1nnn, CR253n the following applies:
In the CANopen stack, none of these EMCY codes has a fixed implementation yet. Suggestion:
 Generate these EMCY codes with the FB CANOPEN_SENDEMCYMESSAGE.

EMCY code
object 0x1003

Object
0x1001

Manufactor specific information

Byte 0
[hex]

Byte 1
[hex]

Byte 2
[hex]

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Description

01 21 03 wire break, inputs

09 21 03 short circuit, inputs

11 21 03 overcurrent 0…20 mA

01 23 03 wire break, outputs

09 23 03 short circuit, outputs

10 23 03 overload, outputs

10 33 05 output voltage VBB1

11 33 05 output voltage VBB2

12 33 05 output voltage VBB3

13 33 05 output voltage VBB4

18 33 05 relay supply

The entries for bytes 3...7 depend on the concrete distribution of inputs and outputs of the device (→ Programming manual).

96

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Using CAN – description CAN / CANopen: errors and error handling

>

Overview of CANopen EMCY codes (CANx)
18073

 For all controllers (except for CR04nn, CR253n) the following applies:
The following EMCY messages are sent automatically when the FB
CANx_MASTER_EMCY_HANDLER is called cyclically.

 For all CR04nn, CR1nnn, CR253n the following applies:
In the CANopen stack, none of these EMCY codes has a fixed implementation yet. Suggestion:
 Generate these EMCY codes with the FB CANOPEN_SENDEMCYMESSAGE.

13094

 The indications for CANx also apply to each of the CAN interfaces.

EMCY code
object 0x1003

Object
0x1001

Manufactor specific information

Byte 0
[hex]

Byte 1
[hex]

Byte 2
[hex]

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Description

00 80 11 -- -- -- -- -- CANx monitoring SYNC error (only slave)

00 81 11 -- -- -- -- -- CANx warning threshold (> 96)

10 81 11 -- -- -- -- -- CANx receive buffer overrun

11 81 11 -- -- -- -- -- CANx transmit buffer overrun

30 81 11 -- -- -- -- -- CANx guard/heartbeat error (only slave)

>

97

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Control outputs – description PWM functions – description

4 Control outputs – description

PWM functions – description ... 97
Controller – description ... 105

13741

>

4.1 PWM functions – description

PWM signal processing – description ... 98
Hydraulic control with PWMi .. 103

13831

In this chapter you will find out more about the pulse width modulation in the ecomatmobile device.

Availability of PWM or PWMi:
→ Data sheet of the device
→ Device manual of the device

98

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Control outputs – description PWM functions – description

>

4.1.1 PWM signal processing – description

PWM: What does a PWM output do?.. 99
PWM: What is the dither? .. 100
PWM: Function blocks ... 102
PWM: Description of the parameters .. 102

13832
6889

The abbreviation PWM stands for pulse width modulation. It is mainly used to trigger proportional
valves (PWM valves) for mobile and robust controller applications. Also, with an additional component
(accessory) for a PWM output the pulse-width modulated output signal can be converted into an
analogue output voltage.

Figure: PWM principle

The PWM output signal is a pulsed signal between GND and supply voltage. Within a defined period
(PWM frequency) the mark-to-space ratio is then varied. Depending on the mark-to-space ratio, the
connected load determines the corresponding RMS current.

The PWM function of the ecomatmobile controller is a hardware function provided by the processor.
To use the integrated PWM outputs of the controller, they must be initialised in the application program
and parameterised corresponding to the requested output signal.

99

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Control outputs – description PWM functions – description

>

PWM: What does a PWM output do?
1563

PWM stands for "pulse width modulation" which means the following principle:

In general, digital outputs provide a fixed output voltage as soon as they are switched on. The value of
the output voltage cannot be changed here. The PWM outputs, however, split the voltage into a quick
sequence of many square-wave pulse trains. The pulse duration [switched on] / pulse duration
[switched off] ratio determines the effective value of the requested output voltage. This is referred to as
the switch-on time in [%].

 In the following sketches the current profiles are shown as a stylised straight line. In reality the
current flows to an e-function.

Figure: The profile of the PWM voltage U and the coil current I at 10 % switch-on time:
The effective coil current Ieff is also 10 %

Figure: The profile of the PWM voltage U and the coil current I at 50 % switch-on time:
The effective coil current Ieff is also 50 %

Figure: The profile of the PWM voltage U and the coil current I at 100 % switch-on time:
The effective coil current Ieff is also 100 %

100

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Control outputs – description PWM functions – description

>

PWM: What is the dither?
1564

If a proportional hydraulic valve is controlled, its piston does not move right away and at first not
proportional to the coil current. Due to this "slip stick effect" – a kind of "break-away torque" – the valve
needs a slightly higher current at first to generate the power it needs to move the piston from its off
position. The same also happens for each other change in the position of the valve piston. This effect
is reflected in a jerking movement of the valve piston, especially at very low manipulating speeds.

Technology solves this problem by having the valve piston move slightly back and forth (dither). The
piston is continuously vibrating and cannot "stick". Also a small change in position is now performed
without any delay, a "flying splice" so to speak.

Advantage: The hydraulic cylinder controlled in that way can be moved more sensitively.

Disadvantage: The valve becomes measurably hotter with dither than without because the valve coil is
now working continuously.

That means that the "golden means" has to be found.

>

When is a dither useful?
1565

When the PWM output provides a pulse frequency that is small enough (standard value: up to 250 Hz)
so that the valve piston continuously moves at a minimum stroke, an additional dither is not required

(next figure):

Figure: Balanced PWM signal; no dither required.

At a higher PWM frequency (standard value 250 Hz up to 1 kHz) the remaining movement of the valve
piston is so short or so slow that this effectively results in a standstill so that the valve piston can again

get stuck in its current position (and will do so!) (next figures):

Figure: A high frequency of the PWM signal results in an almost direct current in the coil. The valve piston does not move
enough any longer. With each signal change the valve piston has to overcome the break-away torque again.

101

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Control outputs – description PWM functions – description

Figure: Too low frequencies of the PWM signal only allow rare, jerking movements of the valve piston. Each pulse moves the
valve piston again from its off position; every time the valve piston has to overcome the break-away torque again.

 In case of a PWM switch-on time under 10 % and over 90 %, it is adequate and necessary to
superimpose the PWM signal with a dither signal.

>

Dither frequency and amplitude
1566

The mark/space ratio (the switch-on time) of the PWM output signal is switched with the dither
frequency. The dither amplitude determines the difference of the switch-on times in the two dither half-
waves.

 The dither frequency must be an integer part of the PWM frequency. Otherwise the hydraulic
system would not work evenly but it would oscillate.

>

Example Dither
1567

The dither frequency is 1/8 of the PWM frequency.
The dither amplitude is 10 %.

With the switch-on time of 50 % in the figure, the actual switch-on time for 4 pulses is 60 % and for the
next 4 pulses it is 40 % which means an average of 50 % switch-on time. The resulting effective coil
current will be 50 % of the maximum coil current.

The result is that the valve piston always oscillates around its off position to be ready to take a new
position with the next signal change without having to overcome the break-away torque before.

102

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Control outputs – description PWM functions – description

>

PWM: Function blocks
19183

You can access PWM functions for the PWM-compatible outputs with the following function blocks:

 Some of the function blocks listed here are only available for individual devices.

 For all controllers (except for CR04nn, CR253n) the following applies:

OUTPUT_BRIDGE H-bridge on a PWM channel pair

OUTPUT_CURRENT Measures the current (average via dither period) on an output channel

OUTPUT_CURRENT_CONTROL Current controller for a PWMi output channel

PWM1000 Initialises and configures a PWM-capable output channel
the mark-to-space ratio can be indicated in steps of 1 ‰

 For all CR04nn, CR253n the following applies:

CURRENT_CONTROL Current controller for a PWMi output channel

H_BRIDGE H-bridge on a PWM channel pair

PWM1000 Initialises and configures a PWM-capable output channel
the mark-to-space ratio can be indicated in steps of 1 ‰

PWM1000_LOW Initialises and configures a PWM-capable output channel minus switched
the mark-to-space ratio can be indicated in steps of 1 ‰

>

PWM: Description of the parameters
13833

The FB PWM... contains a set of parameters. Here, some of them are explained in detail.

>

PWM frequency
2304

Depending on the valve type, a corresponding PWM frequency is required. The PWM frequency is
directly transferred as numerical value in [Hz] for PWM1000.

All PWM channels behave in the same way. Every PWM channel can be set to its own frequency
separately. The PWM frequency is in the range 20...250 Hz.

>

PWM dither
2306

For certain hydraulic valve types a so-called dither frequency must additionally be superimposed on
the PWM frequency. If these valves were triggered over a longer period by a constant PWM value,
they could block due to the high system temperatures.

To prevent this, the PWM value is increased or reduced on the basis of the dither frequency by a
defined value (DITHER_VALUE). As a consequence a vibration with the dither frequency and the
amplitude DITHER_VALUE is superimposed on the constant PWM value. The dither frequency must
be an integer part of the PWM frequency.

103

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Control outputs – description PWM functions – description

>

4.1.2 Hydraulic control with PWMi

The purpose of this library? – An introduction ... 103
19185

1559

ifm electronic offers the user special functions to control hydraulic systems as a special field of
current regulation with PWM (= PWMi).

A hydraulics library is only available for controllers, but not for CR04nn, CR253n.

>

The purpose of this library? – An introduction
1560

Thanks to the FBs of this library you can fulfil the following tasks:

>

Standardise the output signals of a joystick
1561

It is not always intended that the whole movement area of the joy stick influences the movement of the
machine.

Often the area around the neutral position of the joy stick is to
be spared because the joy stick does not reliably supply 0 V
in this neutral position.

Here in this figure the area between XL- and XL+ is to be
spared.

The FBs of this library enable you to adapt the characteristic
curve of your joy stick according to your requirements – on
request even freely configurable:

104

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Control outputs – description PWM functions – description

>

Control hydraulic valves with current-controlled outputs
1562

As a rule hydraulic valves do not have a completely linear characteristic:

Typical characteristic curve of a hydraulic valve:

The oil flow starts at approx. 20 % of the coil current. The
initial oil flow is not linear.

This has to be taken into account for the calculation of the
preset values for the coil current. The FBs of this library
support you here.

105

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Control outputs – description Controller – description

>

4.2 Controller – description
13830

1623

Controlling is a process during which the unit to be controlled (control variable x) is continuously
detected and compared with the reference variable w. Depending on the result of this comparison, the
control variable is influenced for adaptation to the reference variable.

Figure: Principle of controlling

The selection of a suitable control device and its optimum setting require exact indication of the
steady-state behaviour and the dynamic behaviour of the controlled system. In most cases these
characteristic values can only be determined by experiments and can hardly be influenced.

Three types of controlled systems can be distinguished:

>

4.2.1 Self-regulating process
1624

For a self-regulating process the control variable x goes towards a new final value after a certain
manipulated variable (steady state). The decisive factor for these controlled systems is the
amplification (steady-state transfer factor KS). The smaller the amplification, the better the system can
be controlled. These controlled systems are referred to as P systems (P = proportional).

Figure: P controller = self-regulating process

106

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Control outputs – description Controller – description

>

4.2.2 Controlled system without inherent regulation
1625

Controlled systems with an amplifying factor towards infinity are referred to as controlled systems
without inherent regulation. This is usually due to an integrating performance. The consequence is that
the control variable increases constantly after the manipulated variable has been changed or by the
influence of an interfering factor. Due to this behaviour it never reaches a final value. These controlled
systems are referred to as I systems (I = integral).

Figure: I controller = controlled system without inherent regulation

>

4.2.3 Controlled system with delay
1626

Most controlled systems correspond to series systems of P systems (systems with compensation) and
one or several T1 systems (systems with inertia). A controlled system of the 1st order is for example
made up of the series connection of a throttle point and a subsequent memory.

Figure: PT system = controlled system with delay

For controlled systems with dead time the control variable does not react to a change of the control
variable before the dead time Tt has elapsed. The dead time Tt or the sum of Tt + Tu relates to the
controllability of the system. The controllability of a system is the better, the greater the ratio Tg/Tu.

The controllers which are integrated in the library are a summary of the preceding basic functions. It
depends on the respective controlled system which functions are used and how they are combined.

>

107

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Working with the user flash memory Flash memory – what is that?

5 Working with the user flash memory

Flash memory – what is that? ... 107
What is a CSV file?.. 108
CSV file and the ifm maintenance tool .. 109

11607

Some ifm devices feature a user flash memory. This is a flash memory area which is intended for the
customer's application data.

Application examples:
 • Message texts (several languages can be selected) for display in the PDM and on the display
 • Load limit value tables e.g. for lifts, cranes and turntable ladders

The programmer creates lists or tables.

The program used for this must be able to convert the source file into a CSV file.
Suitable are e.g. spreadsheet programs such as Microsoft Excel or OpenOffice Calc.

7317

 NOTE

CSV files must not contain any safety-related data.
No suitable backup measures are provided.

>

5.1 Flash memory – what is that?
11608

Flash ROM (or flash EPROM or flash memory) combines the advantages of semiconductor memory
and hard disks. Similar to a hard disk, the data are however written and deleted blockwise in data
blocks up to 64, 128, 256, 1024, ... bytes at the same time.

Advantages of flash memories

 The stored data are maintained even if there is no supply voltage.

 Due to the absence of moving parts, flash is noiseless and insensitive to shocks and magnetic
fields.

Disadvantages of flash memories

 A storage cell can tolerate a limited number of write and delete processes:
 • Multi-level cells: typ. 10 000 cycles
 • Single level cells: typ. 100 000 cycles

 Given that a write process writes memory blocks of between 16 and 128 Kbytes at the same time,
memory cells which require no change are used as well.

108

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Working with the user flash memory What is a CSV file?

>

5.2 What is a CSV file?
11627

CSV = Comma Separated Values (also: Character Separated Values)
A CSV file is a text file for storing or exchanging simply structured data.
The file extension is .csv.

Example: Source table with numerical values:

value 1.0 value 1.1 value 1.2 value 1.3

value 2.0 value 2.1 value 2.2 value 2.3

value 3.0 value 3.1 value 3.2 value 3.3

This results in the following CSV file:

value 1.0;value 1.1;value 1.2;value 1.3
value 2.0;value 2.1;value 2.2;value 2.3
value 3.0;value 3.1;value 3.2;value 3.3
..

 Please note:

 The downloader and the maintenance tool expect a separator between the columns of the source
table, e.g. a semicolon (;).

 CODESYS expects a null byte (NUL) as a terminator of a string.

 Each data set (each table row to be transmitted) should have the same number of table columns.

109

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Working with the user flash memory CSV file and the ifm maintenance tool

>

5.3 CSV file and the ifm maintenance tool

Requirements for the CSV file ... 109
Creation of a CSV file using a spreadsheet program .. 110
Creation of a CSV file using an editor ... 112
Transfer of a CSV file with the maintenance tool .. 114
Access to the flash data: Function blocks ... 115

11619

The following devices can communicate with the ifm maintenance tool:
via AddIn BasicSystem
 • BasicController: CR040n, CR041n, CR043n
 • BasicDisplay: CR045n
 • SmartController: CR253n

via Addin R360System
 • Controller: CR0n3n, CR7n3n
 • Controller: CR0020, CR0200, CR0505
 • CabinetController: CR0303
 • SmartController: CR2500

>

5.3.1 Requirements for the CSV file
11630

► The CSV file must have a specific header structure.
All header data begin with '#'.

 1st line: CSV file type
e.g.: #File Type=0

allowed: 0/1

 2nd line (option): Project name of the CSV file
e.g.: #Name=Demo Textmessages

allowed: 0...20 characters

 3rd line (option): Version of the CSV file
e.g.: #Version=V01.00.00

allowed: 0...12 characters

 The ifm maintenance tool knows the start address of the user flash memory.
The address does not have to be indicated in the CSV file.

► Data must follow directly after the header data lines without any gaps!
Structure:
relative address;date or text;data type;{comment}
Example:
31;excess temperature;string(20);text 02
A semicolon (;) MUST follow after the data type!

 The ifm maintenance tool itself generates the correct data length from the data type.

Therefore, the string data does not have to be indicated in the CSV file in full length.

► The semicolon (;) is used as field delimiter.

110

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Working with the user flash memory CSV file and the ifm maintenance tool

>

5.3.2 Creation of a CSV file using a spreadsheet program
11639

Example:
 • bilingual message texts for BasicDisplay CR0451
 • 20 texts with up to 30 characters each in German
 • 20 texts with up to 30 characters each in English

Legend:

Field no. Description

A1...A3 Header; entries begin with '#'

A1 #FileType=

0: When compiling a CSV file, the set parameters are directly stored in the user flash in the given order.

1: When compiling a CSV file, the set parameters are stored in the user flash in such a way that the data can
be directly read using the CoDeSys structure.

A2 #Name=

Name for the definition of the table and for finding the table in the application program
Length = 0...20 characters

A3 #Version=

Version of the table (e.g. for different vehicles)
Length = 0...12 characters

A4...A43 Byte number for the beginning of a message text

A4 First text of the first language (byte number = 0)

A24 Here: first text of the second language (byte number = 620 = offset)

111

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Working with the user flash memory CSV file and the ifm maintenance tool

Field no. Description

B4...B23
B24...B43

Message texts (first language)
The same message texts (second language)

The ifm maintenance tool only transfers these texts into the device

C4...C43 Data type, here: string(30)

D4...D43 Comments (option)
 • only for information when creating the table
 • comments are not transferred into the device

► This structure is necessary for the generated CSV file to be understood by CoDeSys.

► Save the spreadsheet:
Select a memory location and enter a file name.

 Choose a sensible file name so that you can identify the right file later on.

► Convert the spreadsheet into a CSV file.
Select the semicolon ';' as column delimiter.

For Excel: [Save As...] > [Save as type:] = CSV file

For OpenOffice: [Save As...] > [Save as type] = Text CSV > [Keep Current Format]
In the window [Export of text files] set:
 • semicolon as field delimiter
 • text delimiter = (empty)

► Acknowledge the warning (regarding loss of formatting).

► Close the spreadsheet program.

► Open the generated CSV file with an editor:

► Remove all semicolons behind the header lines (starting with'#').

► Close the editor and save the file.

112

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Working with the user flash memory CSV file and the ifm maintenance tool

>

5.3.3 Creation of a CSV file using an editor
11640

► Enter the requested contents of the CSV file manually.

► Save the file as CSV file.
File type = ANSI

Example:
 • bilingual message texts for BasicDisplay CR0451
 • 20 texts with up to 30 characters each in German
 • 20 texts with up to 30 characters each in English

Legend:

Field no. Description

Lines 1...3 Header; entries begin with '#'

Line 1 #FileType=

0: When compiling a CSV file, the set parameters are directly stored in the user flash in the given order.

1: When compiling a CSV file, the set parameters are stored in the user flash in such a way that the data can
be directly read using the CoDeSys structure.

Line 2
(optional)

#Name=

Name for the definition of the table and for finding the table in the application program
Length = 0...20 characters

Line 3
(optional)

#Version=

Version of the table (e.g. for different vehicles)
Length = 0...12 characters

0; 31; 62; ... Byte number for the beginning of a message text
 • start with the relative address 0
 • the following addresses in steps of (line length plus 1) bytes

;text; Message texts (or reserve)
 • each line is precisely 20 characters long (fill with any characters, here: dots)
 • the data type results automatically from the line length
 • only these data are later transferred into the device

113

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Working with the user flash memory CSV file and the ifm maintenance tool

Field no. Description

String(30) Data type

 A semicolon (;) MUST follow after the data type!
The ifm maintenance tool automatically generates the correct length of the message texts based on this
information.

114

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Working with the user flash memory CSV file and the ifm maintenance tool

>

5.3.4 Transfer of a CSV file with the maintenance tool
19189

► Connect the programming interface of the ifm device to the PC.

► If not yet done, transfer the application program (as boot project) into the ifm device using
CODESYS.

► Start the ifm maintenance tool.

E.g. for the BasicSystem:

► If not yet done, open the following menu:
[ecomat mobile] > [CAN] > [Basic System]

► Select the following menu in the maintenance tool in the left column of the user interface:
[ecomat mobile] > [CAN] > [Basic System]

► Select the following menu from the column in the middle of the user interface:
[Basic System] > [System information] > [Identity]

> After clicking on [Read] the device information appears in the right-hand section of the user
interface.

If the data of the correct device appears:

► Select the following menu from the column in the middle of the user interface:
[Basic System] > [Software] > [Load]

► Click on [to Basic System] in the right-hand section of the user interface

► Click on [Import *.csv file...] in the field [Load software] .

> The window [Load software] appears.

► Select the memory location and file and confirm with [Open].

> An information window with the following information appears:
 • memory location, path
 • memory: n bytes of m bytes used
 • file type
 • name (from the CSV header data, can be edited)
 • version (from the CSV header data, can be edited)

► Import the file into the list of files to be transferred with [Import].

► Mark the files to be transferred (or: all).

► Transfer the CSV file into the ifm device with [Load].

> A progress bar indicates how the process is progressing.

> Then a finished message appears.

► Reboot the device.

115

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Working with the user flash memory CSV file and the ifm maintenance tool

>

5.3.5 Access to the flash data: Function blocks
19190

The application program can only access the data with the following function blocks:

 For all controllers (except for CR04nn, CR253n) the following applies:

FLASHREAD transfers different data types directly from the flash memory to the RAM

FLASHWRITE writes different data types directly into the flash memory

 For all CR04nn, CR1nnn, CR253n the following applies:

FLASH_INFO Reads the information from the user flash memory:
 • name of the memory area (user defined),
 • software version,
 • start address (for simple reading with IEC structure)

FLASH_READ transfers different data types directly from the flash memory to the RAM

>

116

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device General

6 Visualisations in the device

General .. 116
Recommendations for user interfaces... 117
Basic information about colours and bitmap graphics... 131
Special information about bitmap graphics ... 134

3111

In this chapter you find important information about bitmap graphics in CODESYS visualisations.

>

6.1 General
10465
10464

In addition to the graphical elements created with the CODESYS visualisation editor, you can also
integrate graphics created with other programs. Such graphics files can, for example, be pictograms,
logos or smaller images. But before you integrate such an "external graphics" some basics have to be
taken into account which will be explained in the following chapters.

 More information is given here:

 Creation and parameter setting of visualisations:
→ CODESYS programming manual (→ ecomatmobile DVD "Software, tools and
documentation")
→ ifm manual "PDM – Handbuch zur Einführung"

 See the Limitations and programming notes!

 NOTE

► Immediately save the new project or the project created from a template under a project name
on the PC under CODESYS!

If a project without a filename is loaded to the device, no visualisation is shown. The device has no
filename and therefore the visualisation cannot start.

117

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

6.2 Recommendations for user interfaces

Recommendations for a user-friendly product design ... 117
Do you know the future users? .. 118
Check suitability for use .. 119
Language as an obstacle .. 120
Cultural details are often not transferable ... 122
Directives and standards ... 124

7435

User-friendliness is a decisive criterion for the acceptance and use of technical products!

In this chapter we will give some recommendations how the user interface (also called Human-
Machine-Interface HMI) of a machine can be designed as user-friendly as possible.

>

6.2.1 Recommendations for a user-friendly product design
7436

All important interfaces between humans and machines are determined by the user platform and
design. Important criteria for the design of interfaces between humans and machines are...

 Clear condition:
 - For each function a clear description.
 - Design according to expectations, learned contents remain the same

 Readability:
 - Take the environment (illumination, read distance) into account.

 Intuitive handling:
 - Operating element / function must be obvious.
 - User interface must be self-explanatory.

 Sensuality
 - Operating elements must be user-friendly.
 - Clear differentiation from other displays and operating elements.

 Feedback
 - Quick reaction to user activities.
 - Cause for a message must be clearly obvious.

 Environment of the product because of distraction or irritation by...
 - noise
 - darkness
 - light reflection
 - vibrations
 - extreme temperatures

From the manufacturer's view the following features are also important:

 Display as a brand-specific feature.

 Display must meet standards.

118

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

6.2.2 Do you know the future users?
7444

The future users of the product should be known:

 Age

 Gender

 Senses:

 Eyesight

 Hearing ability

 Preferred hand (right or left hander)

 Tactile ability

 Training and education:

 General education level

 Specific training seminars and experience

 Motivation and cognitive abilities:

 Perception (sense organs): Not all available information is used but massively filtered,
integrated and changed in many ways before it comes into awareness.

 Thinking: The working memory where intellectual manipulation of information takes place has
a very small capacity.

 Learning: The information stored in the long-term memory is often changed in advance (e.g.
due to expectations) and subsequently (e.g. by subsequent information).

 Remembering: The information which is "actually" present in the long-term memory is often
not retrievable.

 Motivation and concentration: fatigue, weariness, distractibility etc. can affect the cognitive
capability.

 Familiarity with the problem or application area:

 Be able to recognise dangers

 Know what is to happen after an action

 Intensity of the application (how often and how intensely is the product used)

 Culture, e.g.:

 Language

 Meaning of colours and symbols

 Reading direction

119

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

6.2.3 Check suitability for use
7422

In many cases a test set-up with potential users can provide important results where and how the
product is/has to be improved to be successful in the market.

For this "usability test" the following steps must be carried out:

 Determine the user group (target group):
 - Who is to handle the product?

 Prepare an interview guideline:
 - What method do I use to interview what user (operator, fitter, maintenance personnel)?
 - What do I want to achieve with the interviews? (Improvement potentials)

 Conduct and evaluate interviews.

 Create context scenarios:
 - Create an evaluable test environment.
 - Identify critical user scenarios.

 Carry out usability test:
 - How do the test persons cope with the product in the test set-up?
 - Where is what corrective action needed for the product?

 After the product has been optimised repeat the tests, if necessary.

120

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

6.2.4 Language as an obstacle
7454

In order to produce equipment which satisfies end users worldwide, language must be taken into
account. The operator is not able to effectively carry out his tasks if he cannot understand the
instructions on the screen. Manufacturers are still trying to solve this problem considering the many
different languages in the world. A few languages are listed below:

Chinese characters

A Chinese character, also known as a Han character, is a logogram, i.e. it can be represented as a
word. The number of characters in the Kangxi dictionary is over 47000 but in China knowledge of
three to four thousand characters is sufficient. In modern times the Chinese characters have been
greatly simplified and are used in mainland China while traditional Chinese characters are still used in
Honk Kong and Taiwan. The Chinese characters have been romanised. They are called Pinyin and
are also widely used in China.

Japanese characters

The modern Japanese writing system uses three main scripts:

 Kanji are ideographs from Chinese characters

 Hiragana is used for native Japanese words and

 Katakana is used for loanwords

 Romanised Japanese characters, called Romanji, are also used in Japanese texts.

Korean characters

The modern Korean writing system is called Hangul and officially used in North and South Korea. In
addition, Hanja is used which refers to the characters borrowed from Chinese.

Arabic alphabet

This script is used for writing several languages in Asia (e.g. Middle East, Pakistan,) and Africa (e.g.
Arabic and Urdu). It is written from right to left in a cursive style and includes 28 letters.

Unicode

Unicode is a standard for the consistent representation and use of characters found in the writing
systems of the world. It war not easy to adapt languages to computers, partly due to the large number
of characters of some languages. It is possible to encode one English character with just one byte
because written English only needs a small number of characters. This does not apply to languages
like Japanese, Chinese or Korean which have more than 256 characters and therefore require double
byte or multi-byte encoding. Several encoding methods are used and Unicode seems to be the most
universal method. It obviously encodes into all languages in the world.

For example the Han unification, contracted to Unihan, is an approach by Unicode and the Universal
Character Set (according to ISO 10646) to map several character sets of the Chinese, Japanese and
Korean languages in a single set of unified characters.

Arabic characters can be encoded by Unicode from Version 5.0 or higher (several character sets and
ISO 8859-6).

ISO 10646 specifies the Universal Multiple Octet Coded Character Set. It is used for the
representation, interchange, processing, storage and input of the written form of the languages in the
world as well as for additional symbols.

The Unicode standard versions 4...6 all comply with ISO 10646.

121

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

Pictogram

This is a graphical symbol, also called a pictograph, representing a concept, object, event or an
activity by illustration. Pictograms have been used for many thousand years. They are still important in
the event of language barriers and illiteracy in the modern world and are used as pictorial signs,
representational signs, instructions or statistical diagrams. Due to their graphical nature they are used
in different areas of life. To indicate, for example, to toilets and airports a standard set of pictograms is
defined in the standard ISO 7001 "Graphical Symbols - Public Information Symbols".

A pictogram has been developed into a functional visual language for people with cognitive problems.
Each image represents a word or concept. It comprises two elements, drawn images and text. The
symbols are mostly white on a black square.

122

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

6.2.5 Cultural details are often not transferable
7461

Country, culture or language-specific details should be avoided in the source text because their use is
often not necessary and adaptation to the target culture is time-consuming. In most cases the author
does not know that his texts or graphics are characterised in terms of culture or language or lead to
localisation problems due to other design-related decisions. Problems can, for example, occur in the
following areas:

 Colours

 Symbols

 Illustrations

 Reading direction

>

Colours
7464

The selection of the "right" colour is an important element for the text and product design. Many
colours are culture-specific and can lead to misunderstandings if used incorrectly and even to an
image loss of the product as a result of handling faults.

Examples:

 Colour Meaning in Europe + USA Meaning in other cultures

 Red Drama, turmoil, blood (fight, revenge and
death), love, danger, nobility

China: fortune, cheerful

Russia: beautiful

Egypt: death

India: life, creative

Japan: anger, danger

 Yellow Caution, warning, sunlight, eternity, envy, hate China: birth, health, force

Egypt: cheerful, property

India: success

Japan: nobility

 Green Nature, ecology, hope, immortal, fortune China: eternity, family, harmony, health, peace,
posterity

Egypt: fertile, strength

India: property, fertile

Japan: future, youth, energy

 Blue Water, sky, loyalty, freedom, reliable, joy,
friendship, male

Asia: richness, strength

Egypt: virtue, faith, truth

 White Light, pure, wise, life, perfect, ideal, good,
matter of fact, clear, innocent, honest

Asia: death, grief, purity

Egypt: joy

 Black Death, grief, darkness, evil. Also: fraternity,
power and unity

(Grief not in Buddhism)

Egypt: resurrection

 Grey Wisdom and age Asia: helpful

123

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

Symbols
7465

As symbols are often produced in analogy to culture-specific concepts or use allusions to familiar
areas of the source culture, they pose a problem for localisation.

Example:

The symbol for a house that is to stand for start or beginning is not clearly understandable because the
English term "home" cannot be transferred without problem.

>

Illustrations
7466

An image is not always a sensible substitute for a text.

The representation of more complex processes can become impossible. How is, for example, the
request "press the button until you feel a slight resistance" to be illustrated?

Even if an illustration is a good representation of a fact, its use has to be well considered at
international level. Replacing text by images is only sensible and reduces cost if the illustrations are
independent of culture, i.e. can be used in ALL intended target countries without adaptations. Many
things which are self-evident for us are not self-evident in other cultures.

The illustration of people can lead to problems: What sex must or may a person have? What skin
colour? What age? Eventually, the addressees in all target countries are to feel equally addressed.
Clothing which does not stand out in Western Europe can lead to irritations in Arabic or African
countries. Gestures and individual body parts, especially hands and eyes, should not be represented
because they often trigger an offensive or insulting association.

>

Reading direction
7468

In most cultures reading is done from left to right and from top to bottom.

Some Asian cultures, however, read from bottom to top and from back to front.

Many Arabic cultures read from right to left.

These particularities have to be taken into account for graphical instructions!

124

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

6.2.6 Directives and standards

ISO 7001 _ Graphical symbols – Public information symbols... 124
ISO 9126 _ Software engineering – Product quality ... 125
ISO 9241 _ Ergonomics of human-system interaction .. 126
ISO 10646 _ Information technology – Universal multiple-octet coded character set (UCS) 128
ISO 13406 _ Ergonomic requirements for work with visual displays based on flat panels 129
ISO 13407 _ Human-centred design processes for interactive systems .. 129
ISO 20282 _ Ease of operation of everyday products .. 130

7445

The following list is only a selection and is not complete.

>

ISO 7001 _ Graphical symbols – Public information symbols
7456

A graphical symbol, also called a pictograph, represents a concept, object, event or an activity by
illustration. Pictograms have been used for many thousand years. They are still important in the event
of language barriers and illiteracy in the modern world and are used as pictorial signs, representational
signs, instructions or statistical diagrams. Due to their graphical nature they are used in different areas
of life.

Examples:

125

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

ISO 9126 _ Software engineering – Product quality
7446

The standard describes the following criteria:

Functionality: To what extent does the software have the required functions?

 Suitability: suitability of functions for specified tasks, e.g. task-oriented composition of functions from sub-functions.

 Correctness: providing the correct or agreed results or effects, e.g. necessary accuracy of calculated values.

 Interoperability: ability to interact with specified systems.

 Security: ability to prevent unauthorised access (inadvertent or intentional) to programs and data.

 Compliance: software features that cause the software to comply with application-specific standards or agreements or legal
provisions and similar regulations.

Reliability: Can the software maintain a defined performance level under defined conditions for a
defined period?

 Maturity: low failure frequency by error states.

 Error tolerance: ability to maintain a specified performance level in case of software errors or non-compliance with its
specified interface.

 Robustness: ability to ensure a stable system in case of inputs which have not been intended. The software withstands
"lusers".

 Restorability: ability to restore the performance level in case of a failure and to retrieve the directly involved data. The time
and the needed level of input have to be taken into account.

 Conformity: degree to which the software complies with standards or agreements on reliability.

Usability: What level of input does the use of the software require from users and how is it assessed
by them?

 Understandability: level of input required from the user to understand the concept and its application.

 Learnability: level of input required from the user to learn the application (e.g. handling, input, output).

 Usability: level of input required from the user to handle the application.

 Attractiveness: attractiveness of the application for the user.

 Conformity: degree to which the software complies with standards or agreements on usability.

Efficiency: How is the relationship between performance level of the software and equipment used?

 Time behaviour: response and processing times as well as data processing speed when executing the function.

 Consumption behaviour: Number and actuation time of the required operating elements to carry out the functions.
Resource consumption, such as CPU time, hard disc access, etc.

 Conformity: degree to which the software complies with standards or agreements on efficiency.

Changeability: What level of input is required make the defined changes in the software? Changes can
include corrections, improvements or adaptations to changes of the environment, requirements or
functional specifications.

 Analysability: level of input required to diagnose defects or causes of failure or to determine parts that need to be changed.

 Modifiability: level of input required to carry out improvements, eliminate faults or adapt to a changed environment.

 Stability: probability of the occurrence of unexpected effects of changes.

 Testability: level of input required to test the changed software.

Transferability: How easily can the software be transferred to another environment? An environment
can be an organisational, hardware or software environment.

 Adaptability: ability of the software to adapt to different environments.

 Installability: level of input required to install the software in a defined environment.

 Coexistence: ability of the software to function in parallel with another software having similar or identical functions.

 Exchangeability: possibility to use this software instead of a another specified software in the environment of that software
as well as the level of input required to do so.

 Conformity: degree to which the software complies with standards or agreements on transferability.

126

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

ISO 9241 _ Ergonomics of human-system interaction
7447

The standard ISO 9241 is an international standard describing the guidelines of interaction between
humans and computers. The series of standards describes requirements for the work environment,
hardware and software. The goal of the guideline is to avoid health damage at computer workplaces
and to make it easier for the user to carry out his tasks.

The following parts (incomplete list) are part of the standard:

Part 1: General introduction

Part 2: Guidance on task requirements

Part 3: Visual display requirements

Part 4: Keyboard requirements

Part 5: Workstation layout and postural requirements

Part 6: Guidance on the work environment

Part 7: Requirements for display with reflections

Part 8: Requirements for displayed colours

Part 9: Requirements for non-keyboard input devices

(Part 10: Dialogue principles (obsolete, was replaced by part 110 in 2006))

Part 11: Guidance on usability

Part 12: Presentation of information

Part 13: User guidance

Part 14: Menu dialogues

Part 15: Command dialogues

Part 16: Direct manipulation dialogues

Part 17: Form filling dialogues

Part 110: Dialogue principles (replaces part 10)

Part 151: Guidance on World Wide Web user interfaces

Part 171: Guidance on software accessibility (published in October 2008)

Part 300: Introduction to electronic visual display requirements

Part 302: Terminology for electronic visual displays (at present in the draft stage)

Part 303: Requirements for electronic visual displays (at present in the draft stage)

Part 304: User performance test methods

Part 305: Optical laboratory test methods for electronic visual displays (at present in the draft stage)

Part 306: Field assessment methods for electronic visual displays (at present in the draft stage)

Part 307: Analysis and compliance test methods for electronic visual displays (at present in the draft stage)

Part 400: Principles and requirements for physical input devices

Part 410: Design criteria for physical input devices (at present in the draft stage)

Parts 5 and 6 deal with the work environment. Parts 3, 4, 7, 8 and 9 deal with hardware requirements,
parts 11...17 and 110 deal with aspects of software ergonomics. Mainly the parts ISO 9241-110 _
Dialogue principles (→ p. 127) and ISO 9241-11 _ Guidance on usability (→ p. 126) contain some criteria for
the ergonomic design of interactive systems.

>

ISO 9241-11 _ Guidance on usability
7448

The usability of a software depends on its context of use. In part 11 of ISO 9241 three main criteria are
defined for the usability of a software:

 Effectivity to solve a task

 Efficiency to use the system

 Satisfaction of the software user

127

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

ISO 9241-110 _ Dialogue principles
7450

User interfaces of interactive systems such as websites or software should be easy to use. Part 110 of
ISO 9241 describes the following principles for the design and evaluation of an interface between the
user and system (dialogue design):

 Suitability for the task
Suitable functionality, minimisation of unnecessary interactions

 Self-descriptiveness
Understandability by means of support / feedback

 Suitability for learning
User guidance, suitable metaphors, goal: minimum learning time

 Controllability
Dialogue control by the user

 Conformity with user expectations
Consistency, adaptation to the user model

 Suitability for individualisation
Adaptability to the user and his context of work

 Error tolerance
Intelligent dialogue principles so that the user avoids error is given priority. Other aspects:
Detected user errors do not prevent the user's goal.
Undetected errors: slight correction by the user.

128

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

ISO 10646 _ Information technology – Universal multiple-octet coded character set (UCS)
7455

The universal character set (UCS) is a standard set of characters which is defined in the international
standard ISO 10646. For all practical purposes this is the same as Unicode.

Per character a memory space of 2 bytes is used. Unicode is a 16-bit code which represents

216 = 65536 characters. The first goal is a clear and standardised encoding of the characters of all
national languages.

Not all of these 65536 character addresses are used. A user-defined area enables approx.
2000 addresses with user-specific characters.

Another 1408576 characters can be encoded via the combination of two 16-bit codes. The hope is to
be able to cover all characters that exist or have ever existed. Furthermore, technical symbols, musical
signs, phonetics, etc. are mapped. However, one is still far from using all character addresses.

Examples:

Unicode: control characters and basic characters Unicode: arrows

129

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

ISO 13406 _ Ergonomic requirements for work with visual displays based on flat panels
7453

Part 2: Ergonomic requirements for flat panel displays

According to the international standard ISO 13406-2 LCD screens are classified on the basis of the
following criteria:

 Luminance, contrast and colour measured by the viewer's direction

 Reflections and contrast in case of incident illumination

 Image set-up time

 Faults (pixel faults)

>

ISO 13407 _ Human-centred design processes for interactive systems
7452

ISO 13407 is a standard which describes a prototypical human-centred software development
process. A special development process can be considered to conform to the standard if its
recommendations are met.

The standard represents human-centred design as an interdisciplinary activity covering knowledge of
human factors and ergonomic information and techniques. The ISO process consists of four essential
sub-activities:

 Understand the context of use:
The result of this activity is a documented description of the relevant users, their tasks and their
environment.

 Specify requirements:
During this phase the targets are deducted from the existing documentation at a compromise
level. The division of the system tasks is defined in...
 - tasks to be carried out by people
 - tasks to be carried out by technology

 Produce solutions:
This can be done following a prototype development or another iterative process. These
prototypes can be paper drafts (mocks) or executable program versions. If there are company-
internal design rules for user interfaces, they should be used.

 Evaluate solutions:
The solutions are checked for compliance with the defined requirements. To do so, expert
assessments, usability tests, interviews or a combination of these can be used. The determined
deviations are evaluated for their relevance and are a starting point of the next iteration of the
development process.

This method is complementary with existing process models of the software development. According
to the standard the human-centred design process should start in the earliest stage of the project and
should be repeated until the system meets the requirements. The significance and required level of
input for the human-centred design depend on the size and type of the product to be developed. For
smaller projects this is controlled by individuals.

130

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Recommendations for user interfaces

>

ISO 20282 _ Ease of operation of everyday products
7443

This draft consists of

 Part 1: Design requirements for context of use and user characteristics
The following criteria are described:
 - Scope
 - User interface
 - User
 - Psychological and social characteristics
 - Physical and social environmental factors
 - Physical and sensory characteristics

 Part 2: Test method for walk-up-and-use products
This part is a technical specification for the test methods.

131

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Basic information about colours and bitmap graphics

>

6.3 Basic information about colours and bitmap graphics

Image size vector graphics / pixel graphics .. 132
Colour for bitmap graphics .. 133
Which colours are shown? .. 133

3112

For graphics and image files two basic types are distinguished:

 Vector graphics Pixel graphics

Examples:

Drawings of CAD programs

Character sets type TrueType, PostScript or
OpenType

Digital photos

Files from the scanner or capture programs

Principle:

Vector graphics are based on an image
description which exactly defines the objects from
which the image is made.
A circle is, for example, defined via the position of
the centre (coordinates), radius, line thickness
and colour.

A raster graphics, also pixel graphics or bitmap,
is a way of describing an image which consists
of a raster-type arrangement of pixels to which
one colour each is assigned. The main
characteristics of a raster graphics are therefore
width and height in pixels (image resolution) as
well as the colour depth.

Required memory
space:

Required memory space relatively small

Depending on the resolution the required
memory space is high or very high: the files
become larger with every additionally pixel to be
stored.

Loss when scaling:
Loss-free resampling (scaling) to any image sizes
possible

Resampling (scaling) to other image sizes leads
to quality loss in most cases.

Hardware performance:

Since monitors are in principle based on a raster
matrix, all graphics must be resampled to
individual pixels (= rastered) to display them on
the monitor.

Depending on the complexity of the graphics very
powerful computers are needed to enable quick
processing and display.

Requirements relatively low

Typical file extensions:

*.cdr (Corel Draw)

*.dwg (AutoCAD)

*.ai (Adobe Illustrator)

*.svg (Scalable Vector Graphics)

*.bmp (Bitmap)

*.gif (Compuserv GIF)

*.jpg (Joint Photographic Experts Group)

*.png (Portable Network Graphics)

132

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Basic information about colours and bitmap graphics

>

6.3.1 Image size vector graphics / pixel graphics
7380

Vector graphics Pixel graphics

Graphical elements are described as vectors: information
about start and end point, thickness and colour of a line,
possibly fill pattern and colour gradient.

Pixel graphics of modern digital cameras have 5 million and
more pixels (resolution = 5 megapixels). A special data
compression tries to reduce the required high memory space.
Unfortunately, compression leads to a poorer quality.

Reduction or enlargement is easy and leads to no quality loss
(→ example below).

Enlargement leads to block graphics or blurry images
(→ example below).

Reducing such a megapixel image results in high loss of
image information.

Example:

Original Ø 10 mm / enlargement 5 times

EPS file 35 kB

Example:

Original 30 x 30 px / enlargement 5 times

BMP file 3 kB / 62 kB

>

Example: reducing a pixel image for CR108n
19193

7402

Task: An existing digital photo with a resolution of 5 megapixels has, for example, an image size of
2560 x 1920 pixels (= 4,915,200 pixels).
This photo is to be displayed in an image size of only 800 x 480 pixels (= monitor size for
PDM360NG).

Problem 1: The side to height ratio is 4:3 (1.33:1) for the source but 15:9 (1.66:1) for the target.

Solution (anisotropic): Scale the height and side of the image in different scales to represent an
undistorted image on the display.
For a uniform (isotropic) scaling the image is distorted compared to the original.

Problem 2: After scaling there are only 384,000 pixels (= 7.8 % of the original image), the other
4,531,200 pixels are no longer available.
In other words: Horizontally only every 3rd pixel is used, vertically only every 4th pixel.

Therefore such a transformed photo can no longer have the quality of the original. Important
information is lost and the image is distorted.

► Solution: Create images in the required size and resolution right from the start.

The problem applies correspondingly to other devices with different monitor sizes.

>

Adapt bitmap graphics
9996

You can adapt existing bitmap graphics by means of common graphics software.
Please ask your ecomatmobile specialist!

133

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Basic information about colours and bitmap graphics

>

6.3.2 Colour for bitmap graphics
3121

A second important factor is the colour information (the RGB value) which is stored for every pixel.

RGB stands for red, green and blue. For each of these three primary colours 255 intensity levels are
available. By mixing these three primary colours in different intensities approx. 16.6 million colours can
be created via the Additive colour mixing (→ p. 134). To represent this quantity suitable monitors and
powerful processors are needed.

>

6.3.3 Which colours are shown?
19194

>

Colours in the CR108n
19195

7381

The display can represent a colour depth of 6 bits per primary colour, i.e. 64 colour grades.
Consequently, from the total spectrum of 256 addressable colour grades only every fourth can be
used:

Colour Allowed colour values

Red R = 0, 4, 8, 12, 16, ..., 236, 240, 244, 248, 252

Green G = 0, 4, 8, 12, 16, ..., 236, 240, 244, 248, 252

Blue B = 0, 4, 8, 12, 16, ..., 236, 240, 244, 248, 252

Values which do not fit into this pattern are not shown.

>

Colours in the CR045n
19196

8367

The device can represent a colour depth of 8 bits, i.e. a total of 256 colour grades. From the total
spectrum of 256 addressable colour grades per colour channel (= 16,777,216 colours) only every
65,536th can be used:

Colour Allowed colour values

Red R (3 bits = 8 grades) = 0, 32, 64, 96, 128, 160, 192, 224

Green G (3 bits = 8 grades) = 0, 32, 64, 96, 128, 160, 192, 224

Blue B (2 bits = 4 grades) = 0, 64, 128, 192

The colour palette was specified in the factory and is permanently stored in the device.

Values which do not fit into this pattern are not shown.

134

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Special information about bitmap graphics

>

6.4 Special information about bitmap graphics

Additive colour mixing ... 134
What graphics are suitable for which PDM and what steps must be carried out? 135

3113

Here the interested reader finds more details about bitmap graphics.

>

6.4.1 Additive colour mixing
3123

RGB Mixed colours

Monitors and many printers make mixed colours
from the 3 primary colours red, green and blue.

Mixed colours are made by adding the colours in
the required mix ratio. This method is therefore
called additive colour mixing.

Photo: RGB raster of a monitor, considerably enlarged Figure: additive colour mixing

Table: examples of colour mixtures

100 % red + 100 % green = 100 % yellow

100 % green + 100 % blue = 100 % cyan

100 % blue + 100 % red = 100 % magenta

Nuances in the colour saturation result from smaller shares of the respective primary colour:

Screenshot: RGB colour mixture at Photoshop; 100 % 255dez = FFhex

135

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Visualisations in the device Special information about bitmap graphics

>

6.4.2 What graphics are suitable for which PDM and what steps must be carried out?
7387

Not all bitmaps are suitable for display on the PDM.

 In principle, photos should be transformed so that they are optimised when displayed in the given
resolution and colour depth.

 Images with a low contrast are not suitable because the colour differences cannot be displayed on
the PDM.

 If needed, logos and symbols should be optimised for the display on the PDM or drawn again.

>

136

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Overview of the files and libraries used Special information about bitmap graphics

7 Overview of the files and libraries used

General overview ... 137
What are the individual files and libraries used for? .. 138

2711

(as on 2014-06-25)

Depending on the unit and the desired function, different libraries and files are used. Some are
automatically loaded, others must be inserted or loaded by the programmer.

137

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Overview of the files and libraries used General overview

>

7.1 General overview
2712

File name Description and memory location ¹)

ifm_CRnnnn_Vxx.CFG PLC configuration
per device only 1 device-specific file
inlcudes: IEC and symbolic addresses of the inputs and outputs, the flag bytes
as well as the memory allocation
…\CoDeSys V*\Targets\ifm\ifm_CRnnnncfg\Vxxyyzz

CAA-*.CHM Online help
per device only 1 device-specific file
inlcudes: online help for this device
…\CoDeSys V*\Targets\ifm\Help\… (language)

ifm_CRnnnn_Vxxyyzz.H86
ifm_CRnnnn_Vxxyyzz.RESX

Runtime system
(must be loaded into the controller / monitor when used for the first time)
per device only 1 device-specific file
…\CoDeSys V*\Targets\ifm\Library\ifm_CRnnnn

ifm_Browser_CRnnnn.INI CODESYS browser commands
(CODESYS needs the file for starting the project)
per device only 1 device-specific file
inlcudes: commands for the browser in CODESYS
…\CoDeSys V*\Targets\ifm

ifm_Errors_CRnnnn.INI CODESYS error file
(CODESYS needs the file for starting the project)
per device only 1 device-specific file
inlcudes: device-specific error messages from CODESYS
…\CoDeSys V*\Targets\ifm

ifm_CRnnnn_Vxx.TRG Target file
per device only 1 device-specific file
inlcudes: hardware description for CODESYS, e.g.: memory, file locations
…\CoDeSys V*\Targets\ifm

ifm_*_Vxxyyzz.LIB General libraries
per device several files are possible
…\CoDeSys V*\Targets\ifm\Library

ifm_CRnnnn_Vxxyyzz.LIB Device-specific library
per device only 1 device-specific file
inlcudes: function elements of this device
…\CoDeSys V*\Targets\ifm\Library\ifm_CRnnnn

ifm_CRnnnn_*_Vxxyyzz.LIB Device-specific libraries
per device several files are possible

 following tables
…\CoDeSys V*\Targets\ifm\Library\ifm_CRnnnn

Legend:

*
CRnnnn
V*
Vxx
yy
zz

any signs
article number of the controller / monitor
CODESYS version
version number of the ifm software
release number of the ifm software
patch number of the ifm software

¹) memory location of the files:
System drive (C: / D:) \ program folder\ ifm electronic

138

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Overview of the files and libraries used What are the individual files and libraries used for?

>

7.2 What are the individual files and libraries used for?

Files for the runtime system .. 138
Target file ... 138
PLC configuration file .. 138
ifm device libraries ... 139
ifm CANopen libraries master / slave .. 139
CODESYS CANopen libraries ... 140
Specific ifm libraries... 141

2713

The following overview shows which files/libraries can and may be used with which unit. It may be
possible that files/libraries which are not indicated in this list can only be used under certain conditions
or the functionality has not yet been tested.

>

7.2.1 Files for the runtime system
2714

File name Function Available for:

ifm_CRnnnn_Vxxyyzz.H86
ifm_CRnnnn_Vxxyyzz.RESX

runtime system
• all ecomatmobile controllers
• BasicDisplay: CR045n
• PDM: CR10nn

ifm_Browser_CRnnnn.INI CODESYS browser commands
• all ecomatmobile controllers
• PDM: CR10nn

ifm_Errors_CRnnnn.INI CODESYS error file
• all ecomatmobile controllers
• PDM: CR10nn

>

7.2.2 Target file
2715

File name Function Available for:

ifm_CRnnnn_Vxx.TRG Target file in CODESYS
• all ecomatmobile controllers
• BasicDisplay: CR045n
• PDM: CR10nn

>

7.2.3 PLC configuration file
2716

File name Function Available for:

ifm_CRnnnn_Vxxyyzz.CFG PLC configuration in CODESYS
• all ecomatmobile controllers
• BasicDisplay: CR045n
• PDM: CR10nn

139

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Overview of the files and libraries used What are the individual files and libraries used for?

>

7.2.4 ifm device libraries
2717

File name Function Available for:

ifm_CRnnnn_Vxxyyzz.LIB device-specific library
• all ecomatmobile controllers
• BasicDisplay: CR045n
• PDM: CR10nn

ifm_CR0200_MSTR_Vxxyyzz.LIB library without extended functions • ExtendedController: CR0200

ifm_CR0200_SMALL_Vxxyyzz.LIB
library without extended functions,
reduced functions

• ExtendedController: CR0200

>

7.2.5 ifm CANopen libraries master / slave
2718

These libraries are based on the CODESYS libraries (3S CANopen function elements) and make the
functions available to the user in a simple way.

File name Function Available for:

ifm_CRnnnn_CANopenMaster_Vxxyyzz.LIB

ifm_CRnnnn_CANopenxMaster_Vxxyyzz.LIB

ifm_CRnnnn_CANxopenMaster_Vxxyyzz.LIB

CANopen master emergency and
status handler

• all ecomatmobile controllers *)
• PDM: CR10nn *)

ifm_CRnnnn_CANopenSlave_Vxxyyzz.LIB

ifm_CRnnnn_CANopenxSlave_Vxxyyzz.LIB

ifm_CRnnnn_CANxopenSlave_Vxxyyzz.LIB

CANopen slave emergency and
status handler

• all ecomatmobile controllers *)
• PDM: CR10nn *)

ifm_CANx_SDO_Vxxyyzz.LIB CANopen SDO read and SDO write
• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053, CR1055,
CR1056

ifm_CANopen_NT_Vxxyyzz.LIB
CANopen function elements in the
CAN stack

• BasicController: CR040n, CR041n, CR043n
• BasicDisplay: CR045n
• PDM360 NG: CR108n, CR120n
• SmartController: CR253n

*) but NOT for...
 • BasicController: CR040n, CR041n, CR043n
 • BasicDisplay: CR045n
 • PDM360 NG: CR108n, CR120n
 • SmartController: CR253n

140

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Overview of the files and libraries used What are the individual files and libraries used for?

>

7.2.6 CODESYS CANopen libraries
2719

For the following devices these libraries are NOT useable:
 • BasicController: CR040n, CR041n, CR043n
 • BasicDisplay: CR045n
 • PDM360 NG: CR108n, CR120n
 • SmartController: CR253n

File name Function Available for:

3S_CanDrvOptTableEx.LIB

CANopen driver

• all ecomatmobile controllers
• PDM360smart: CR1070, CR1071

3S_CanDrv.LIB ¹)
• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053, CR1055,
CR1056

3S_CANopenDeviceOptTableEx.LIB

CANopen slave driver

• all ecomatmobile controllers
• PDM360smart: CR1070, CR1071

3S_CANopenDevice.LIB ¹)
• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053, CR1055,
CR1056

3S_CANopenManagerOptTableEx.LIB

CANopen network manager

• all ecomatmobile controllers
• PDM360smart: CR1070, CR1071

3S_CANopenManager.LIB ¹)
• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053, CR1055,
CR1056

3S_CANopenMasterOptTableEx.LIB

CANopen master

• all ecomatmobile controllers
• PDM360smart: CR1070, CR1071

3S_CANopenMaster.LIB ¹)
• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053, CR1055,
CR1056

3S_CANopenNetVarOptTableEx.LIB

Driver for network variables

• all ecomatmobile controllers
• PDM360smart: CR1070, CR1071

3S_CANopenNetVar.LIB ¹)
• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053, CR1055,
CR1056

¹) For the following devices: This library is without function used as placeholder:
 • BasicController: CR040n, CR041n, CR043n
 • BasicDisplay: CR045n
 • PDM360 NG: CR108n, CR120n
 • SmartController: CR253n

141

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Overview of the files and libraries used What are the individual files and libraries used for?

>

7.2.7 Specific ifm libraries
2720

File name Function Available for:

ifm_RawCAN_NT_Vxxyyzz.LIB
CANopen function elements in the CAN
stack based on Layer 2

• BasicController: CR040n, CR041n, CR043n
• BasicDisplay: CR045n
• PDM360 NG: CR108n, CR120n
• SmartController: CR253n

ifm_J1939_NT_Vxxyyzz.LIB
J1939 communication function elements
in the CAN stack

• BasicController: CR040n, CR041n, CR043n
• BasicDisplay: CR045n
• PDM360 NG: CR108n, CR120n
• SmartController: CR253n

ifm_NetVarLib_NT_Vxxyyzz.lib additional driver for network variables

• BasicController: CR040n, CR041n, CR043n
• BasicDisplay: CR045n
• PDM360 NG: CR108n, CR120n
• SmartController: CR253n

ifm_J1939_Vxxyyzz.LIB J1939 communication function elements

up to runtime system V04:

• CabinetController: CR0303
• ClassicController: CR0020, CR0505
• ExtendedController: CR0200
• SafetyController: CR7020, CR7200, CR7505
• SmartController: CR2500
• PDM360smart: CR1070, CR1071

ifm_J1939_x_Vxxyyzz.LIB J1939 communication function elements

from runtime system V05:

• CabinetController: CR0303
• ClassicController: CR0020, CR0505
• ExtendedController: CR0200
• SafetyController: CR7020, CR7021,
CR7200, CR7201, CR7505, CR7506
• SmartController: CR2500
• sPDM360smart: CR1070, CR1071

ifm_CRnnnn_J1939_Vxxyyzz.LIB J1939 communication function elements • Controller: CR0n3n, CR7n3n

ifm_PDM_J1939_Vxxyyzz.LIB J1939 communication function elements
• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053,
CR1055, CR1056

ifm_CANx_LAYER2_Vxxyyzz.LIB
CAN function elements on the basis of
layer 2:
CAN transmit, CAN receive

• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053,
CR1055, CR1056

ifm_CAN1E_Vxxyyzz.LIB
changes the CAN bus from 11 bits to 29
bits

up to runtime system V04:

• PDM360smart: CR1070, CR1071

ifm_CAN1_EXT_Vxxyyzz.LIB
changes the CAN bus from 11 bits to 29
bits

from runtime system V05:

• CabinetController: CR030n
• ClassicController: CR0020, CR0505
• ExtendedController: CR0200
• PCB controller: CS0015
• SafetyController: CR7020, CR7021,
CR7200, CR7201, CR7505, CR7506
• SmartController: CR250n
• PDM360smart: CR1070, CR1071

ifm_CAMERA_O2M_Vxxyyzz.LIB camera function elements • PDM360: CR1051

CR2013AnalogConverter.LIB
analogue value conversion for I/O module
CR2013

• all ecomatmobile controllers
• PDM: CR10nn

ifm_Hydraulic_16bitOS04_Vxxyyzz.LIB
hydraulic function elements for R360
controllers

up to runtime system V04:

• ClassicController: CR0020, CR0505
• ExtendedController: CR0200
• SafetyController: CR7020, CR7200, CR7505
• SmartController: CR250n

142

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Overview of the files and libraries used What are the individual files and libraries used for?

File name Function Available for:

ifm_Hydraulic_16bitOS05_Vxxyyzz.LIB
hydraulic function elements for R360
controllers

from runtime system V05:

• ClassicController: CR0020, CR0505
• ExtendedController: CR0200
• SafetyController: CR7020, CR7021,
CR7200, CR7201, CR7505, CR7506
•SmartController: CR250n

ifm_Hydraulic_32bit_Vxxyyzz.LIB
hydraulic function elements for R360
controllers

• Controller: CR0n3n, CR7n3n

ifm_Hydraulic_CR0303_Vxxyyzz.LIB
hydraulic function elements for R360
controllers

• CabinetController: CR0303

ifm_SafetyIO_Vxxyyzz.LIB safety function elements
• SafetyController: CR7020, CR7021,
CR7200, CR7201, CR7505, CR7506

ifm_SafetyPLCopen_Vxxyyzz.LIB safety function elements • SafetyController: CR7032, CR7132

ifm_PDM_UTIL_Vxxyyzz.LIB auxiliary functions PDM
• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053,
CR1055, CR1056

ifm_PDMng_UTIL_Vxxyyzz.LIB auxiliary functions PDM • PDM360 NG: CR108n, CR120n

ifm_PDMsmart_UTIL_Vxxyyzz.LIB auxiliary functions PDM • PDM360smart: CR1070, CR1071

ifm_PDM_Input_Vxxyyzz.LIB alternative input function elements PDM • PDM: CR10nn

ifm_CR107n_Init_Vxxyyzz.LIB
initialisation function elements
PDM360smart

• PDM360smart: CR1070, CR1071

ifm_PDM_File_Vxxyyzz.LIB file function elements PDM360

• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053,
CR1055, CR1056
• PDM360 NG: CR108n, CR120n

ifm_PDM360NG_linux_syscall_asynch_LIB send Linux commands to the system • PDM360 NG: CR108n, CR120n

ifm_PDM360NG_USB_Vxxyyzz.LIB manage devices at the USB interface • PDM360 NG: CR108n, CR120n

ifm_PDM360NG_USB_LL_Vxxyyzz.LIB
auxiliary library for
ifm_PDM360NG_USB_Vxxyyzz.LIB

• PDM360 NG: CR108n, CR120n

Instrumente_x.LIB predefined display instruments • PDM: CR10nn

Symbols_x.LIB predefined symbols
• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053,
CR1055, CR1056

Segment_x.LIB predefined 7-segment displays
• PDM360: CR1050, CR1051
• PDM360compact: CR1052, CR1053,
CR1055, CR1056

Further libraries on request.

>

143

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Diagnosis and error handling Overview

8 Diagnosis and error handling

Overview .. 143
19598

The runtime-system (RTS) checks the device by internal error checks:
 • during the boot phase (reset phase)
 • during executing the application program
→ chapter Operating states

In so doing a high operating reliability is provided, as much as possible.

>

8.1 Overview
12217

When errors are detected the system flag ERROR can also be set in the application program. Thus, in
case of a fault, the controller reacts as follows:

> the operation LED lights red,

> the output relays switch off,

> the outputs protected by the relays are disconnected from power,

> the logic signal states of the outputs remain unchanged.

 NOTE

If the outputs are switched off by the relays, the logic signal states remain unchanged.

► The programmer must evaluate the ERROR bit and thus also reset the output logic in case of a
fault.

 Complete list of the device-specific error codes and diagnostic messages
→ chapter system flags.

144

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

9 Terms and abbreviations

A

Address

This is the "name" of the bus participant. All participants need a unique address so that the signals can
be exchanged without problem.

>

Application software

Software specific to the application, implemented by the machine manufacturer, generally containing
logic sequences, limits and expressions that control the appropriate inputs, outputs, calculations and
decisions.

>

Architecture

Specific configuration of hardware and/or software elements in a system.

>

B

Baud

Baud, abbrev.: Bd = unit for the data transmission speed. Do not confuse baud with "bits per second"
(bps, bits/s). Baud indicates the number of changes of state (steps, cycles) per second over a
transmission length. But it is not defined how many bits per step are transmitted. The name baud can
be traced back to the French inventor J. M. Baudot whose code was used for telex machines.
1 MBd = 1024 x 1024 Bd = 1 048 576 Bd

>

Boot loader

On delivery ecomatmobile controllers only contain the boot loader.
The boot loader is a start program that allows to reload the runtime system and the application
program on the device.
The boot loader contains basic routines...
 • for communication between hardware modules,
 • for reloading the operating system.
The boot loader is the first software module to be saved on the device.

>

Bus

Serial data transmission of several participants on the same cable.

>

C

CAN

CAN = Controller Area Network
CAN is a priority-controlled fieldbus system for large data volumes. There are several higher-level
protocols that are based on CAN, e.g. 'CANopen' or 'J1939'.

>

CAN stack

CAN stack = software component that deals with processing CAN messages.

145

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

CiA

CiA = CAN in Automation e.V.
User and manufacturer organisation in Germany / Erlangen. Definition and control body for CAN and
CAN-based network protocols.
Homepage → www.can-cia.org

>

CiA DS 304

DS = Draft Standard
CANopen device profile for safety communication

>

CiA DS 401

DS = Draft Standard
CANopen device profile for binary and analogue I/O modules

>

CiA DS 402

DS = Draft Standard
CANopen device profile for drives

>

CiA DS 403

DS = Draft Standard
CANopen device profile for HMI

>

CiA DS 404

DS = Draft Standard
CANopen device profile for measurement and control technology

>

CiA DS 405

DS = Draft Standard
CANopen specification of the interface to programmable controllers (IEC 61131-3)

>

CiA DS 406

DS = Draft Standard
CANopen device profile for encoders

>

CiA DS 407

DS = Draft Standard
CANopen application profile for local public transport

>

Clamp 15

In vehicles clamp 15 is the plus cable switched by the ignition lock.

>

COB ID

COB = Communication Object
ID = Identifier
ID of a CANopen communication object
Corresponds to the identifier of the CAN message with which the communication project is sent via the
CAN bus.

http://www.can-cia.org/

146

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

CODESYS

CODESYS® is a registered trademark of 3S – Smart Software Solutions GmbH, Germany.
'CODESYS for Automation Alliance' associates companies of the automation industry whose hardware
devices are all programmed with the widely used IEC 61131-3 development tool CODESYS®.
Homepage → www.codesys.com

>

CSV file

CSV = Comma Separated Values (also: Character Separated Values)
A CSV file is a text file for storing or exchanging simply structured data.
The file extension is .csv.

Example: Source table with numerical values:

value 1.0 value 1.1 value 1.2 value 1.3

value 2.0 value 2.1 value 2.2 value 2.3

value 3.0 value 3.1 value 3.2 value 3.3

This results in the following CSV file:

value 1.0;value 1.1;value 1.2;value 1.3
value 2.0;value 2.1;value 2.2;value 2.3
value 3.0;value 3.1;value 3.2;value 3.3
.

>

Cycle time

This is the time for a cycle. The PLC program performs one complete run.

Depending on event-controlled branchings in the program this can take longer or shorter.

>

D

Data type

Depending on the data type, values of different sizes can be stored.

Data type min. value max. value size in the memory

BOOL FALSE TRUE 8 bits = 1 byte

BYTE 0 255 8 bits = 1 byte

WORD 0 65 535 16 bits = 2 bytes

DWORD 0 4 294 967 295 32 bits = 4 bytes

SINT -128 127 8 bits = 1 byte

USINT 0 255 8 bits = 1 byte

INT -32 768 32 767 16 bits = 2 bytes

UINT 0 65 535 16 bits = 2 bytes

DINT -2 147 483 648 2 147 483 647 32 bits = 4 bytes

UDINT 0 4 294 967 295 32 bits = 4 bytes

REAL -3.402823466 • 1038 3.402823466 • 1038 32 bits = 4 bytes

ULINT 0 18 446 744 073 709 551 615 64 Bit = 8 Bytes

STRING number of char. + 1

>

DC

Direct Current

http://www.codesys.com/

147

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

Diagnosis

During the diagnosis, the "state of health" of the device is checked. It is to be found out if and what
→faults are given in the device.

Depending on the device, the inputs and outputs can also be monitored for their correct function.
 - wire break,
 - short circuit,
 - value outside range.

For diagnosis, configuration and log data can be used, created during the "normal" operation of the
device.
The correct start of the system components is monitored during the initialisation and start phase.
Errors are recorded in the log file.
For further diagnosis, self-tests can also be carried out.

>

Dither

Dither is a component of the →PWM signals to control hydraulic valves. It has shown for
electromagnetic drives of hydraulic valves that it is much easier for controlling the valves if the control
signal (PWM pulse) is superimposed by a certain frequency of the PWM frequency. This dither
frequency must be an integer part of the PWM frequency.

>

DLC

Data Length Code = in CANopen the number of the data bytes in a message.
For →SDO: DLC = 8
>

DRAM

DRAM = Dynamic Random Access Memory.
Technology for an electronic memory module with random access (Random Access Memory, RAM).
The memory element is a capacitor which is either charged or discharged. It becomes accessible via a
switching transistor and is either read or overwritten with new contents. The memory contents are
volatile: the stored information is lost in case of lacking operating voltage or too late restart.

>

DTC

DTC = Diagnostic Trouble Code = error code
In the protocol J1939 faults and errors well be managed and reported via assigned numbers – the
DTCs.

>

E

ECU

(1) Electronic Control Unit = control unit or microcontroller
(2) Engine Control Unit = control device of a engine

>

EDS-file

EDS = Electronic Data Sheet, e.g. for:
 • File for the object directory in the CANopen master,
 • CANopen device descriptions.
Via EDS devices and programs can exchange their specifications and consider them in a simplified
way.

148

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

Embedded software

System software, basic program in the device, virtually the →runtime system.
The firmware establishes the connection between the hardware of the device and the application
program. The firmware is provided by the manufacturer of the controller as a part of the system and
cannot be changed by the user.

>

EMC

EMC = Electro Magnetic Compatibility.
According to the EC directive (2004/108/EEC) concerning electromagnetic compatibility (in short EMC
directive) requirements are made for electrical and electronic apparatus, equipment, systems or
components to operate satisfactorily in the existing electromagnetic environment. The devices must
not interfere with their environment and must not be adversely influenced by external electromagnetic
interference.

>

EMCY

Abbreviation for emergency
Message in the CANopen protocol with which errors are signalled.

>

Ethernet

Ethernet is a widely used, manufacturer-independent technology which enables data transmission in
the network at a speed of 10...10 000 million bits per second (Mbps). Ethernet belongs to the family of
so-called "optimum data transmission" on a non exclusive transmission medium. The concept was
developed in 1972 and specified as IEEE 802.3 in 1985.

>

EUC

EUC = Equipment Under Control.
EUC is equipment, machinery, apparatus or plant used for manufacturing, process, transportation,
medical or other activities (→ IEC 61508-4, section 3.2.3). Therefore, the EUC is the set of all
equipment, machinery, apparatus or plant that gives rise to hazards for which the safety-related
system is required.
If any reasonably foreseeable action or inaction leads to →hazards with an intolerable risk arising from
the EUC, then safety functions are necessary to achieve or maintain a safe state for the EUC. These
safety functions are performed by one or more safety-related systems.

>

F

FiFo

FIFO (First In, First Out) = Operating principle of the stack memory: The data packet that was written
into the stack memory first, will also be read first. Each identifier has such a buffer (queue).

149

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

Flash memory

Flash ROM (or flash EPROM or flash memory) combines the advantages of semiconductor memory
and hard disks. Similar to a hard disk, the data are however written and deleted blockwise in data
blocks up to 64, 128, 256, 1024, ... bytes at the same time.

Advantages of flash memories

 The stored data are maintained even if there is no supply voltage.

 Due to the absence of moving parts, flash is noiseless and insensitive to shocks and magnetic
fields.

Disadvantages of flash memories

 A storage cell can tolerate a limited number of write and delete processes:
 • Multi-level cells: typ. 10 000 cycles
 • Single level cells: typ. 100 000 cycles

 Given that a write process writes memory blocks of between 16 and 128 Kbytes at the same time,
memory cells which require no change are used as well.

>

FRAM

FRAM, or also FeRAM, means Ferroelectric Random Access Memory. The storage operation and
erasing operation is carried out by a polarisation change in a ferroelectric layer.
Advantages of FRAM as compared to conventional read-only memories:
 • non-volatile,
 • compatible with common EEPROMs, but:
 • access time approx. 100 ns,
 • nearly unlimited access cycles possible.

>

H

Heartbeat

The participants regularly send short signals. In this way the other participants can verify if a
participant has failed.

>

HMI

HMI = Human Machine Interface

>

I

ID

ID = Identifier

Name to differentiate the devices / participants connected to a system or the message packets
transmitted between the participants.

>

IEC 61131

Standard: Basics of programmable logic controllers
 • Part 1: General information
 • Part 2: Production equipment requirements and tests
 • Part 3: Programming languages
 • Part 5: Communication
 • Part 7: Fuzzy Control Programming

150

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

IEC user cycle

IEC user cycle = PLC cycle in the CODESYS application program.

>

Instructions

Superordinate word for one of the following terms:
installation instructions, data sheet, user information, operating instructions, device manual, installation
information, online help, system manual, programming manual, etc.

>

Intended use

Use of a product in accordance with the information provided in the instructions for use.

>

IP address

IP = Internet Protocol.
The IP address is a number which is necessary to clearly identify an internet participant. For the sake
of clarity the number is written in 4 decimal values, e.g. 127.215.205.156.

>

ISO 11898

Standard: Road vehicles – Controller area network
 • Part 1: Data link layer and physical signalling
 • Part 2: High-speed medium access unit
 • Part 3: Low-speed, fault-tolerant, medium dependent interface
 • Part 4: Time-triggered communication
 • Part 5: High-speed medium access unit with low-power mode

>

ISO 11992

Standard: Interchange of digital information on electrical connections between towing and towed
vehicles
 • Part 1: Physical and data-link layers
 • Part 2: Application layer for brakes and running gear
 • Part 3: Application layer for equipment other than brakes and running gear
 • Part 4: Diagnostics

>

ISO 16845

Standard: Road vehicles – Controller area network (CAN) – Conformance test plan

>

J

J1939

→ SAE J1939

>

L

LED

LED = Light Emitting Diode.
Light emitting diode, also called luminescent diode, an electronic element of high coloured luminosity
at small volume with negligible power loss.

151

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

Link

A link is a cross-reference to another part in the document or to an external document.

>

LSB

Least Significant Bit/Byte

>

M

MAC-ID

MAC = Manufacturer‘s Address Code
= manufacturer's serial number.
→ID = Identifier
Every network card has a MAC address, a clearly defined worldwide unique numerical code, more or
less a kind of serial number. Such a MAC address is a sequence of 6 hexadecimal numbers, e.g. "00-
0C-6E-D0-02-3F".

>

Master

Handles the complete organisation on the bus. The master decides on the bus access time and polls
the →slaves cyclically.

>

Misuse

The use of a product in a way not intended by the designer.
The manufacturer of the product has to warn against readily predictable misuse in his user
information.

>

MMI

→ HMI (→ p. 149)

>

MRAM

MRAM = Magnetoresistive Random Access Memory
The information is stored by means of magnetic storage elements. The property of certain materials is
used to change their electrical resistance when exposed to magnetic fields.
Advantages of MRAM as compared to conventional RAM memories:
 • non volatile (like FRAM), but:
 • access time only approx. 35 ns,
 • unlimited number of access cycles possible.

>

MSB

Most Significant Bit/Byte

>

N

NMT

NMT = Network Management = (here: in the CANopen protocol).
The NMT master controls the operating states of the NMT slaves.

>

Node

This means a participant in the network.

152

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

Node Guarding

Node = here: network participant
Configurable cyclic monitoring of each →slave configured accordingly. The →master verfies if the
slaves reply in time. The slaves verify if the master regularly sends requests. In this way failed network
participants can be quickly identified and reported.

>

O

Obj / object

Term for data / messages which can be exchanged in the CANopen network.

>

Object directory

Contains all CANopen communication parameters of a device as well as device-specific parameters
and data.

>

OBV

Contains all CANopen communication parameters of a device as well as device-specific parameters
and data.

>

OPC

OPC = OLE for Process Control
Standardised software interface for manufacturer-independent communication in automation
technology
OPC client (e.g. device for parameter setting or programming) automatically logs on to OPC server
(e.g. automation device) when connected and communicates with it.

>

Operational

Operating state of a CANopen participant. In this mode →SDOs, →NMT commands and →PDOs can
be transferred.

>

P

PC card

→PCMCIA card

>

PCMCIA card

PCMCIA = Personal Computer Memory Card International Association, a standard for expansion
cards of mobile computers.
Since the introduction of the cardbus standard in 1995 PCMCIA cards have also been called PC card.

>

PDM

PDM = Process and Dialogue Module.
Device for communication of the operator with the machine / plant.

153

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

PDO

PDO = Process Data Object.
The time-critical process data is transferred by means of the "process data objects" (PDOs). The
PDOs can be freely exchanged between the individual nodes (PDO linking). In addition it is defined
whether data exchange is to be event-controlled (asynchronous) or synchronised. Depending on the
type of data to be transferred the correct selection of the type of transmission can lead to considerable
relief for the →CAN bus.
According to the protocol, these services are unconfirmed data transmission: it is not checked whether
the receiver receives the message. Exchange of network variables corresponds to a "1 to
n connection" (1 transmitter to n receivers).

>

PDU

PDU = Protocol Data Unit = protocol data unit.
The PDU is a term from the →CAN protocol →SAE J1939. It refers to a component of the target
address (PDU format 1, connection-oriented) or the group extension (PDU format 2, message-
oriented).

>

PES

Programmable Electronic System ...
 • for control, protection or monitoring,
 • dependent for its operation on one or more programmable electronic devices,
 • including all elements of the system such as input and output devices.

>

PGN

PGN = Parameter Group Number
PGN = 6 zero bits + 1 bit reserved + 1 bit data page + 8 bit PDU Format (PF) + 8 PDU Specific (PS)
The parameter group number is a term from the →CAN protocol →SAE J1939.

>

Pictogram

Pictograms are figurative symbols which convey information by a simplified graphic representation.
(→ chapter What do the symbols and formats mean? (→ p. 6))

>

PID controller

The PID controller (proportional–integral–derivative controller) consists of the following parts:
 • P = proportional part
 • I = integral part
 • D = differential part (but not for the controller CR04nn, CR253n).

>

PLC configuration

Part of the CODESYS user interface.

► The programmer tells the programming system which hardware is to be programmed.

> CODESYS loads the corresponding libraries.

> Reading and writing the periphery states (inputs/outputs) is possible.

>

Pre-Op

Pre-Op = PRE-OPERATIONAL mode.
Operating status of a CANopen participant. After application of the supply voltage each participant
automatically passes into this state. In the CANopen network only →SDOs and →NMT commands
can be transferred in this mode but no process data.

154

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

Process image

Process image is the status of the inputs and outputs the PLC operates with within one →cycle.

 At the beginning of the cycle the PLC reads the conditions of all inputs into the process image.
During the cycle the PLC cannot detect changes to the inputs.

 During the cycle the outputs are only changed virtually (in the process image).

 At the end of the cycle the PLC writes the virtual output states to the real outputs.

>

PWM

PWM = pulse width modulation
The PWM output signal is a pulsed signal between GND and supply voltage.
Within a defined period (PWM frequency) the mark-to-space ratio is varied. Depending on the mark-to-
space ratio, the connected load determines the corresponding RMS current.

>

R

ratiometric

Measurements can also be performed ratiometrically. If the output signal of a sensor is proportional to
its suppy voltage then via ratiometric measurement (= measurement proportional to the supply) the
influence of the supply's fluctuation can be reduced, in ideal case it can be eliminated.
→ analogue input

>

RAW-CAN

RAW-CAN means the pure CAN protocol which works without an additional communication protocol
on the CAN bus (on ISO/OSI layer 2). The CAN protocol is international defined according to
ISO 11898-1 and garantees in ISO 16845 the interchangeability of CAN chips in addition.

>

remanent

Remanent data is protected against data loss in case of power failure.
The →runtime system for example automatically copies the remanent data to a →flash memory as
soon as the voltage supply falls below a critical value. If the voltage supply is available again, the
runtime system loads the remanent data back to the RAM memory.
The data in the RAM memory of a controller, however, is volatile and normally lost in case of power
failure.

>

ro

RO = read only for reading only
Unidirectional data transmission: Data can only be read and not changed.

>

RTC

RTC = Real Time Clock
Provides (batter-backed) the current date and time. Frequent use for the storage of error message
protocols.

>

Runtime system

Basic program in the device, establishes the connection between the hardware of the device and the
application program.
→ chapter Software modules for the device

155

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

rw

RW = read/ write
Bidirectional data transmission: Data can be read and also changed.

>

S

SAE J1939

The network protocol SAE J1939 describes the communication on a →CAN bus in commercial
vehicles for transmission of diagnosis data (e.g.engine speed, temperature) and control information.
Standard: Recommended Practice for a Serial Control and Communications Vehicle Network
 • Part 2: Agricultural and Forestry Off-Road Machinery Control and Communication Network
 • Part 3: On Board Diagnostics Implementation Guide
 • Part 5: Marine Stern Drive and Inboard Spark-Ignition Engine On-Board Diagnostics Implementation
Guide
 • Part 11: Physical Layer – 250 kBits/s, Shielded Twisted Pair
 • Part 13: Off-Board Diagnostic Connector
 • Part 15: Reduced Physical Layer, 250 kBits/s, Un-Shielded Twisted Pair (UTP)
 • Part 21: Data Link Layer
 • Part 31: Network Layer
 • Part 71: Vehicle Application Layer
 • Part 73: Application Layer – Diagnostics
 • Part 81: Network Management Protocol

>

SD card

An SD memory card (short for Secure Digital Memory Card) is a digital storage medium that operates
to the principle of →flash storage.

>

SDO

SDO = Service Data Object.
The SDO is used for access to objects in the CANopen object directory. 'Clients' ask for the requested
data from 'servers'. The SDOs always consist of 8 bytes.

Examples:
 • Automatic configuration of all slaves via →SDOs at the system start,
 • reading error messages from the →object directory.
Every SDO is monitored for a response and repeated if the slave does not respond within the
monitoring time.

>

Self-test

Test program that actively tests components or devices. The program is started by the user and takes
a certain time. The result is a test protocol (log file) which shows what was tested and if the result is
positive or negative.

>

Slave

Passive participant on the bus, only replies on request of the →master. Slaves have a clearly defined
and unique →address in the bus.

>

stopped

Operating status of a CANopen participant. In this mode only →NMT commands are transferred.

156

ifm ifm_Hintergrundwissen_EcomatMobile_v01 2018-04-17

Terms and abbreviations

>

Symbols

Pictograms are figurative symbols which convey information by a simplified graphic representation.
(→ chapter What do the symbols and formats mean? (→ p. 6))

>

System variable

Variable to which access can be made via IEC address or symbol name from the PLC.

>

T

Target

The target contains the hardware description of the target device for CODESYS, e.g.: inputs and
outputs, memory, file locations.
Corresponds to an electronic data sheet.

>

TCP

The Transmission Control Protocol is part of the TCP/IP protocol family. Each TCP/IP data connection
has a transmitter and a receiver. This principle is a connection-oriented data transmission. In the
TCP/IP protocol family the TCP as the connection-oriented protocol assumes the task of data
protection, data flow control and takes measures in the event of data loss. (compare: →UDP)

>

Template

A template can be filled with content.
Here: A structure of pre-configured software elements as basis for an application program.

>

U

UDP

UDP (User Datagram Protocol) is a minimal connectionless network protocol which belongs to the
transport layer of the internet protocol family. The task of UDP is to ensure that data which is
transmitted via the internet is passed to the right application.
At present network variables based on →CAN and UDP are implemented. The values of the variables
are automatically exchanged on the basis of broadcast messages. In UDP they are implemented as
broadcast messages, in CAN as →PDOs.
According to the protocol, these services are unconfirmed data transmission: it is not checked whether
the receiver receives the message. Exchange of network variables corresponds to a "1 to
n connection" (1 transmitter to n receivers).

>

Use, intended

Use of a product in accordance with the information provided in the instructions for use.

>

W

Watchdog

In general the term watchdog is used for a component of a system which watches the function of other
components. If a possible malfunction is detected, this is either signalled or suitable program
branchings are activated. The signal or branchings serve as a trigger for other co-operating system
components to solve the problem.

157

10 Index

A

A distinction is made between the following errors: 90

About the ifm templates ... 11

About this manual .. 4

Access to the CANopen slave at runtime .. 63

Access to the flash data

Function blocks ... 115

Access to the object directory (controllers) ... 53

Access to the object directory (others) .. 54

Access to the OD entries by the application program 63

Access to the status of the CANopen master 51

Adapt bitmap graphics ... 132

Add and configure CANopen slaves ... 39

Additive colour mixing .. 134

Address .. 144

Addresses in CAN ... 26

Amplitude ... 101

Application software... 144

Architecture .. 144

Automatic configuration of slaves .. 45

B

Base settings

Bus identifier .. 57

Generate EDS file ... 57

Name of updatetask .. 57

Basic information about colours and bitmap graphics 131

Baud ... 144

Boot loader .. 144

Boot up of the CANopen master ... 49

Boot up of the CANopen slaves .. 50

Boot-up message... 70

Break-away torque... 100

Bus ... 144

Bus cable length .. 23

Bus level .. 22

C

CAN ...81, 144

exchange of data ... 29

hardware .. 21

interfaces and protocols .. 28

software ... 25

CAN / CANopen

errors and error handling... 86

CAN baud rate ... 37

CAN bus level .. 22

CAN error ... 86

CAN errors ... 87

CAN for the drive engineering ... 82

CAN interfaces ... 28

CAN parameters

Automatic startup .. 38

Baud rate ... 37

Communication cycle .. 41

Communication Cycle Period/Sync. Window Length 37

Create all SDOs .. 40

Emergency telegram ... 40

Heartbeat ... 38

Info ... 41

No initialization .. 40

Node ID .. 38, 40

Node reset ... 40

Nodeguarding / heartbeat settings .. 40

Optional device .. 40

Sync. COB ID .. 38

Write DCF .. 40

CAN stack .. 144

CAN-ID ... 27

CANopen ... 81

CANopen errors ... 89

CANopen libraries.. 32

CANopen master ... 32

Tab [CAN parameters] .. 36

CANopen network configuration, status and error handling 30

CANopen network variables .. 75

CANopen slave .. 55

Register [Service Data Objects] .. 43

Tab [CAN parameters] .. 40

CANopen status of the node ... 74

CANopen support by CoDeSys ... 31

CANopen tables ... 65

CANopen terms and implementation .. 31

Change the PDO properties at runtime ... 63

Changing the standard mapping by the master configuration 62

Check suitability for use ... 119

CiA ... 145

CiA DS 304 .. 145

CiA DS 401 .. 145

CiA DS 402 .. 145

CiA DS 403 .. 145

CiA DS 404 .. 145

CiA DS 405 .. 145

CiA DS 406 .. 145

CiA DS 407 .. 145

Clamp 15.. 145

COB ID ... 145

COB-ID .. 27

CODESYS ... 146

CODESYS CANopen libraries ... 140

Colour for bitmap graphics .. 133

Colours ... 122

Colours in the CR045n .. 133

Colours in the CR108n .. 133

Configuration of all correctly detected devices 45

Configuration of CANopen network variables 76

Configure CANopen slave ... 57

Control hydraulic valves with current-controlled outputs 104

Control outputs – description ... 97

Controlled system with delay ... 106

Controlled system without inherent regulation 106

Controlled systems with compensation ... 105

Controlled systems with delay ... 106

Controlled systems without compensation .. 106

Controller – description .. 105

Copyright.. 4

Create a CANopen project .. 34

Creation of a CSV file using a spreadsheet program 110

Creation of a CSV file using an editor ... 112

CSV file .. 146

CSV file and the ifm maintenance tool .. 109

Cultural details are often not transferable ... 122

Cycle time .. 146

Cyclical transmission of the SYNC message .. 45

158

D

Data reception ... 29

Data type.. 146

DC .. 146

Demo programs for controller .. 18

Diagnosis ... 147

Diagnosis and error handling... 143

Directives and standards ... 124

Dither .. 100, 102, 147

Dither frequency and amplitude .. 101

DLC .. 147

Do you know the future users? .. 118

DRAM .. 147

DTC .. 147

E

ECU ... 147

EDS-file .. 147

Embedded software ... 148

EMC ... 148

EMCY ... 148

EMCY error code ... 90

Emergency messages ... 90

Error

-counter.. 87

Error counter .. 87

Error message ... 87

Ethernet ... 148

EUC ... 148

Example

Detailed message documentation .. 84

list of variables ... 61

reducing a pixel image for CR108n .. 132

Short message documentation ... 85

Example Dither .. 101

Example of an object directory .. 58

F

FiFo .. 148

Files for the runtime system .. 138

Flash memory .. 149

Flash memory – what is that?.. 107

Folder structure in general ... 11

FRAM ... 149

Frequency .. 101

Function code / Predefined Connectionset ... 67

Functionality of the CANopen slave library ... 56

Functions of the CANopen libraries ... 33

G

General ..31, 116

General about CAN ... 20

General information ... 75

General information about CANopen with CODESYS 31

General overview ... 137

Global variable list

Acknowledgement ... 79

Cyclic transmission .. 79

List identifier (COB-ID) .. 78

Network type .. 78

Pack variables ... 78

Read .. 79

Transmit checksum ... 79

Transmit on change... 79

Transmit on event .. 79

Write .. 79

H

handling ... 86

Heartbeat ... 149

Heartbeat from master to the slaves ... 46

History of the instructions (SEM) ... 7

HMI .. 149

How do you set up the programming system fast and simply?
 (e.g. CR2500) ... 13

How is this documentation structured? ... 7

Hydraulic control with PWMi .. 103

I

ID ...27, 149

Identifier ... 90

IDs (addresses) in CAN ... 26

IEC 61131 .. 149

IEC user cycle .. 150

ifm CANopen libraries master / slave .. 139

ifm demo programs .. 18

ifm device libraries ... 139

Illustrations ... 123

Image size vector graphics / pixel graphics .. 132

Initialisation of the network with RESET_ALL_NODES 51

Insert CANopen slave (example

CR2500 <-- CR2011) .. 14

Instructions .. 150

Intended use .. 150

Introduction .. 8

IP address .. 150

ISO 10646 _ Information technology – Universal multiple-octet
 coded character set (UCS) .. 128

ISO 11898 .. 150

ISO 11992 .. 150

ISO 13406 _ Ergonomic requirements for work with visual
 displays based on flat panels ... 129

ISO 13407 _ Human-centred design processes for interactive
 systems .. 129

ISO 16845 .. 150

ISO 20282 _ Ease of operation of everyday products 130

ISO 7001 _ Graphical symbols – Public information symbols 124

ISO 9126 _ Software engineering – Product quality 125

ISO 9241 _ Ergonomics of human-system interaction 126

ISO 9241-11 _ Guidance on usability.. 126

ISO 9241-110 _ Dialogue principles .. 127

J

J1939 ... 150

L

Language as an obstacle .. 120

LED .. 150

Libraries

159

required by the system for CANopen ... 32

Link .. 151

LSB .. 151

M

MAC-ID .. 151

Manufacturer specific information ... 94

Master .. 151

Master at runtime ... 44

Misuse .. 151

MMI .. 151

MRAM .. 151

MSB ... 151

N

Network management (NMT) .. 71

Network management commands ... 71

Network states ... 49

Network structure ... 21

Network variables .. 81

NMT ... 151

NMT state .. 72

NMT state for CANopen master .. 72

NMT state for CANopen slave ... 73

Node .. 151

Node Guarding .. 152

Node guarding with lifetime monitoring ... 46

Notizen • Notes • Notes ... 161

O

Obj / object ... 152

Object 0x1001 (error register) ... 92

Object 0x1003 (error field) ... 92

Object directory .. 152

OBV ... 152

OPC ... 152

Operational .. 152

Overview .. 143

documentation modules for CRnnnn .. 5

Overview CANopen error codes .. 91

Overview of CANopen EMCY codes (CANx) .. 96

Overview of CANopen EMCY codes (extended page) 95

Overview of CANopen EMCY codes (standard page) 94

Overview of the files and libraries used... 136

P

participant bus off .. 88

participant error passive .. 88

Participant, error active .. 88

Particularities for network variables ... 80

PC card .. 152

PCMCIA card ... 152

PDM ... 152

PDO ... 153

PDO-Mapping

Insert .. 42

Properties .. 42

PDU ... 153

PES .. 153

PGN ... 153

Pictogram ... 153

Pictograms ... 6

PID controller ... 153

PLC configuration .. 153

PLC configuration file .. 138

Polling of the slave device type ... 45

Predefined connectionset .. 67

Pre-Op ... 153

Process image ... 154

Programs and functions in the folders of the templates (C)................ 12

Pulse width modulation .. 99

PWM .. 154

Description of the parameters ... 102

Function blocks.. 102

What does a PWM output do? .. 99

What is the dither? .. 100

PWM dither .. 102

PWM frequency ... 102

PWM functions – description ... 97

PWM signal processing – description ... 98

Q

Quick reference guide

ifm demo programs ... 9

ifm templates ... 8

R

ratiometric .. 154

RAW-CAN .. 154

Reading direction ... 123

Receiving emergency messages .. 46

Recommendations for a user-friendly product design 117

Recommendations for user interfaces... 117

remanent .. 154

Requirements for the CSV file ... 109

Reset all slaves at once ... 44

Reset of all configured slaves on the bus at the system start 44

Reset slaves one by one ... 44

ro .. 154

RTC .. 154

Runtime system ... 154

rw ... 155

S

SAE J1939 ... 155

Identifier ... 83

SD card .. 155

SDO ... 155

SDO abort code ... 69

SDO command bytes .. 68

SDOs

Change value .. 43

Self-regulating process .. 105

Self-test .. 155

Send emergency messages via the application program 64

Set up programming system via templates ... 10

Setting the baud rate of a CANopen slave .. 63

Setting the node number of a CANopen slave 63

Settings in the global variable lists .. 77

Settings in the target settings .. 76

Signalling of device errors ... 93

Slave .. 155

Special information about bitmap graphics ... 134

Specific ifm libraries ... 141

Spurs .. 22

160

Standardise the output signals of a joystick .. 103

Start all slaves at once .. 45

Start CANopen network ... 47

Start of all slaves configured without errors .. 45

Start slaves one by one ... 45

Starting the network with GLOBAL_START .. 50

Starting the network with START_ALL_NODES 50

Start-up of the network without [Automatic startup] 50

stopped .. 155

Structure of an EMCY message .. 89

Structure of CANopen messages .. 65

Structure of the COB ID ... 66

Summary CAN / CANopen / network variables 81

Supplement project with further functions ... 15

Symbols .. 123, 156

System variable ... 156

T

Tab [Base settings] .. 57

Tab [CAN settings]... 59

Tab [Default PDO mapping] .. 60

Tab [Receive PDO-Mapping] and [Send PDO-Mapping] 42

Target ... 156

Target file ... 138

TCP .. 156

Technical details on CANopen .. 30

Template .. 156

Templates and demo programs .. 8

The object directory of the CANopen master .. 52

The purpose of this library? – An introduction 103

Topology .. 21

Transfer of a CSV file with the maintenance tool 114

Transmit data ... 29

U

UDP ... 156

Use, intended ... 156

Using CAN – description ... 20

V

Variable list example.. 61

Visualisations in the device ... 116

W

watchdog.. 156

Watchdog ... 156

What are ifm demo programs? .. 9

What are ifm templates? .. 8

What are the individual files and libraries used for? 138

What do the symbols and formats mean? ... 6

What graphics are suitable for which PDM and what steps
 must be carried out? .. 135

What is a CSV file? .. 108

When is a dither useful? .. 100

Which colours are shown? .. 133

Which devices are described in this manual? ... 5

Wire cross-sections ... 24

Working with the user flash memory ... 107

161

11 Notizen • Notes • Notes

162

163

164

	1 About this manual
	1.1 Copyright
	1.2 Overview: documentation modules for CRnnnn
	1.3 Which devices are described in this manual?
	1.4 What do the symbols and formats mean?
	1.5 How is this documentation structured?
	1.6 History of the instructions (SEM)

	2 Templates and demo programs
	2.1 Introduction
	2.1.1 What are ifm templates?
	Quick reference guide: ifm templates

	2.1.2 What are ifm demo programs?
	Quick reference guide: ifm demo programs

	2.2 Set up programming system via templates
	2.2.1 About the ifm templates
	Folder structure in general
	Programs and functions in the folders of the templates (C)

	2.2.2 How do you set up the programming system fast and simply? (e.g. CR2500)
	2.2.3 Insert CANopen slave (example: CR2500 <-- CR2011)
	2.2.4 Supplement project with further functions

	2.3 ifm demo programs
	2.3.1 Demo programs for controller

	3 Using CAN – description
	3.1 General about CAN
	3.1.1 CAN: hardware
	Topology
	Network structure
	Spurs

	CAN bus level
	Bus cable length
	Wire cross-sections

	3.1.2 CAN: software
	IDs (addresses) in CAN
	COB-ID

	3.2 CAN interfaces
	3.2.1 CAN: interfaces and protocols

	3.3 CAN: exchange of data
	3.3.1 Data reception
	3.3.2 Transmit data

	3.4 Technical details on CANopen
	3.4.1 CANopen network configuration, status and error handling
	3.4.2 CANopen support by CoDeSys
	General information about CANopen with CODESYS
	CANopen terms and implementation

	3.4.3 CANopen master
	CANopen libraries
	Libraries: required by the system for CANopen
	Functions of the CANopen libraries

	Create a CANopen project
	CANopen master: Tab [CAN parameters]
	CAN parameters: Baud rate
	CAN parameters: Communication Cycle Period/Sync. Window Length
	CAN parameters: Sync. COB ID
	CAN parameters: Node ID
	CAN parameters: Automatic startup
	CAN parameters: Heartbeat

	Add and configure CANopen slaves
	CANopen slave: Tab [CAN parameters]
	CAN parameters: Node ID
	CAN parameters: Write DCF
	CAN parameters: Create all SDOs
	CAN parameters: Node reset
	CAN parameters: Optional device
	CAN parameters: No initialization
	CAN parameters: Nodeguarding / heartbeat settings
	CAN parameters: Emergency telegram
	CAN parameters: Communication cycle
	CAN parameters: Info

	Tab [Receive PDO-Mapping] and [Send PDO-Mapping]
	PDO-Mapping: Insert
	PDO-Mapping: Properties

	CANopen slave: Register [Service Data Objects]
	SDOs: Change value

	Master at runtime
	Reset of all configured slaves on the bus at the system start
	Reset slaves one by one
	Reset all slaves at once

	Polling of the slave device type
	Configuration of all correctly detected devices
	Automatic configuration of slaves
	Start of all slaves configured without errors
	Start slaves one by one
	Start all slaves at once

	Cyclical transmission of the SYNC message
	Node guarding with lifetime monitoring
	Heartbeat from master to the slaves
	Receiving emergency messages

	Start CANopen network
	Network states
	Boot up of the CANopen master
	Boot up of the CANopen slaves
	Start-up of the network without [Automatic startup]
	Starting the network with GLOBAL_START
	Starting the network with START_ALL_NODES
	Initialisation of the network with RESET_ALL_NODES
	Access to the status of the CANopen master

	The object directory of the CANopen master
	Access to the object directory (controllers)
	Access to the object directory (others)

	3.4.4 CANopen slave
	Functionality of the CANopen slave library
	Configure CANopen slave
	Tab [Base settings]
	Base settings: Bus identifier
	Base settings: Name of updatetask
	Base settings: Generate EDS file
	Example of an object directory

	Tab [CAN settings]
	Tab [Default PDO mapping]
	Example: list of variables

	Changing the standard mapping by the master configuration

	Access to the CANopen slave at runtime
	Setting the node number of a CANopen slave
	Setting the baud rate of a CANopen slave
	Access to the OD entries by the application program
	Change the PDO properties at runtime
	Send emergency messages via the application program

	3.4.5 CANopen tables
	Structure of CANopen messages
	Structure of the COB ID
	Function code / Predefined Connectionset
	SDO command bytes
	SDO abort code

	Boot-up message
	Network management (NMT)
	Network management commands
	NMT state
	NMT state for CANopen master
	NMT state for CANopen slave
	CANopen status of the node

	3.5 CANopen network variables
	3.5.1 General information
	3.5.2 Configuration of CANopen network variables
	Settings in the target settings
	Settings in the global variable lists
	Global variable list: Network type
	Global variable list: Pack variables
	Global variable list: List identifier (COB-ID)
	Global variable list: Transmit checksum
	Global variable list: Acknowledgement
	Global variable list: Read
	Global variable list: Write
	Global variable list: Cyclic transmission
	Global variable list: Transmit on change
	Global variable list: Transmit on event

	3.5.3 Particularities for network variables

	3.6 Summary CAN / CANopen / network variables
	3.7 CAN for the drive engineering
	3.7.1 Identifier acc. to SAE J1939
	3.7.2 Example: Detailed message documentation
	3.7.3 Example: Short message documentation

	3.8 CAN / CANopen: errors and error handling
	3.8.1 CAN errors
	Error message
	Error counter
	Participant, error active
	participant error passive
	participant bus off

	3.8.2 CANopen errors
	Structure of an EMCY message
	A distinction is made between the following errors:
	Emergency messages
	Identifier
	EMCY error code
	Overview CANopen error codes
	Object 0x1001 (error register)
	Object 0x1003 (error field)
	Signalling of device errors

	Manufacturer specific information
	Overview of CANopen EMCY codes (standard page)
	Overview of CANopen EMCY codes (extended page)
	Overview of CANopen EMCY codes (CANx)

	4 Control outputs – description
	4.1 PWM functions – description
	4.1.1 PWM signal processing – description
	PWM: What does a PWM output do?
	PWM: What is the dither?
	When is a dither useful?
	Dither frequency and amplitude
	Example Dither

	PWM: Function blocks
	PWM: Description of the parameters
	PWM frequency
	PWM dither

	4.1.2 Hydraulic control with PWMi
	The purpose of this library? – An introduction
	Standardise the output signals of a joystick
	Control hydraulic valves with current-controlled outputs

	4.2 Controller – description
	4.2.1 Self-regulating process
	4.2.2 Controlled system without inherent regulation
	4.2.3 Controlled system with delay

	5 Working with the user flash memory
	5.1 Flash memory – what is that?
	5.2 What is a CSV file?
	5.3 CSV file and the ifm maintenance tool
	5.3.1 Requirements for the CSV file
	5.3.2 Creation of a CSV file using a spreadsheet program
	5.3.3 Creation of a CSV file using an editor
	5.3.4 Transfer of a CSV file with the maintenance tool
	5.3.5 Access to the flash data: Function blocks

	6 Visualisations in the device
	6.1 General
	6.2 Recommendations for user interfaces
	6.2.1 Recommendations for a user-friendly product design
	6.2.2 Do you know the future users?
	6.2.3 Check suitability for use
	6.2.4 Language as an obstacle
	6.2.5 Cultural details are often not transferable
	Colours
	Symbols
	Illustrations
	Reading direction

	6.2.6 Directives and standards
	ISO 7001 _ Graphical symbols – Public information symbols
	ISO 9126 _ Software engineering – Product quality
	ISO 9241 _ Ergonomics of human-system interaction
	ISO 9241-11 _ Guidance on usability
	ISO 9241-110 _ Dialogue principles

	ISO 10646 _ Information technology – Universal multiple-octet coded character set (UCS)
	ISO 13406 _ Ergonomic requirements for work with visual displays based on flat panels
	ISO 13407 _ Human-centred design processes for interactive systems
	ISO 20282 _ Ease of operation of everyday products

	6.3 Basic information about colours and bitmap graphics
	6.3.1 Image size vector graphics / pixel graphics
	Example: reducing a pixel image for CR108n
	Adapt bitmap graphics

	6.3.2 Colour for bitmap graphics
	6.3.3 Which colours are shown?
	Colours in the CR108n
	Colours in the CR045n

	6.4 Special information about bitmap graphics
	6.4.1 Additive colour mixing
	6.4.2 What graphics are suitable for which PDM and what steps must be carried out?

	7 Overview of the files and libraries used
	7.1 General overview
	7.2 What are the individual files and libraries used for?
	7.2.1 Files for the runtime system
	7.2.2 Target file
	7.2.3 PLC configuration file
	7.2.4 ifm device libraries
	7.2.5 ifm CANopen libraries master / slave
	7.2.6 CODESYS CANopen libraries
	7.2.7 Specific ifm libraries

	8 Diagnosis and error handling
	8.1 Overview

	9 Terms and abbreviations
	Address
	Application software
	Architecture
	Baud
	Boot loader
	Bus
	CAN
	CAN stack
	CiA
	CiA DS 304
	CiA DS 401
	CiA DS 402
	CiA DS 403
	CiA DS 404
	CiA DS 405
	CiA DS 406
	CiA DS 407
	Clamp 15
	COB ID
	CODESYS
	CSV file
	Cycle time
	Data type
	DC
	Diagnosis
	Dither
	DLC
	DRAM
	DTC
	ECU
	EDS-file
	Embedded software
	EMC
	EMCY
	Ethernet
	EUC
	FiFo
	Flash memory
	FRAM
	Heartbeat
	HMI
	ID
	IEC 61131
	IEC user cycle
	Instructions
	Intended use
	IP address
	ISO 11898
	ISO 11992
	ISO 16845
	J1939
	LED
	Link
	LSB
	MAC-ID
	Master
	Misuse
	MMI
	MRAM
	MSB
	NMT
	Node
	Node Guarding
	Obj / object
	Object directory
	OBV
	OPC
	Operational
	PC card
	PCMCIA card
	PDM
	PDO
	PDU
	PES
	PGN
	Pictogram
	PID controller
	PLC configuration
	Pre-Op
	Process image
	PWM
	ratiometric
	RAW-CAN
	remanent
	ro
	RTC
	Runtime system
	rw
	SAE J1939
	SD card
	SDO
	Self-test
	Slave
	stopped
	Symbols
	System variable
	Target
	TCP
	Template
	UDP
	Use, intended
	Watchdog

	10 Index
	11 Notizen • Notes • Notes

