
System manual

Single Board Controller
(pcb controller)

CS0015

page 2

System manual single board controller, October 1999

Guarantee

This manual was written with the utmost care. However, we cannot assume any guarantee for the
contents.

Since errors cannot be avoided despite all efforts we appreciate any comment.

We reserve the right to make technical alterations to the product which might result in a change of
contents of the manual.

page 3

1. General 5

1.1. Safety instructions 5
1.2. Function and features 6
1.3. Technical data 7
1.4. Installation of the controller 9
1.5. Electrical connection 9
1.6. Protection of the controller modules 9

2. LCD display and operating elements 11

2.1. Switch S1 programming release 11
2.2. Rotary coding switch S2 11
2.3. Pushbuttons S3 ... S5 12
2.4. LCD display 12

3. States and operating system 13

3.1. Operating modes 13
3.2. Status LEDs 14
3.3. Loading the operating system 14
3.4. Operating modes 17

4. Error codes and error classes 18

4.1. Reaction to system error 18

5. CAN in the CS0015 20

5.1. Technical specifications 20
5.2. Exchange of data via CAN 20
5.3. CAN errors and error handling 22
5.4. The physical CAN link 24
5.5. General remarks on the CAN utilization 27
5.6. Description of the CAN function blocks 29
5.7. CANopen in the CS0015 36
5.8. The CS0015 as CANopen slave 40
5.9. The CS0015 as CANopen master 51
5.10. Functions for CANopen I/O modules from ifm electronic 70

6. PWM in the CS0015 83

7. Fast inputs 93

page 4

8. Functions for the integrated display 97

9. Other functions 103

9.1. Software reset 103
9.2. Save data in memory and read 104
9.3. Use of the serial interface 109
9.4. Reading the system time 112
9.5. Processing of variables 114
9.6. Real-time processing 115

10. Closed-loop control functions 117

10.1. Adjustment rule for a controller 119

11. Functions of the ecomat tdm R 360 129

11.1. Data exchange and variable definition 131
11.2. Setting and resetting of pictures and messages 136
11.3. The unit status and the LEDs 139
11.4. Unit control 146

Annex 1. Address allocation CS0015 149

Annex 1.1. Complete overview 149
Annex 1.2. Inputs and outputs 150
Annex 1.3. The flag range 151
Annex 1.4. CANopen unit interface 152
Annex 1.5. Object list 153

Annex 1.5.1. Data range communication profile, index 1000 to 1FFF 153
Annex 1.5.2. Range of manufacturer-specific data, index 2000 to 5FFF 160
Annex 1.5.3. Legend to object library 160

Annex 2. Wiring 161

page 5

1. General

1.1. Safety instructions

Observe the information of the description. Non-observance of
the notes, operation which is not in accordance with use as
prescribed below, wrong installation or handling can result in
serious harm concerning the safety of persons and plants.

The instructions are for authorised persons according to the
EMC and low voltage guidelines. The controllers must be
installed and commissioned by a skilled electrician (programmer
or service technician).

This description is part of the unit. It contains texts and drawings
concerning the correct handling of the controller and must be
read before installation or use.

Make sure that the external voltage is generated and applied in
accordance with the criteria for safe extra-low voltage (SELV) as
this can supply the connected controller, sensors and actuators
without additional measures.

The wiring of all signals in connection with the SELV circuit of
the unit must also comply with the SELV criteria (safe extra-low
voltage, safe electrical separation from other electric circuits).

If the supplied SELV voltage as an external connection to
ground (SELV becomes PELV) the responsibility lies with the
user and the respective national regulations for installation must
be complied with. All statements in these operation instructions
refer to the unit the SELV voltage of which is not grounded.

The terminals may only be supplied with the signals indicated in
the technical data or on the unit label and only the approved
accessories of ifm electronic gmbh may be connected.

The waste heat generated when operating the controller has to
escape freely, i.e. during installation sufficient convection of and
protection against hot components has to be ensured.

In the case of malfunctions or uncertainties please contact the
manufacturer. Tampering with the units can lead to
considerable risks for the safety of persons and plant. It is not
permitted and leads to the exclusion of any liability and warranty
claims.

page 6

1.2. Function and features

The single board controller ecomat 100 type CS0015 (in this
manual called CS0015) has been designed for industrial use. It
has to be installed in a housing or a control cabinet and
operated in accordance with the applicable regulations.

The controller contains integrated CMOS components which
can be destroyed by electrostatic discharge. Such discharge
can already occur when touched by hand. Measures have to be
taken to prevent or divert electrostatic discharge during
transport, mounting, programming, setting of switches and
operation of the controller.

The controller CS0015 is not approved for safety relevant
tasks in the sense of protection of persons.

The application software can easily be created by the user with
the ecolog 100plus software.

All software functions and programming processes
described in this documentation refer to the ecolog 100plus

programming software the knowledge of which is required
for this description.

The user also has to observe the software version
(especially the operating system of the CS0015 and the
function libraries) that is used. Software levels are marked
by suffixed letters in alphabetic order in the file names (e.g.
CS0015_G.M66 or TDM_C.LIB). When revising existing
application projects the user should find out about
incompatibilities between the old and the new versions.

The user is responsible for the safe functioning of the
application programs which he creates himself. If
necessary, he must additionally obtain an approval
according to the corresponding national regulations by the
relevant testing and supervisory organisations.

page 7

1.3. Technical data

Housing: open pcb

Dimensions: 162 x 126 x 75 mm (WxHxD)

Connections: voltage supply and inputs/outputs:
Phoenix Contact CMBICON RM5,08
CAN/serial interface:
Phoenix Contact MINI-CMBICON RM3,81

Operating temperature: 0°C ... +40°C

Protection rating: IP00 , degree of soiling 2

Supply voltage: UB nominal 24 V DC (-15% ... +25%)

Power consumption: ≤ 150 mA, without external load

Processor: CMOS microprocessor C 167C

Display: two LED's red and green for status and error display

Unit monitoring: watchdog (200ms)

Memory: 256 kByte program memory
256 kByte data memory (volatile)
with 1 kByte data memory protected against power failure
(256 Byte autosave)

Interfaces: CAN, version 2.0 B (ISO/DIS-11898), 10 ... 1000 kBaud
Protocol: CANopen or free communication profile
unit class: CANopen master/slave; CAN: FullCAN

serial interface RS 232 C, 9.6 kBaud
no. of participants: 2 (master/slave)

page 8

Binary inputs IN0 ... IN15

Inputs IX0.0 ... IX0.15: common reference point GND

display LED yellow

input voltage 24 C DC (nominal)
simultaneity factor 100 % at 24 V DC

50 % at 30 V DC

input level + 15 ... + 30 V DC
output level 0 ... + 5.5 V DC

(or input current < 1.5 mA)

input frequency 500 Hz (IN0 ... IN3)
25 Hz (IN4 ... IN15)

Binary outputs OUT0 ... OUT15

Outputs QX0.0 ... QX0.15: common supply voltage for 8 outputs each (X3/X4) +24 V DC.

display LED red

switching voltage 12 ... 34 V DC, nominal 24 V DC
switching current 1.1 A
simultaneity factor 100%
short-circuit protection >6 A (electronic)

output frequency max. 200 Hz

If precise specifications are observed higher currents (max.
1.9 A) can be switched.

Scale drawing:
75

S3 S4 S5

CH1CH2CH3CH4RUNPRGTSTKEY

LED
POWER

STAT

LED LED

0 • 2
•

4
•

6

•8•A

•
C

•

E •

CAN2

LED LED

S1

162

1
26

CM3 0 1 2 3 4 5 6 7 CM4 8 9 10 11 12 13 14 15

X3 X4

CM1 0 1 2 3 4 5 6 7 CM2 8 9 10 11 12 13 14 15

X1 X2 RS232 CAN1
H GND L H GND LT GND R

CM5 – +

X5

S2

LOCK

UNLOCK

page 9

1.4. Installation of the controller

The single board controller is supplied in a rail housing for
installation on a mounting rail. It can be installed on mounting
rails type TS 32 or TS 35.

Make sure that the waste heat generated during the operation of
the controller can escape.

1.5. Electrical connection

Before commissioning make sure that the following connections
have the correct potentials.

In order to ensure an improved electrical interference
oppression of the controller, interference oppression GND
X1, X2 (inputs) and X5 (power supply) can be connected
with ground (GND)
There is no connection to the GND of the controller voltage
supply via these connections.

1.6. Protection of the controller modules

The output channels are electronically protected against
overload and short circuit (> 6A) per channel. It is, however,
recommended to separately protect the individual circuits in
order to protect the whole system (cabling and controller). The
total current of 10 A of the individual output groups (max. 8
outputs - e.g. OUT0 ... OUT7) also has to be taken into account.

Designation Pin no. Potential

Supply voltage X5 + + 24 V DC
Mass X5 - GND
Interference suppression GND X5 CM5 GND
Supply voltage
outputs 0 ... 7 (High-Side)

X3 CM3 + 24 V DC

Supply voltage
outputs 8 ... 15 (High-Side)

X4 CM4 + 24 V DC

Supply voltage
outputs Low-Side
without monitoring relay

15 (GNDo) GND

Interference supp. GND inputs X1 CM1 GND
Interference supp. GND inputs X2 CM2 GND
Programming interface RS 232 (RxD) Pin 03, PC 9-pin SUB-D

(TxD) Pin 02, PC 9-pin SUB-D
(CM5) Pin 05, PC 9-pin SUB-D

CAN-Interface (CANH) CANH further participant
(CANL) CANL further participant
(CANGND) GND further participant

page 10

page 11

2. LCD display and operating elements

The CS0015 is equipped with an LCD display, three
programmable pushbuttons, a turn switch and a switch for
releasing the programming.

They can for instance be used to parameterize the machine set-
up. Due to the position of the switches directly on the printed-
circuit board handling should be by specialist personnel only.

These elements are not suitable for the permanent
operation of machine functions. In such cases one of the
dialogue units made by ifm electronic (e.g. display CR1000
with full graphics capabilities or the CS0014 data display)
should be connected via the CAN bus. These displays are
suited for the hard requirements of industrial use due to
their mechanical construction

2.1. Switch S1 programming release

With this slide switch the controller can be put in the
programming or operating mode.

In the LOCK position the operating mode is activated and the
program memory is protected against the loss of data.

If the controller is to be loaded into a new program or if a
communication connection between the controller and the
programming system ecolog 100plus has to be established, the
switch has to be in position UNLOCK.

Please note that in normal operation the switch is in
position LOCK since data loss can also be caused by
glitches, i.e. without any connection to the programming
system.

2.2. Rotary coding switch S2

The rotary coding switch can be used for selecting parameters
saved in the program (e.g. times and counts) or certain program
flows (e.g. setting-up operation). The switch can be turned by
means of a little slotted screwdriver. The switch has no
mechanical end stop.

The position of the switch 0 ... 15 (0 ... F Hex) can be scanned
via the system variable S2 (IEC address %IB2) and can be
further processed in the user program.

page 12

2.3. Pushbuttons S3 ... S5

The pushbuttons located close to the LCD display can be used
e.g. to control the display functions. Each pushbutton is
equipped with a normally-open contact.

The operation of the pushbuttons can be scanned as bit
information (TRUE) via the system variables S3 ... S5 (IEC
address %IX1.8, %IX2.0, %IX2.8) and can be further processed
in the user program.

2.4. LCD display

The CS0015 controller is equipped with an LCD display. This
display can be used e.g. for displaying operating states. All
display elements can be freely programmed via the user
program. Via the function calls LCD_SEGMENTS and
LCD_TEXT individual display segments or numbers and letters
can be shown.

The display contains the following elements:

5 x 7-segment
3 x 14-segment
8 fixed texts

The individual display segments are marked by means of
letters. The individual segment is set when the corresponding bit
is set in ARRAY.

The function STR can convert a value into a string (chain of
characters). The result of this function can be used directly as
input value for the function LCD_TEXT.

page 13

 3. States and operating system

 3.1. Operating modes

 When the supply voltage is applied, the controller module may
be in one of 5 possible operating modes:

Reset This status is run through after each power-on reset. The

operating system is initialised. Different checks are carried out.
This status is only temporary and is superseded by the run
status.

! The LEDs STAT are lit red and green for a short time

Run This status is reached:

• from the reset status (Autostart)
• from the stop status by means of the run command
 prerequisite: test mode
• with the CANopen NMT master via the function
 PREOPERATIONAL or OPERATIONAL

! The LED STAT flashes green or red (RUN with error)

Stop This status is reached:

• from the reset status if no program is loaded
• from the run status by giving the stop command via the

interface
 prerequisite: test mode

• with the CANopen NMT master via the function
 PREPARED.

! The LED STAT is constantly lit green

Fatal Error The controller passes into this status if a non-tolerable error is

found. This status can only be left via a reset.

! The LED STAT is constantly lit red.

No operating system No operating system has been loaded, the controller is in the

bootloading status. Before loading the application software a
download of the operating system must be carried out.

! The LED flashes green (fast).

page 14

 3.2. Status LEDs

These operating states are shown in red and green by means of
two status LEDs (LED STAT).

 LED colour Flash frequency Description

 green/red constantly on Reset checks

 green 5 Hz no operating system loaded

 green 0.5 Hz Run, CANopen: PREOPERATIONAL

 2.0 Hz Run, CANopen: OPERATIONAL

 constantly on Stop, CANopen: PRERPARED

 red 0.5 Hz Run w. error (CANopen: PREOPERATIONAL)

 2.0 Hz Run w. error (CANopen: OPERATIONAL)

constantly on Fatal error

 The operating states STOP (PREPARED) and RUN (PRE-
OPERATIONAL / OPERATIONAL) can be changed by the
programming system or the network master.

 The user program is processed in the RUN state. The controller
only takes part in the CANopen communication (PDO processing,
see chapter 5) when it is set to OPERATIONAL. To see the
current operating state in the application program the user can
evaluate the flag COP_PREOPERATIONAL. The flag is TRUE
when the state is PREOPERATIONAL, otherwise it is FALSE.

 3.3. Loading the operating system

 When the unit is shipped an operating system is in general not
loaded in the controller (LED STAT flashes green at 5 Hz). In
this operating state only the boot loader is active. It provides the
minimum functions for the loading process of the operating
system (e.g. the support of the serial and the CAN interface).

 In general, the download of the operating system only has to be
carried out once. The application program can then be loaded in
the controller (even several times). The advantage of this
process is that the EPROM does not need to be replaced for an
operating system update and that customer-specific operating
systems can be realised for certain applications.

 The operating system is provided together with this
documentation on a separate data carrier.

page 15

 The programmer has to ensure that the same software level
of the operating system (CS..._x.H86), of the controller
configuration (CS..._x.M66) and the unit library (CS..._x.LIB)
are used. If not, an error message is generated during the
download of the application software. Software states are
marked by suffixed letters in alphabetical order in the file
name (e.g. CS0015_G.H86). The basic file always has to be
the same.

Operating system download The operating system and the application software are loaded

directly from the programming system. The download can be
carried out via the serial and via the CAN interface. The
following points have to be observed:

New controller On delivery, the controller module does not contain an operating
system. When the supply voltage is applied it therefore goes
into the state "No operating system loaded". Only the bootloader
is active.

! For downloading activate the controller configuration screen

via the button or via the menu item Window / PLC
Configuration.

! The requested controller configuration (CS..._x.M66) is

called via the menu item Insert / Firmware.

! The connection between controller and PC can then be
established with Online / Login. The interface via which the
connection is made depends on the setting in Extras / HW-
Config (serial or CAN) and the following parameterisation of
the PC interface under Online / Communication
Parameters...

 A communication connection to the controller is only
established when a project is loaded and when this is
translated without errors.

! The download process is started by selecting the menu item

Extras / Load Hex file and selecting file (CS..._x.H86) in the
screen PLC Configuration.

 The new controller configuration file has to be used for all
application programs to be loaded in the controller.

Operating system update In general, a new operating system software can be loaded in
the controller at a later time. This process corresponds in most
parts to the one described above.

 As opposed to the delivery state of the controller, an operating
system is loaded, i.e. the controller is in the STOP or RUN
mode.

! The controller configuration of the operating system loaded

at the current time is activated so that the programming
system can establish the connection between controller and
PC.

page 16

! The controller configuration screen is activated via the button

or via menu item Window / PLC Configuration.

! The requested controller configuration (CS..._x.M66) is

called via menu item Insert / Firmware.

page 17

! The connection between controller and PC is established via
Online / Login. The serial interface for establishing the
connection depends on the setting in Extras / HW Config
(serial or CAN) and the subsequent parameterisation of the
PC interface under Online / Communication Parameters...

 It does not matter which project file is loaded (as long as
the project can be booted with routine PLC_PRG). The
translation processes started with the login can be
ignored. The system message:

 Program has changed! Do you want to download the
new program?

 can be answered with NO.

! Menu item Extras / Load Hex file in the screen PLC

Configuration deletes the current operating system in the
controller. The LED of the controller module flashes fast (5
Hz).

! Reset the controller since the online connection between PC

and controller does no longer exist after the operating
system has been deleted.

! After the reset the new operating system can be loaded. The

process is the same as for "New controller".

 The new controller configuration file now has to be used for all
application programs to be loaded in the controller from now on.

 3.4. Operating modes

Independent of the operating states the controller can be
operated in different operating modes. The control bits can be
set and reset via the application software or in programming
operation with the programming software ecolog 100plus

(window: Global Variables).

Programming This operating mode is activated when the slide switch S1 is in
position UNLOCK. In the RUN or STOP states the controller
can now accept commands via one of the interfaces. The state
of the user program can be scanned via the flag UNLOCK.

Serial Mode The serial interface is available for a data exchange in the

application. Debugging of the application software is only
possible via the CAN interface.

 This function is switched off as a default (FALSE). The state of

the user program or the programming system can be controlled
and queried via the flag SERIAL_MODE.

page 18

 4. Error codes and error classes

 In order to ensure maximum operational reliability the operating
system carries out internal error checks in the controller during
the start-up phase (reset phase) and during the program
execution.

 The following error flags are set in the case of an error:

 Error Error description
 CAN_INIT_ERROR CAN module cannot be initialised
 CAN_DATA_ERROR CAN inconsistent data
 CAN_RX_OVERRUN_ERROR CAN overrun, received data
 CAN_TX_OVERRUN_ERROR CAN overrun, transmission data
 CAN_BUS_OFF_ERROR CAN not on the bus
 CAN_ERROR CAN-Bus collective error bit
 ERROR collective error bit (general)
 ERROR_MEMORY memory error
 COP_SYNCFAIL_ERROR SYNC object was not transferred
 COP_GUARDFAIL_ERROR guarding object is missing (only in the slave)
 COP_GUARDFAIL_NODEID number of missing slave (only in the master)

 4.1. Reaction to system error

 It is the programmer's responsibility to react to error flags.

 The specific error bits should be processed in the user program
and then have to be reset. The error bit provides an error
description which can be further processed if required.

In the case of severe errors the ERROR bit can be set
additionally which also causes the LED STAT to light red and
the outputs to be switched off.

Depending on the application it has to be decided if the outputs
can be switched on again by resetting the ERROR bit.

When using CAN for communication make sure to use the
function CAN_ERRORHANDLER. This function ensures
that all CAN errors are detected as a group alarm, are
counted and CAN is started again.

page 19

Example A CAN-BUS-OFF error occurs.

 The operating system sets the CAN-BUS-OFF-ERROR bit.

 The user program detects this state by polling the
corresponding bits.

 If required the ERROR bit can be set:
As a result the operating display LED flashes red and all outputs
are switched off.

 The error is removed by restarting CAN via the function call
CAN_RESTART. The CAN-BUS-OFF-ERROR bit is deleted
automatically.

 If required the ERROR bit has to be deleted via the user
program. The LED flashes green.

page 20

 5. CAN in the CS0015

 5.1. Technical specifications

 Bus type: FULL-CAN

 Physical layer: ISO/DIS 11898

 Baud rate: 10 kBit/s ... 1 MBit/s

 Protocol: CANopen
 free protocol

 2048 data objects in the system (CAN specification 2.0B)

Identifier use 1 ... 2048 identifiers freely available for the data transfer

 From these the following identifiers are reserved:

 220 ... 221 reserved for the display tdm R 360
 223 ... 252 device identifiers of the participants
 254 device identifier of an unconfigured module
 255 identifier of the download system (e.g. PC)

System configuration The CS0015 is delivered with the device identifier 254 (ID 32) as

participant 0. The download system uses this identifier for the
first communication with an unconfigured module.

 Only one unconfigured module may be connected with the

network. After the new participant number 1 ... 30 (corresponds
to the node identifier 1 ... 30) was assigned via the programming
software, a download or debugging can be performed and
another device can be integrated into the system (also see
section 5.5).

 5.2. Exchange of data via CAN

 The exchange of data via CAN is based on the internationally
standardized CAN protocol of the data link layer (level 2) of the
7-layer ISO/OSI reference model according to ISO 11898.

 Each bus participant can send messages (multi-master
capability). The exchange of data operates similar to radio. Data
are sent to the bus without sender or address. The data are only
qualified by their identifier. It is the job of each participant to
receive the transmitted data and to check by means of the
identifier whether the data are relevant for this participant.

page 21

 This operation is automatically carried out by the CAN controller
in conjunction with the operating system. To avoid processing
each CAN message it is possible to only let a certain part of the
bus data reach the CAN controller by indicating a so-called
acceptance mask (CAN_ACCEPTANCE). The use of this
special function only makes sense if data are not relevant for
certain bus participants and time optimization in a plc module is
absolutely required for CAN processing. To employ this function
hardware knowledge of the CAN controller is necessary. This
information is provided in the manufacturer's documentation or
can be obtained from the technical support of ifm electronic
gmbh.

 For the normal exchange of data via CAN the programmer only
has to inform the system of the data objects with their identifiers
by means of the functions CAN_RECEIVE and
CAN_TRANSMIT when designing the software. Via these
functions the RAM address of the operating data, the data type
and the selected identifier are combined to form a data object.
They then participate in the data exchange via the CAN bus.
The transmit and receive objects can be defined from all valid
IEC data types (e.g. BOOL, WORD, INT, ARRAY).

 The CAN message consists of an identifier and max. 8 data
bytes. The identifier can be freely selected between 1 and 2048.
As already mentioned, it does not represent the sender or
receiver module but qualifies the message. To transmit data it is
necessary that in the sender module a transmit object is
declared and a receiver object in at least one other module.
Both declarations must be assigned to the same identifier.

Receive data In principle, the received data objects are automatically stored in

a buffer (i.e. without the user's influence).

 A buffer (queue) is available for each identifier. It is emptied by
means of the function CAN_RECEIVE to the FIFO principle
(First In, First Out) depending on the application software. In the
queue max. 30 data transmissions are stored temporarily. More
data transmissions can only be stored after the buffer has been
emptied. The reception of a new CAN message leads to an
overflow of the queue, which is indicated to the user by the
OVERFLOW bit.

Transmit data By calling the function CAN_TRANSMIT the application
program transfers exactly one CAN message to the CAN
controller. As feedback you receive the information whether the
message has been successfully transferred to the CAN
controller which then performs the actual transfer of the data to
the CAN bus.

 The transmission order is rejected if the controller is not ready

because it is in the process of transferring a data object. The
transmission order must then be repeated by the application
program. This information is indicated to the user by means of a
bit.

page 22

 5.3. CAN errors and error handling

 The error mechanisms described below are automatically
processed by the CAN controller integrated in the plc. This is not
influenced by the user. He must/should only react to errors
signalled in the application software.

 Goal of the CAN error mechanisms:

• Ensuring uniform data objects in the whole CAN network
• Permanent function of the network also in case of a faulty

CAN participant
• Distinction between temporary and permanent disturbance of

a CAN participant
• Locating and automatic switch-off of a faulty participant in 2

steps (error-passive, bus-off). This gives a temporarily
disturbed participant a "break".

 To give the interested user an overview of the operating
characteristics of the CAN controller in case of an error, a
simple description of the error handling will be given below. After
the error detection the information is processed automatically
and is available to the programmer as CAN error bits in the
application software.

Error message If a bus participant detects an error condition, it immediately

sends an error flag, thus causing the abort of the transmission
or rejection of the correct messages already received by the
other participants. This ensures that all participants are provided
with correct and uniform data. Since the error flag is transferred
immediately, the sender can immediately start to repeat the
disturbed message as opposed to other field bus systems
(which wait until a defined acknowledgement time has elapsed).
This is one of the most important features of CAN.

 One of the fundamental problems of the serial data transmission
is that a permanently disturbed or faulty bus participant can
block the whole system. This would be a danger especially for
the error handling method of CAN. To exclude this case, a
mechanism is required which detects a faulty participant and
switches it off from the bus, if necessary.

Error counters To do so, the CAN controller incorporates a transmission error

counter and a reception error counter. They are counted up
(incremented) for each erroneous transmission or reception. If a
transmission was correct, these counters are counted down
again (decremented).

 However, in case of an error these error counters are

incremented more than they are decremented in case of no
error. During a certain time period this can lead to a substantial
increase of the counts even if the number of undisturbed
messages is greater than the number of disturbed messages.
But longer time periods without errors reduce the counts again.

page 23

Thus the counts are a measure for the relative frequency of
disturbances.

 If a participant immediately detects an error it made (it is
responsible for the error), this participant is more severely
"punished" for the error than the other bus participants. To do
so, the counter is incremented by a higher amount. If the count
exceeds a certain value, it can be assumed that this participant
is faulty. To prevent this participant from further disturbing the
bus communication by means of active error messages (error-
active), it will become error-passive.

Participant, error-active An error-active participant takes part in the bus communication
without restriction and is allowed to signal detected errors by
sending the active error flag. As already described, this corrupts
the transferred message.

Participant, error-passive An error-passive participant is still capable of communicating
without restriction. But it is only allowed to signal an error it
detected by means of a passive error flag which does not
interfer with the bus operation. An error-passive participant
becomes again error-active if its count is again below a defined
value.

Participant, bus-off If the error count continues to increment, the participant is
switched off from the bus (bus-off) after a maximum count of
the participant has been exceeded.

 The bus-off state can only be removed by a reset

(CAN_RESTART) of the CAN controller.

page 24

 This is why the function CAN_ERRORHANDLER should be
used which registers all CAN error states and, if necessary,
resets the CAN controller. At the same time an error counter is
available to the application program. It could for example be
used to take further action depending on the count (e.g. error
LED).

 But a detailed error analysis can only be performed by means of

an exact evaluation of the error bits.

 5.4. The physical CAN link

 The data transmission and error handling mechanisms
described in sections 5.2 and 5.3 are directly implemented in
the CAN controller. The physical link of the individual CAN
participants is described in layer 1 in ISO 11898.

Network structure The standard ISO 11898 assumes a line-structured set-up of

the CAN network.

 In addition, the line must be fitted with a terminating
resistor of 120 ΩΩΩΩ at its two ends. In principle, ifm
electronic's devices fitted with a CAN interface have no
terminating resistors.

 Ideally, no spur should lead to the bus participants (node 1 ...
node n) because depending on the total cable length and the
transmission time reflections occur in the bus. To avoid this
leading to system errors, the spurs to a bus participant (e.g. I/O
module) should not exceed a certain length. 2 m spurs are
considered to pose no problem. The sum of all spurs in the
whole system should not exceed 30 m. In special cases the
cable lengths of the line and the spurs must be accurately
calculated.

page 25

Bus level The CAN bus is in the inactive (recessive) state if the output
transistor pairs are switched off in all bus participants. If at least
one transistor pair is switched on, a bit is sent to the bus which
then becomes active (dominant). Thus a current flows through
the terminating resistors and generates a different voltage
between the two bus cables. The recessive and dominant states
are converted into corresponding voltages in the bus nodes and
are detected by the receiver circuits.

 l

 This differential transmission with a common return line
considerably improves the transmission safety. Interfering
voltages which affect the system externally or mass potential
offsets influence both signal lines with the same interfering
quantities. They are therefore ignored when the difference is
formed.

Bus cable length The bus cable length depends on the characteristics of the bus
connection (cable, connector), the cable resistance and the
necessary transmission rate (baud rate). As described above,
the length of the spurs must also be considered for the network
design. For the sake of simplicity, the following dependence
between bus length and baud rate can be assumed.

page 26

Wire cross-sections For the design of the CAN network the wire cross-section of the
bus cable used must be taken into account. The following table
describes the dependence of the wire cross-sections on the
number of the bus participants referred to a transmission rate of
1 Mbit/s and a maximum cable length of 40 m (cable resistance
r = 70 mΩ/m).

Cable length 32 bus nodes 64 bus nodes 100 bus nodes

 100 m 0.25 mm2 0.25 mm2 0.25 mm2

 250 m 0.34 mm2 0.50 mm2 0.50 mm2

 500 m 0.75 mm2 0.75 mm2 1.00 mm2

 Depending on the EMC requirements the bus cables can be laid
in parallel or as a twisted pair with or without screen.

page 27

 5.5. General remarks on the CAN utilization

 If in connection with the plc CS0015 CAN or CANopen is used,
some points must be taken into account. They concern the
physical structure of the CAN network and the correct software
handling.

Physical network structure The following applies to the CAN network structure:

• Ensure that the selected data transmission rate is not higher
than needed. A low transmission rate increases the
operational reliability.

• The cable length must match the data transmission rate. For
CS0015 it is typically 400 m at 125 kBaud.

• Lay the bus cable in a line and avoid spurs. Ensure clean
and firm terminal locations to avoid unnecessary contact
resistance. If necessary, lay the cables as a twisted pair with
or without a screen.

• Fit both ends of the bus cable with a terminating resistor of
120 Ω.

• The higher the number of the participants in the network, the
more carefully the network must be laid out (cable version,
cable length, etc.).

Software for CAN and CANopen In principle, the CS0015 can directly take part in the CAN

communication (layer 2) by using the functions
CAN_TRANSMIT and CAN_RECEIVE. In the CANopen mode
the programmer is supplied with the defined services.

 The following points must be considered:

• In the direct CAN mode in layer 2 the programmer is
responsible for all services. The plc is in this state after a
program download or a reset command by the programming
system.

• For the direct CAN mode the cyclical integration of the
function block CAN_ERRORHANDLER is recommended.
Otherwise, the application program must perform a
CAN_RESTART in the case of BUS_OFF.

• After a program download or a reset command by the
programming system the plc is not yet a CANopen device.
 To change to the CANopen mode the flag CAN_OPEN must
be set at the start of the program. The CS0015 then
operates as a CANopen slave.

• If a CS0015 slave is stopped via the programming software,
a following node start command of the CANopen master is
ignored. However, a stop command of the master
(NMM_SET_PREPARED) is always executed.

page 28

• In case of a missing guarding reply of the CS0015 slave the
master continuously sends node resets. This can lead to
problems when logging on the programming system via the
CAN interface. In this case the master must be switched off.
If the CS0015 is also to operate as a CANopen master, it
must be initialized with the function
NMM_SET_NMT_MASTER.
 If the plc is stopped (via PC), it retains the CANopen
functions, but the master functions are interrupted (e.g. no
SYNC message).

• All participants of the CAN network must be clearly assigned
a module ID.

Device IDs in the CS0015 To communicate with the participants in the CAN network each
must have a defined device identifier. It is of no importance
whether the plc is used as network master, as CANopen slave
or for the direct CAN communication. Make also sure that the
device identifiers do not overlap with the IDs of the I/O modules.
The CS0015 is supplied with the default ID 32 (under
CANopen). In the programming software ecolog 100plus the
node ID 32 is designated as the module ID no. 0.

 Module ID
 ecolog 100plus

 Node ID
 CANopen

 Device ID
 debugger

 (default) 0 (unconf.) 32 0xFE
 1 1 0xDF
 2 2 0xE0
 3 3 0xE1
 : : :

 29 29 0xFB
 30 30 0cFC

 The device ID can be assigned online via ecolog 100plus.

page 29

 5.6. Description of the CAN function blocks

 The CAN function blocks for use in the application program will
be described below.

 To utilize the full functions of CAN it is absolutely required for
the programmer to create a precise bus concept before starting
to work. The number of the data objects with their identifiers
must be defined as well as a reaction to possible CAN errors.
Also, the frequency with which data must be transmitted has to
be taken into account. So the functions CAN_TRANSMIT and
CAN_RECEIVE must be called just as frequently. The
programmer must additionally monitor whether his transmission
orders have been passed on successfully to CAN_TRANSMIT
(bit RESULT) or must make sure that the data received are read
from the data buffer of the queue with CAN_RECEIVE and are
immediately processed in the program.

 To be able to set up a communication link the same

transmission rate (baud rate) must first be set for all participants
of the CAN network. For the CS0015 this is done with the
function CAN_BAUDRATE.

Example program An example program in function block diagram (FBD) is stored
on the program diskette ecolog 100plus (CAN3_66.PRO). In this
example data objects are exchanged with another CAN
participant via the identifiers 1 and 2. To do so, the other
participant must have a receive identifier for the transmit
identifier (or vice versa).

 The function CAN_ACCEPTANCE is not further described here
because the application requires thorough hardware knowledge
of the CAN controller. Users who need this special feature are
requested to contact the technical support.

page 30

Function CAN_BAUDRATE

Library CSxxxx.LIB

Function symbol

Purpose Sets the transmission rate for the bus participant.

Parameters Function inputs

 Function outputs, none

Description With the function CAN_BAUDRATE the transmission rate is set

for the plc module. To do so, the corresponding value in kBit/s is
indicated at the function input BAUDRATE. After the execution
of the function this new value is stored in the device and is also
available again after a power failure. The factory default for the
baud rate of the modules is 125 kBit/s.

 The function should be executed only once during the
initialization in the first program cycle. After that it is disabled
via the input ENABLE.
 The baud rate becomes immediately valid after the function
call.

 Name Data type Description
 ENABLE BOOL TRUE: The function is processed.

 FALSE: The function is not processed.
 BAUDRATE WORD Value of the baud rate to be set in kBit/s

 (10, 20, 50, 100, 125, 250, 500, 1000)

page 31

Function CAN_TRANSMIT

Library CSxxxx.LIB

Function symbol

Purpose Passes a CAN data object (message) on to the CAN controller

for transmission.

Parameters Function inputs

 Function outputs

Description CAN_TRANSMIT is called for each data object in the program

cycle, for long program cycles several times. The programmer
must ensure by evaluating the bit RESULT that his transmission
order has been accepted. It can be said that for 125 kBit/s one
transmission order can be executed every 1 ms.

 Via the bit input ENABLE the execution of the function can be
disabled temporarily. This can for example prevent a bus
overload. Also, several data objects can be sent quasi
simultaneously if each data object is assigned a flag used to
control the execution of the function via the ENABLE input.

 Name Data type Description
 ID WORD Contains the number of the data object

identifier 0 ... 2048.
 RTR BYTE Not used, therefore value 0
 DLC BYTE Number of the bytes to be transmitted from

the array DATA (permitted values 0 ... 8).
 DATA ARRAY The array contains max. 8 data bytes.
 ENABLE BOOL TRUE: The function is processed.

 FALSE: The function is not processed.

 Name Data type Description
 RESULT BOOL TRUE: The function has accepted the

 transmission order.

page 32

Function CAN_RECEIVE

Library CSxxxx.LIB

Function symbol

Purpose Configures a data reception object and reads the reception

buffer of the data object.

Parameters Function inputs

 Function outputs

Description CAN_RECEIVE must be called once for each data object during

the initialization phase to inform the CAN controller of the
identifiers of the data objects.

 In the further program cycles CAN_RECEIVE is called to read
the corresponding reception buffer, for long program cycles this
is done several times. The programmer must make sure by
evaluating the byte AVAILABLE that newly received data objects
are retrieved from the buffer and are further processed. Each
call of the function decrements the byte AVAILABLE by 1. If the
value of AVAILABLE equals 0, the buffer contains no data.

 Name Data type Description
 CONFIG BOOL For the configuration of the data object the

bit must be set TRUE once. For data
transmission to commence the CONFIG bit
must be set to FALSE.

 CLEAR BOOL Deletes the data buffer (queue).
 ID WORD Contains the number of the data object

identifier 0 ... 2048.

 Name Data type Description
 DATA ARRAY The array contains max. 8 data bytes.
 DLC BYTE The number of the transmitted bytes in

the array DATA, possible values 0 ... 8.
 RTR BYTE Is not used
 AVAILABLE BYTE Number of the messages received
 OVERFLOW BOOL TRUE: Overflow of the data buffer.

 Data loss!
 FALSE: The buffer is not yet full.

page 33

 By evaluating the bit OVERFLOW an overflowing data buffer
can be detected. If the bit OVERFLOW is set, at least 1 data
object is lost.

page 34

Function CAN_RESTART

Library CSxxxx.LIB

Function symbol

Purpose Restart of the CAN participant after "serious" transmission
errors (bus-off state).

Parameters Function inputs

 Function outputs, none

Description CAN enables a distinction between a temporary and a per-

manent disturbance of a bus participant. As described in section
5.3, three function states are available.

 If a participant is error-active, this is the normal state.

 If a certain number of transmission errors occurs, the participant
becomes error-passive. If the error frequency is reduced, the
participant becomes again error-active.

 If a participant is already error-passive and transmission errors
continue to occur, it is switched off from the bus (bus-off) and
the error flag CAN_BUS_OFF_ERROR is set. A return to the
bus is only possible with the function CAN_RESTART. The error
flag is reset after a successful return.

 The input ENABLE suppresses the execution of the function.

 Name Data type Description
 ENABLE BOOL TRUE: The function is processed.

 FALSE: The function is not processed.

page 35

Function CAN_ERRORHANDLER

Library CSxxxx.LIB

Function symbol

Purpose Minimum error routine to monitor CAN.

Parameters Function inputs

 Function outputs

Description CAN_ERRORCOUNT evaluates all possible CAN errors and

totals the number of the errors in the counter ERRORCOUNT.
In the case of a bus-off error the function tries to return the
participant to the bus. To do so, the function CAN_RESTART is
integrated.

 The programmer's job is to locate the precise error cause by

evaluating the error counter and the error bits supplied by the
system. Via the function input RESET the counter can then be
set to 0 again.

 In each application software where the CAN communication is
utilized (also for the communication with a CAN display) at least
this function should be employed and processed cyclically.

 Name Data type Description
 RESET BOOL Deletes the error counter.

 Name Data type Description
 ERROR-
COUNT

 WORD Error counter, contains the number of the
errors occurred.

page 36

 5.7. CANopen in the CS0015

 The CAN layers 1 and 2 described at the beginning of chapter 5
control the physical link and the transmission of the data
between the bus participants. For a practical CAN application
this means that the programmer is responsible for the definition
of the data protocol for the special application.

 To obtain a uniform protocol layer for networking the different
participants which describes the meaning of the transmitted
data the CAN Application Layer (CAL) was determined as layer
7. CANopen is based on CAL and defines which data are to be
transmitted by which CAL services. The meaning of the data for
the corresponding device type (I/O module, drives, encoders,
etc.) is also defined. With these definitions the application
programmer can access all components with CANopen
capability independent of the manufacturer and without much
work on the protocol. CANopen participants which belong to the
same device family have organized their data in the same way.
The characteristics of these device classes are indicated in the
"device profiles" (DS-40x).

 Despite this definition the basic CAN structure which allows
each bus participant to send messages (data) to the network is
maintained. Only the network master (NMT master) exists once
and is mainly used for running up and monitoring the system.

 The mechanisms described below are to give a rough overview
of the CANopen functions. If you wish to utilise the full CANopen
functions, please contact CAN in Automation Technical Centre.

General information on CANopen In principle, each CANopen node has an object directory which
can be accessed via "Service Data Objects" (SDOs). In
addition, there are at least two "Process Data Objects" (PDOs)
for transmitting and receiving process data, a "Node Guarding
Object" to monitor the network as well as an "Emergency
Object" to indicate error states.

 The object-oriented identifiers (11 bits) are called "CAN Object

IDs" (COB IDs) under CANopen. Via the 4 most significant bits
(MSBs) they are divided into 16 groups. The remaining 7 bits
are used to distinguish 127 CANopen nodes. This ensures a
clear assignment of the individual object types to the nodes.
This definition is a default assignment.

page 37

 It is defined in the "predefined connection set”. Whether this
default is adhered to or not depends on the corresponding
application. To ensure a high flexibility as regards the selection
of CANopen devices from different manufacturers you should
carefully consider whether non-adherence is required.

 Object Code
 (binary)

 COB IDs
 (decimal)

 Default function

 NMT 0000 0000000 0 Network managem.
 SYNC 0001 0000000 128 Synchronization
 EMCY 0001 xxxxxxx 129 - 255 Error states
 TIME STAMP 0010 0000000 256 Network time
 PDO1(tx) 0011 xxxxxxx 385 - 511 Synchronous PDO
 PDO1(rx) 0100 xxxxxxx 513 - 639 Synchronous PDO
 PDO2(tx) 0101 xxxxxxx 641 - 767 Asynchronous PDO
 PDO2(rx) 0110 xxxxxxx 769 - 895 Asynchronous PDO
 SDO(tx) 1011 xxxxxxx 1409 - 1535 Master->slave SDO
 SDO(rx) 1100 xxxxxxx 1537 - 1663 Slave->master SDO
 Nodeguarding 1110 xxxxxxx 1793 - 1919 Node/life guarding

The object directory All node parameters are stored in the object directory of the

corresponding CANopen node. To ensure a clear identification a
directory entry is marked by an index (IDX, length 16 bits) and a
subindex (SUBIDX, length 8 bits). Depending on the parameter
type they are stored in the individual index areas. The meaning
of the individual indexes for the communication and standard
parameters are defined for the individual device types in the
CANopen standard. In addition, an area for manufacturer-
specific data is available. In this area the configuration
parameters for the I/O modules from ifm electronic gmbh are for
example stored.

 Index (hex) Object
 0000 Not used
 0001 - 009F Data types
 00A0 - 0FFF Reserved
 1000 - 1FFF Area for the communication profile
 2000 - 5FFF Area for the manufacturer-specific data
 6000 - 9FFF Area for standard device parameters
 A000 - FFFF Area for gen. IEC1131 network variables

Service Data Object (SDO) A read and write access to the object directory is achieved via

the "Service Data Objects" (SDOs).

 The SDOs are used for all data in CANopen which are not time
critical. In principle, they are only transmitted from point to point
(network master / slave). The SDOs are chiefly used to transmit
the configuration data of the CAN participant during the booting
phase.

page 38

Process Data Object (PDO) The time critical process data are transferred by means of the
"Process Data Objects" (PDOs). The PDOs can be exchanged
between the individual nodes in any way (PDO linking). It is also
defined whether the data exchange is event-controlled
(asynchronous) or synchronized. Depending on the type of data
to be transferred the right choice of the transmission type can
considerably relieve the amount of data transmitted on the CAN
bus. The default setting of the I/O modules from ifm electronic
gmbh specifies a synchronous transmission of analog input data
and all output data and an event-controlled transmission of
digital input data.

Node Guarding Object To detect communication errors in the network node guarding is

used. Each bus node is cyclically accessed by the network
master via the defined node guarding COB ID. If no reply is
given within the defined guard time, the master signals an error.
Via the life time (life time factor x guard time) it can also be
defined after how many unsuccessful attempts the error
message is to be created.

Emergency Object If an internal error occurs in a bus participant (e.g. wrong

configuration parameter, short circuit at the output) an EMCY
object is created. This EMCY object is standardized and is sent
once when the error occurs and once when the error state has
disappeared.

 In the object directory of the node these errors are stored. To do

so, the "error register", the "manufacturer-specific status
register" and the "error history" are available.

page 39

Boot-up routine During the boot-up routine the network master allows the
network to run up. In this process the master is informed of the
most important communication parameters and, if necessary,
guarding is activated. During the boot-up routine the
configuration parameters should also be transferred. The node
should be in the "pre-operational" state.

State Description
 6 Start remote node indication
 7 Stop remote node indication
 8 Enter pre-operational state indication
 10 Reset node indication
 11 Reset communication indication
 12 Initialization finished - enter pre-operational automatically

 To ensure a successful boot-up routine at least the node
number and baud rate of the CAN participant must be set. The
baud rate of the master must conform to this. This setting is
done via DIP switches in the node or an additional parameter
setting software. Since the plc CS0015 also allows a description
of the object directory via the SDOs, setting can also be done
via the plc.

 To ensure that the CS0015 operates in the CANopen mode
the flag CAN_OPEN must be set to TRUE at the program
start (during the initialization).

page 40

 5.8. The CS0015 as CANopen slave

 The CS0015 can also be used as a programmable input/output
module under CANopen. It behaves like a CANopen slave. As
CANopen slave the CS0015 is classified as a "programmable
device" according to CiA DS 405.

 To use the CS0015 as CANopen slave the system bit
CAN_OPEN must be set.

Object directory The device parameters can be accessed via the object
directory. If they are identified as read/write, they can be
changed via SDO_WRITE and by the NMT master or by an
external parameter setting system.

 The object directory in the CS0015 has three main areas. The
CANopen communication parameters are stored as from index
1000 hex.
 As from index 2000 hex the manufacturer-specific data of baud
rate and node number are stored.
 As from index A000 hex starts the area for the general IEC1131
network variables. They are transferred via the PDOs. The
identifiers and the transmission types of the PDOs are entered
in this area.
 For the exact structure of the object directory see point 1.6 in
the appendix.

Baud rate and node number The baud rate and node number are entered in the
manufacturer-specific area of the object directory from index
20F0 / 20F1 hex and 20F2 / 20F3 hex. The baud rate or node
number can be changed via a SDO by the master, a function
call or the programming system. If the change is made via
SDO_WRITE, both entries in the object directory must have the
same contents. The change of the baud rate only becomes valid
after a reset, that of the node ID at once.

 On no account are two participants with the same node
number allowed in the network.

 Index Subindex Name Default value
 20F0 0 Node ID 32
 20F1 0 Node ID 32
 20F2 0 Baud rate 3
 20F3 0 Baud rate 3

page 41

 For setting the baud rate the following parameters are allowed:

Retentive data Via the manufacturer-specific area of the object directory it is

possible to transfer a max. 256-byte data block to the CS0015
slave by means of SDO_WRITE. These data are stored in the
flash memory in a non-volatile way and can be further
processed in the application program via the retain addresses
%MB0 ... %MB255 (%MW0 ... %MW127). Thus this data area
is available as freely defined parameter set.

PDOs In the "predefined connection set” to CiA DS 401 the first two

RX and TX PDOs are defined depending on the node number.
With these PDOs 16 data bytes each can be sent and received.
If more PDOs are required, they must be "manually" defined in
the application program by means of the functions
PDO_RX_CONFIG and PDO_TX_CONFIG. The identifiers
must then be assigned in rising order from 380 hex. If the
"predefined connection set" is not used, the COB IDs for PDO 1
and PDO 2 must also start from 380 hex. A total of 2 x 8 PDOs
can be set up.

 Since the COB IDs for the PDOs are not stored (exception PDO
1 and 2 in the "predefined connection set") they must be re-
initialized once for all PDOs in the initialization routine after each
start of the plc. In principle, the PDO IDs which are not included
in the "predefined connection set" have the same default in all
devices (RX PDOs from 380 hex, TX PDOs from 388 hex). They
must therefore be reconfigured with PDO_TX/RX_CONFIG if
several CS0015 slaves are used. Otherwise there would be
conflicts with the IDs.

 RX-PDO ID TX-PDO ID
 RX-PDO 1 pred. c. set TX-PDO 1 pred. c. set
 RX-PDO 2 pred. c. set TX-PDO 2 pred. c. set
 RX-PDO 3 382 hex TX-PDO 3 38A hex
 RX-PDO 4 383 hex TX-PDO 4 38B hex
 RX-PDO 5 384 hex TX-PDO 5 38C hex
 RX-PDO 6 385 hex TX-PDO 6 38D hex
 RX-PDO 7 386 hex TX-PDO 7 38E hex
 RX-PDO 8 387 hex TX-PDO 8 38F hex

 Number Baud rate (kBit/s)
 0 1000
 1 500
 2 250
 3 125
 4 100
 5 50
 6 20
 7 10

page 42

PDO mapping A conventional PDO mapping is not possible in the CS0015
since this is not necessary for a plc.

 Via the application program the data relevant to the CANopen
network can be directly written into the PDOs or read from them.
Network variables in the area from %MW 2000 for the received
data and from %MW 2032 for the data to be transmitted can be
immediately processed by the application program (see
appendix 1.5). Thus 8 x 4 transmission words (TX-PDOs) and
8 x 4 reception words (RX-PDOs) are available to the user.

Monitoring the PDO reception The detection whether new data have been transferred is not
supported by CANopen. If this function is required, it must be
created by the programmer. This can be done as follows:

• Write the signature in the receive object
• PDO contains a toggle bit or consecutive number
• Use the function block CAN_RECEIVE

Transmission types The transmission types SYNC, i.e. synchronous transmission
after a PDO SYNC object or ASYNC, i.e. transmission after a
change of the network variables (event due to a change) are
supported. The COB ID of the sync object can be configured.

The indication of an inhibit time can delay the sending of
ASYNC objects. So considerably fluctuating process values can
cause an extremely high bus load in the case of an event-
controlled evaluation. If the inhibit time is indicated, the next
PDO cannot be sent to the bus before the time has elapsed.
If strategically important values are to be transferred in the
ASYNC mode, a single transmission may not be safe enough.
Via the function block PDO_TX_REFRESH the important PDO
can be repeated from time to time.

As default setting all PDOs are transmitted after a data change
(ASYNC mode).

Node guarding If a CS0015 is accessed by the NMT master once by means of
a guarding object, it is fully controlled by the NMT master by
means of the cyclical node guarding. If the CAN communication
is disturbed, a guarding error message is created in the
NMT master. Also, in the CS0015 CANopen slave the flag
COP_EVENT_GUARDFAIL is set.

The programmer must evaluate these error messages in his
software, specially for critical applications.

page 43

ResetNode If a ResetNode is triggered by the CANopen master, a complete
restart of the CS0015 slave would normally have to be carried
out (as for a watchdog reset for example). To achieve a higher
flexibility, this is controlled by the application program for
CANopen.
The flag COP_EVENT_RESETNODE = TRUE tells the user
whether a reset was triggered. If it is necessary, the user can
then call the function block SOFTRESET. After that the flag
must be reset.
In the CS0015 master a long guard time or lifetime must be set
to compensate for the long reset phase of the slave.

Emergency objects If an error occurs in the CS0015 CANopen slave, it is
transferred to the master in an emergency object. The COB ID
of the EMCY object can be configured.

The emergency objects (consisting of 8 data bytes) are split up
in three parts according to CANopen.

1. Emergency code (error code, EMCY), byte 0 and byte 1
2. Error register (error reg.), byte 2
3. Data (additional information), byte 3 ... byte 7

The following errors are transferred:

EMCY code Error reg. Description
0x1000 Bit 0 Error (general), output ERROR set,

LED red
0x2100 Bit 1 Wire break
0x2300 Bit 1 Short circuit, overload, too high

temperature
0x3200 Bit 2 Error undervoltage / overvoltage
0x4000 Bit 3 Error device temperature (> 85°C)
0x8100 Bit 4 Guarding error, no guard object

received
0x8200 Bit 4 SYNC error, no Sync object

received

EMCY code Data byte Description
0x2100 Byte 3 Wire break bit QX0.0 ... QX0.7

Byte 4 Wire break bit QX0.8 ... QX0.15
Byte 5 Wire break bit QX0.16 ... QX0.23

0x2300 Byte 3 Short circuit bit QX0.0 ... QX0.7
Byte 4 Short circuit bit QX0.8 ... QX0.15
Byte 5 Short circuit bit QX0.16 ... QX0.23

0x8200 Byte 3 Bit 0, CAN error
Byte 3 Bit 1, SYNC error

page 44

Function NMS_SET_NODEID

Library COB.LIB

Function symbol

Purpose The node ID of the CANopen slave is set.

Parameters Function inputs

Function outputs, none

Description Via the function NMS_SET_NODEID the node number of the
CANopen slave can be set during the initialization. To do so, the
function is called once. Via the function input ENABLE the
execution of the function is controlled.

As NODEID a number between 1 and 30 can be indicated.

With the execution of the function the node ID becomes
immediately valid. This also immediately changes the TX
and RX PDOs of the "predefined connection set" which
depend on the node ID. The node ID remains valid until it is
set again via the function call or the programming system.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODEID BYTE Number of the identifier (1 ... 30)

page 45

Function NMS_GUARDING_CONFIG

Library COB.LIB

Function symbol

Purpose The guard time for a CS0015 CANopen slave is set.

Parameters Function inputs

Function outputs, none

Description Via the function NMS_GUARDING_CONFIG the permitted
times for the node guarding and the SYNC objects can be set in
the CS0015 CANopen slave during the initialization. To do so,
the function is called once. The execution of the function is
controlled by the function input ENABLE.

If within the specified times the corresponding objects (for node
guarding possibly x number of the lifetime cycles) are not
received by the CS0015 slave, the corresponding error bits
(COP_GUARDFAIL_ERROR and COP_SYNCFAIL_ERROR)
are set. They must then be evaluated by the application
program.

Also, the flag COP_SYNC can be evaluated. It is always TRUE
for precisely one cycle.

The specified times must be a little longer than the times
set in the master.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
GUARDTIME TIME Time between two monitoring calls

0 ms = no monitoring
1ms .. 65535ms = monitoring time

LIFETIME BYTE Number of the permitted erroneous
monitoring calls

CYCLEPERIOD TIME Time between two SYNC objects
0 ms = no monitoring
1ms ... 65535ms = monitoring time

page 46

Function PDO_TX_CONFIG

Library COB.LIB

Function symbol

Purpose Initializes a transmit PDO in the CS0015 CANopen slave.

Parameters Function inputs

Function outputs, none

Description PDO_TX_CONFIG initializes a transmit PDO for the CANopen
slave. This function must be executed once during the
initialization with ENABLE = TRUE. After that ENABLE must be
set to FALSE.

At the function input PDO the corresponding number from 1 ... 8
is indicated.

PDOs which are not to be utilized via the "predefined connection
set" must start with an identifier from 380 hex. Otherwise, this
can lead to overlapping with other system identifiers. As
transmission types (TRANS_TYPE) the modes SYNC (1) and
ASYNC (255) are available. If a transmission is not to be carried
out for each SYNC object, a value between 1 and 240 (number
of the SYNC objects between two accesses) can be entered.

To ensure data transmission in the SYNC mode the SYNC ID of
the master and the slave must match. As default value no
SYNC ID is entered for the slave.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
PDO BYTE Number of the TX-PDO (1 ... 8)
ID WORD Identifier of the TX-PDO (from 380 hex)
TRANS_TYPE BYTE Type of PDO transmission

The types SYNC (0,1 ... 240) and
ASYNC (255) are supported.

INHIBIT_TIME TIME Delay times for the asynchronous
transmission mode (0 ... 65535ms)

page 47

If necessary, the INHIBIT_TIME (waiting time) must be indicated
in the ASYNC mode. Otherwise, considerably fluctuating values
can lead to an extremely high bus load.

If strategically important values are to be transmitted in the
ASYNC mode, a single transmission may not be safe enough.
Via the function block PDO_TX_REFRESH the important PDO
can be repeated from time to time.

The default for all TX PDOs is asynchronous transmission.

If the function PDO_TX_CONFIG is used in a CANopen
master, it must be processed before the execution of the
function NMM_SET_NMT_MASTER because it triggers an
internal CANopen reset. This leads to the loss of the master
functions. This is why the initialization must be performed
in two steps (start the master booting one cycle later - see
example program).

page 48

Function PDO_RX_CONFIG

Library COB.LIB

Function symbol

Purpose Initializes a receive PDO in the CS0015 CANopen slave.

Parameters Function inputs

Function outputs, none

Description PDO_RX_CONFIG initializes a receive PDO for the CANopen
slave. This function must be executed once during the
initialization with ENABLE = TRUE. After that ENABLE must be
set FALSE.

At the function input PDO the corresponding number from 1 ... 8
is indicated.

PDOs which are not to be utilized via the "predefined connection
set" must start with an identifier from 380 hex. Otherwise, this
can lead to overlapping with other system identifiers. As
transmission types (TRANS_TYPE) the modes SYNC (1) and
ASYNC (255) are available. If a transmission is not to be carried
out for each SYNC object, a value between 1 and 240 (number
of the SYNC objects between two accesses) can be entered.

To ensure data transmission in the SYNC mode, the SYNC ID
of the master and the slave must match. As default value no
SYNC ID is entered for the slave.

The default for all RX-PDOs is asynchronous transmission.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
PDO BYTE Number of the RX-PDO (1 ... 8)
ID WORD Identifier of the RX-PDO (from 380 hex)
TRANS_TYPE BYTE Type of the PDO transmission

The types SYNC (0, 1 ... 240) and
ASYNC (255) are supported.

page 49

If the function PDO_RX_CONFIG is used in a CANopen
master, it must be processed before the execution of the
function NMM_SET_NMT_MASTER because it triggers an
internal CANopen reset. This leads to the loss of the
master functions. This is why the initialization must be
carried out in two steps (start the master booting one
cycle later - see example program).

page 50

Function PDO_TX_REFRESH

Library COB.LIB

Function symbol

Purpose A sent TX-PDO is transmitted once more.

Parameters Function inputs

Function outputs, none

Description Especially if strategically important values are to be transmitted
in the ASYNC mode, a single transmission may not be safe
enough. Via the function block PDO_TX_REFRESH the
important PDO can be repeated from time to time.

The function must not be executed in each cycle because this
would lead to CAN overload. The execution can therefore be
controlled via the function input ENABLE.

At the function input PDO the corresponding number from 1 ... 8
is indicated.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
PDO BYTE Number of the TX-PDO (1 ... 8)

page 51

5.9. The CS0015 as CANopen master

A typical CANopen network has a network master. The
functions which will be described below provide all fundamental
services to design a master software for the plc CS0015. By
using the functions the slave nodes can be integrated into the
CAN network, configured and monitored. For a simple
introduction to CANopen (especially in applications which "only"
require a decentralized extension of the input/output level) the
two functions COP_MSTR_BOOTUP and COP_MSTR_MAIN
were created in the programming language ST. They use the
functions presented below. Details will be given in section 5.10.

To ensure that the CS0015 operates as CANopen master the
flag CAN_OPEN must be set to TRUE at the program start
(during the initialization) and the function
NMM_SET_NMT_MASTER must be called once.

page 52

Function NMM_SET_NMT_MASTER

Library COB.LIB

Function symbol

Purpose Initializes the plc module as master.

Parameters Function inputs

Function outputs, none

Description NMM_SET_NMT_MASTER initializes the plc as CANopen
master. If this function is not called, the plc only operates as a
"normal" CANopen participant (slave) in the network.

The network master is responsible for the configuration and
monitoring of the network. In a CANopen network only one NMT
master, i.e. a master with management function is allowed.

The programmer's job is to evaluate all status information
provided by the NMT master to operate a safe network.

If the functions PDO_RX_CONFIG and PDO_TX_CONFIG
are used in a CANopen master, they must be processed
before the execution of the NMM_SET_NMT_MASTER
function because they trigger an internal CANopen reset.
This leads to the loss of the master functions. This is why
the initialization must be carried out in two steps (start the
master boot-up one cycle later - see example program).

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.

page 53

Function NMM_ADD_NODE

Library COB.LIB

Function symbol

Purpose Initializes a guarding object for the specified node.

Parameters Function inputs

Function outputs

Description NMM_ADD_NODE initializes the CANopen node and a
guarding object in the NMT master. The lifetime factor
determines how often an erroneous call is allowed. The function
must be called once for each node during the initialization. An
example is stored in the file NMT_MSTR.PRO.

The node guarding is not executed before having been started
via the function NMM_START_GUARDING.

The programmer's job is to locate the exact error cause and to
react depending on the application by evaluating the guarding
and the other error bits provided by the system.

If a node is not initialized with NMM_ADD_NODE, it cannot
be accessed either by other master functions (e.g.
SDO_WRITE) independent of the missing node guarding.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODE BYTE Node number from 1 ... 127
GUARDTIME TIME Time between two monitoring calls
LIFETIME BYTE Number of the permitted erroneous

monitoring calls

Name Data type Description
RESULT BYTE Result: 0 = successful

1 = not successful
2 = invalid parameters

page 54

Function NMM_START_GUARDING

Library COB.LIB

Function symbol

Purpose Starts the node guarding for one or all initialized nodes.

Parameters Function inputs

Function outputs

Description NMM_START_GUARDING starts the node guarding for an
individual node or all connected nodes (whole network). To do
so, a guarding object must first be initialized for the specified
CANopen node with NMM_ADD_NODE.

The programmer's job is to locate the exact error cause and to
react depending on the application by evaluating the guarding
and the other error bits provided by the system.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODE BYTE All initialized nodes: 0

Initialized node: 1 ... 127

Name Data type Description
RESULT BYTE Result: 0 = successful

2 = invalid parameters

page 55

Function NMM_STOP_GUARDING

Library COB.LIB

Function symbol

Purpose Stops the node guarding for one or all initialized nodes.

Parameters Function inputs

Function outputs

Description NMM_STOP_GUARDING stops the node guarding for an
individual node or all connected nodes (whole network).

If the node guarding is disabled, the plc no longer detects a
missing node.

The programmer's job is to locate the exact error cause and to
react depending on the application by evaluating the guarding
and the other error bits provided by the system.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODE BYTE All initialized nodes: 0

Initialized node: 1 ... 127

Name Data type Description
RESULT BYTE Result: 0 = successful

2 = invalid parameters

page 56

Function NMM_NODE_GUARDING

Library COB.LIB

Function symbol

Purpose The function calls the monitoring of all initialized CANopen
nodes.

Parameters Function inputs

Function outputs

Description NMM_NODE_GUARDING organizes the node guarding for all
initialized nodes in the whole network. The function must be
called cyclically. If several nodes are missing, they are indicated
one after the other. The node guarding is only executed if the
network monitoring was started with the function
NMM_START_GUARDING. The AUTO-RESTART function
input allows the automatic start of a node by the master after a
guarding error. If AUTO_RESTART is set to TRUE, the node is
automatically set again to "operational" after a NODE_RESET. If
the input is set to FALSE, the node remains in the "pre-
operational" state.

Working with AUTO_RESTART = TRUE is recommended.

If the node guarding is disabled, the plc no longer detects a
missing node.

The programmer's job is to locate the exact error cause and to
react depending on the application by evaluating the guarding
and the other error bits provided by the system.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
AUTO_RE-
START

BOOL TRUE: The monitored node is auto-
matically set to operational
after a guarding error.

FALSE: The node remains in the pre-
operational state.

Name Data type Description
RESULT BYTE Result: 0 = successful

 > 0 = missing nodes
 0xFF = erroneous call

page 57

Function NMM_SET_PREOPERATIONAL

Library COB.LIB

Function symbol

Purpose Sets an individual node or the whole network to the "pre-
operational" state.

Parameters Function inputs

Function outputs

Description NMM_SET_PREOPERATIONAL sets the specified node or the
whole network to the "pre-operational" state (also see section
5.7). After the initialization of one (or all) network node(s), it is
normally set to the "pre-operational" state. In this state the node
(or the nodes) can communicate with the NMT master
responsible for the network management only via the SDOs.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODE BYTE All initialized nodes: 0

Initialized node: 1 ... 127

Name Data type Description
RESULT BYTE Result: 0 = successful

1 = transmission error
2 = invalid parameters

 255 = NMT master not active

page 58

Function NMM_SET_OPERATIONAL

Library COB.LIB

Function symbol

Purpose Sets an individual node or the whole network to the "operational"
state.

Parameters Function inputs

Function outputs

Description NMM_SET_OPERATIONAL sets the specified node or the
whole network to the "operational" state (also see section 5.7).
After the initialization of one or all network nodes the
"operational" state is reached after the "pre-operational" state. In
this state the node (or the nodes) can communicate with the
NMT master responsible for the network management and with
all other network participants via all communication services
(SDOs and PDOs).

The network master too must be set once to the "operational"
state to start a correct communication.

Name Data type Description
ENABLE BOOL TRUE: The function is processed

FALSE: The function is not processed
NODE BYTE All initialized nodes: 0

Initialized node: 1 ... 127

Name Data type Description
RESULT BYTE Result: 0 = successful

1 = transmission error
2 = invalid parameters

 255 = NMT master not active

page 59

Function NMM_SET_PREPARED

Library COB.LIB

Function symbol

Purpose Sets an individual node or the whole network to the state
"prepared".

Parameters Function inputs

Function outputs

Description NMM_SET_PREPARED sets the specified node or the whole
network to the state "prepared" (also see section 5.7). In this
state the node (or the nodes) no longer participates in the PDO
communication. Also, it is no longer possible to communicate
via the SDOs.

.
This state is often utilized for user-specific needs, for example
to temporarily switch off one or all participants from the bus. The
state "prepared" can only be removed by the functions
NMM_SET_PREOPERATIONAL / NMM_SET_OPERATIONAL.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODE BYTE All initialized nodes: 0

Initialized node: 1 ... 127

Name Data type Description
RESULT BYTE Result: 0 = successful

 1 = transmission error
 2 = invalid parameters
 255 = NMT master not active

page 60

Function NMM_GET_NODE_STATE

Library COB.LIB

Function symbol

Purpose Returns the network status of a CANopen node.

Parameters Function inputs

Function outputs

Description NMM_GET_NODE_STATE returns the current network status
(pre-operational, operational, prepared) of one or all nodes. The
value results from the CANopen specification.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODE BYTE All initialized nodes: 0

Initialized node: 1 ... 127

Name Data type Description
STATE BYTE Status to the CANopen specification
RESULT BYTE Result: 0 = successful

 2 = invalid parameters
 255 = NMT master not active

127 State pre-operational
5 State operational
4 State prepared

page 61

Function NMM_RESET_NODE

Library COB.LIB

Function symbol

Purpose Resets the application and communication parameters for one
or all nodes to the default values.

.
Parameters Function inputs

Function outputs

Description NMM_RESET_NODE performs a reset for the node called (or
all nodes in the network). All non-volatile data remain stored in
the node. After the reset the node passes in the normal
initialization routine.

The exact operating characteristics after a reset are described
in the device-specific documents.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODE BYTE All initialized nodes: 0

Initialized node: 1 ... 127

Name Data type Description
RESULT BYTE Result: 0 = successful

 1 = transmission error
 2 = invalid parameters
 255 = NMT master not active

page 62

Function NMM_RESET_COMM

Library COB.LIB

Function symbol

Purpose Resets the communication parameters for one or all nodes to
the default values.

Parameters Function inputs

Function outputs

Description NMM_RESET_COMM performs a reset for the node called (or
all nodes in the network) for the CAN interface. All non-volatile
data remain stored in the node.

The exact operating characteristics after a reset are described
in the device-specific documents.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODE BYTE All initialized nodes: 0

Initialized node: 1 .. 127

Name Data type Description
STATE BYTE Status to CANopen specification
RESULT BYTE Result: 0 = successful

 1 = transmission error
 2 = invalid parameters
 255 = NMT master not active

page 63

Function PDO_INI_SEND_SYNC_OBJ

Library COB.LIB

Function symbol

Purpose Initializes the PDO SYNC object for the synchronous scanning
of I/O data.

Parameters Function inputs

Function outputs, none

Description PDO_INI_SEND_SYNC_OBJ initializes the SYNC object for the
synchronous scanning of data in the CANopen network (also
see section 5.7 Process Data Objects). The function must be
called once during the initialization. Via the function
PDO_SEND_SYNC_OBJ the SYNC object is then transmitted.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.

page 64

Function PDO_SEND_SYNC_OBJ

Library COB.LIB

Function symbol

Purpose Sends the synchronization object.

Parameters Function inputs

Function outputs

Description PDO_SEND_SYNC_OBJ sends a SYNC object to the CANopen
network. SYNC objects are used for the synchronous scanning
of data (also see section 5.7 Process Data Objects). This
function must be called cyclically. As shown in the example the
time is controlled by means of the two system flags
COP_PRESYNC and COB_SYNC.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.

Name Data type Description
RESULT BOOL TRUE: The function was processed

successfully.

page 65

Function EMC_GET_EMERGENCY

Library COB.LIB

Function symbol

Purpose Read the CANopen emergency object.

Parameters Function inputs

Function outputs

Description The function EMC_GET_EMERGENCY scans the error data of
the connected network nodes. As soon as new data are
available the output RECEIVED is set to TRUE for one cycle.
The error occurred can then be analysed by scanning the node
number (NODE), the error code (VALUE) and the error register
(REGISTER). In addition, the DATA output provides the
manufacturer-specific node information. For the I/O modules
from ifm electronic you are for example informed of a wire break
or short circuit at the outputs.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.

Name Data type Description
RECEIVED BOOL TRUE: New error data available
NODE BYTE Node number
VALUE WORD Error code of the emergency object
REGISTER BYTE Error register to index 0x1001
DATA ARRAY Manufacturer-specific error information

page 66

Function SDO_READ

Library COP.LIB

Function symbol

Purpose Reads the SDO with the specified indexes from the node.

Parameters Function inputs

Function outputs

Description With the function SDO_READ the entries in the object directory
can be read. This allows a selective reading of the node
parameters. To be able to utilize this function the node must be
in the state "pre-operational" or "operational".

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODE BYTE Node number
IDX WORD Index in the object directory
SUBIDX WORD Subindex referred to the index in the object

directory
LENGTH WORD Length of the entry in number of bytes

Name Data type Description
RESULT BYTE 0 Function inactive

1 Function execution finished
2 Function active

DATA ARRAY Data read (array, length 0 ... 255)

page 67

The input ENABLE controls the execution of the function. But
since with each call of the function the data array is transferred,
the function is a load for the plc cycle even in case of
ENABLE=FALSE. This is why SDO_READ should be skipped if
the function is not utilized.

The value for LENGTH should conform to the length of the
expected data object.

page 68

Function SDO_WRITE

Library COP.LIB

Function symbol

Purpose Writes the SDO with the specified indexes to the node.

Parameters Function inputs

Function outputs

Description With the function SDO_WRITE the entries can be written in the
object directory. This allows a selective setting of the node
parameters. To be able to utilize this function the node must be
in the state "pre-operational" or "operational".

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NODE BYTE Node number
IDX WORD Index in the object directory
SUBIDX WORD Subindex referred to the index in the object

directory
LENGTH WORD Length of the entry in "number of bytes"
DATA ARRAY Transmission data (array, length 0 ... 255)

Name Data type Description
RESULT BYTE 0 Function inactive

1 Function execution finished
2 Function active

page 69

The input ENABLE controls the execution of the function. But
since with each call of the function the data array is transferred,
the function is a load for the plc cycle even in case of
ENABLE=FALSE. This is why SDO_WRITE should be skipped
if the function is not utilized.

The value for LENGTH must conform to the length of the
transmission array. Otherwise, the SDO communication is
disturbed.

page 70

5.10.Functions for CANopen I/O modules from
ifm electronic

A control solution for an application very often consists of a
central plc and one or several decentralised input/output
modules. In such applications the central plc is at the same time
the network master (see section 5.9). To allow the user a simple
design of such applications the functions described below can
be used.

If the user wants to use the complete CANopen
functionality he will have to refer to the functions described
in the chapters before in which case the functions
described below become obsolete.

COP_MSTR_BOOTUP and COP_MSTR_MAIN were
intentionally written in the language ST. So they can be
extended or modified, if this is desired (source code
NMT_MSTR.PRO).

The other functions are specially used for the configuration and
evaluation of the I/O modules from ifm electronic. With the
functions SLAVE_CRxxxx_CONFIG the programmer can
directly set the node configuration of the inputs and outputs via
the application software or read it from a selected node.

With the functions SLAVE_CRxxxx_WORK the input and output
data (digital and analog) are exchanged (read and write) by
means of the cyclical call via a defined flag area. These flag
addresses enable a direct access to the process data in the
application. The flag addresses are organized as follows:

Address Bit address Meaning

%MW1010 1st slave, 1st connection, analog I/O data
%MX1010.0 1st slave, 1st connection, digital I/O data

%MW1011 1st slave, 2nd connection, analog I/O data
%MX1011.0 1st slave, 2nd connection, digital I/O data

%MW1012 1st slave, 3rd connection, analog I/O data
%MX1012.0 1st slave, 3rd connection, digital I/O data

: : :

%MW1017 1st slave, 8th connection, analog I/O data
%MX1017.0 1st slave, 8th connection, digital I/O data

%MW1020 2nd slave, 1st connection, analog I/O data
%MX1020.0 2nd slave, 1st connection, digital I/O data

%MW1021 2nd slave, 2nd connection, analog I/O data
%MX1021.0 2nd slave, 2nd connection, digital I/O data

: : :
%MW1327 32nd slave, 8th connection, analog I/O data

%MX1327.0 32nd slave, 8th connection, digital I/O data

page 71

The last position of the word address describes the connection
of the node no. 1 - 8 (0 - 7), the second and third position the
node number 1 - 32 (1 - 20 hex). As standard, the predefined
address area is rated for 32 I/O modules.

Basic program structure To utilize the I/O modules in a control application the following
program structure can be used. In a standard application it
supports the use of up to 31 I/O modules. As the 32nd
participant the plc CS0015 configured as network master
(NMT master) is connected. A node with the address 0 is not
allowed because this address is used for the system-wide
controlling of all nodes (also see NMM_NMT functions in section
5.9).

Program step 1 COP_MSTR_BOOTUP
The function initializes the plc as master and the connected
nodes. It is only executed in the booting phase. In this function
the flag CAN_OPEN is set to TRUE.

Program step 2 COP_MSTR_MAIN
Due to its cyclic call the function creates the SYNC object for
the synchronous transmission of the I/O data.

Program step 3 SLAVE_CRxxxx_CONFIG
Slave configuration for each connected I/O node.
After a successful configuration this function is again de-
activated.

Program step 4 NMM_SET_OPERATIONAL
A call with the parameter NODE = 0 sets the whole network
(also the NMT master) to the operational mode. This function
may only be executed once.

Program step 5 SLAVE_CRxxxx_WORK
Due to the cyclical call of the function the I/O data of the slave
modules are written to or read from the defined flag area of the
CS0015.

Program step 6 EMC_GET_EMERGENCY
The function provides the emergency (error) data of the
connected nodes.

The example program EA_SLAVE.PRO in the directory
DEMO\CS0015 shows the software structure for two nodes. It
can serve as the basis for extending an application software. If
only one slave node is connected to the CS0015, all function
calls for the second node must be removed. This program also
includes some other master functions (e.g. SDO_READ,
SDO_WRITE). These functions enable online communication
with the connected slaves via the programming system.

page 72

Function COP_MSTR_BOOTUP

Library NMT_MSTR.LIB

Function symbol

Purpose Initializes the plc module as CANopen NMT master and all
connected I/O nodes.

Parameters Function inputs

Function outputs

Description COP_MSTR_BOOTUP sets the CS0015 to the CANopen mode
and initializes the plc as NMT master. At the same time the
master is informed of the number of the connected nodes
(NO_NODE) with the defined guard time (GUARDTIME and
LIFETIME factor). After the booting operation (> 2 s) the
function output DONE is set to TRUE.

After a successful booting the execution of the function must be
disabled via the input ENABLE.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NO_NODE BYTE Number of the connected nodes without

NMT master
GUARDTIME TIME Guard time for node monitoring
LIFETIME BYTE Lifetime factor for node monitoring

Name Data type Description
DONE BOOL FALSE: BOOTUP is still active

TRUE: BOOTUP is finished

page 73

Function COP_MSTR_MAIN

Library NMT_MSTR.LIB

Function symbol

Purpose Cyclically generates the SYNC object and monitors the
connected nodes

Parameters Function inputs

Function outputs

Description COP_MSTR_MAIN must be cyclically executed in the program.
This generates the SYNC object for the connected slave
modules. The network is monitored at the same time. If a slave
fails, the number of the node is entered in the array RESULT.
Thus max. 8 errors can be stored. They are entered in the order
of their occurrence. The error memory can be deleted again via
the function input RESET_GUARDING.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
NO_NODE BYTE Number of the connected nodes without

NMT master
SYNC_TIME TIME Time between two SYNC objects for the

synchronous scanning of data
AUTO_
OPERA-
TIONAL

BOOL TRUE: The monitored node is automa-
tically set to "operational" after
a guarding error.

FALSE: The node remains in the "pre-
operational" state.

RESET_
GUARDING

BOOL TRUE: Delete the guarding error register

Name Data type Description
RESULT ARRAY The error register can store max. 8

undetected nodes.

page 74

Via the function input AUTO_OPERATIONAL the automatic
restart of a node can be selected after a guarding error. If
AUTO_OPERATIONAL is set to TRUE, the corresponding node
is set again to the mode OPERATIONAL after removal of the
disturbance. Thus it directly participates again in the PDO
exchange (I/O data are read and written). In the case of
AUTO_OPERATIONAL = FALSE the node remains in the state
"pre-operational" after the removal of the disturbance. It must
then be set selectively to the state "operational" via the NMT
master (function NMM_SET_OPERATIONAL).

If fast operations are to be processed, the SYNC times must be
adapted. They can only be changed in the source code
(NMT_MSTR.PRO).

page 75

Function SLAVE_CR2010_CONFIG

Library CSxxxx.LIB

Function symbol

Purpose Sets parameters for or reads the configuration of an I/O module.

Parameters Function inputs

Name Data type Description
NODE_ID BYTE Node number
CHANNEL_1 BYTE Configuration parameter for channel 1

0 = OFF, 1 = binary input
CHANNEL_2 BYTE Configuration parameter for channel 2

0 = OFF, 2 = binary output
3 = analog input, 4 = analog output

CHANNEL_3 BYTE Configuration parameter for channel 3
0 = OFF, 1 = binary input

CHANNEL_4 BYTE Configuration parameter for channel 4
0 = OFF, 2 = binary output
3 = analog input, 4 = analog output

CHANNEL_5 BYTE Configuration parameter for channel 5
0 = OFF, 1 = binary input

CHANNEL_6 BYTE Configuration parameter for channel 6
0 = OFF, 2 = binary output
3 = analog input, 4 = analog output

CHANNEL_7 BYTE Configuration parameter for channel 7
0 = OFF, 1 = binary input

CHANNEL_8 BYTE Configuration parameter for channel 8
0 = OFF, 2 = binary output
3 = analog input, 4 = analog output

PWM_FRQ BYTE PWM frequency in Hz (20 ... 200 Hz)
READ BOOL Read current module configuration
WRITE BOOL Write current module configuration

page 76

Function outputs

Description The function SLAVE_CR2010_CONFIG sets or reads the I/O
configuration parameters of the 8-channel modules from ifm.
The requested configuration is set with the parameters. To
check the execution of the function the inputs READ or WRITE
should remain set until the function output CFG_RESULT has
the value 1. If the data have not yet been updated or if they
cannot be read or written, the function output CFG_RESULT
has the value 0.

The parameters can be assigned to the function during the run
time of the application program. A function block is not
necessary for each node.

Name Data type Description
CFG_RESULT BYTE 1 = The configuration has been read

or written successfully.
2 = The configuration has not yet

been read or written.
CHANNEL_1_ BYTE Current configuration parameters for

channel 1
CHANNEL_2_ BYTE Current configuration parameters for

channel 2
CHANNEL_3_ BYTE Current configuration parameters for

channel 3
CHANNEL_4_ BYTE Current configuration parameters for

channel 4
CHANNEL_5_ BYTE Current configuration parameters for

channel 5
CHANNEL_6_ BYTE Current configuration parameters for

channel 6
CHANNEL_7_ BYTE Current configuration parameters for

channel 7
CHANNEL_8_ BYTE Current configuration parameters for

channel 8

page 77

The configuration data for the I/O module only become active in
the state "pre-operational". If the configuration is performed in
the state "operational", the new settings do not become valid
before passing into the mode "pre-operational" -> "operational".

This function has to be called once with READ = TRUE to
initialise the controller. Without this call the controller
cannot process the I/O data of the module.

The function SLAVE_CR2010_CONFIG corresponds exactly
to the function SLAVE_8_CONFIG. For new applications
pleases use only the function containing the article
number.

page 78

Function SLAVE_CR2010_WORK

Library CSxxxx.LIB

Function symbol

Purpose Writes or reads the I/O data of a module

Parameters Function inputs

Function outputs

Description With the function SLAVE_CR2010_WORK the I/O data for the
8-channel modules from ifm are updated. To do so, this function
must be called once for each node in the program cycle. In the
first program cycle the input INIT must additionally be set to
TRUE once. Thus the operating system of the plc is informed of
the configured modules.

The function SLAVE_CR2010_WORK corresponds exactly
to the function SLAVE_8_WORK. For new applications
please use only the function containing the article number.

Name Data type Description
ENABLE BOOL TRUE: The function is processed.

FALSE: The function is not processed.
INIT BOOL TRUE: The function is initialized.

FALSE: The data are updated
NODE BYTE Node number

Name Data type Description
RESULT BOOL The function was executed successfully.

page 79

Function SLAVE_CR2011_CONFIG

Library CSxxxx.LIB

Function symbol

Purpose Parameterizes or reads the configuration of an output module.

Parameters Function inputs

Name Data type Description
NODE_ID BYTE node number
CHANNEL_1_2 BYTE Config. parameter for channel 3/4

0 = OFF, 2 = binary output
4 = analog outp. (PWM)., 5 = analog
outp. (current regulated)

CHANNEL_3_4 BYTE Config. parameter for channel 3/4
0 = OFF = binary output
4 = analog outp. (PWM)., 5 = analog
outp. (current regulated)

CHANNEL_5_6 BYTE Config. parameter for channel 3/4
0 = OFF, 2 = binary output
4 = analog outp. (PWM)., 5 = analog
outp. (current regulated)

CHANNEL_7_8 BYTE Config. parameter for channel 3/4
0 = OFF, 2 = binary output
4 = analog outp. (PWM)., 5 = analog
outp. (current regulated)

PWM_FRQ BYTE PWM frequency in Hz (20 ... 200 Hz)
READ BOOL read current module config.
WRITE BOOL write current module config.

page 80

Function outputs

Description The function SLAVE_CR2011_CONFIG sets or reads the
configuration parameters of the ifm 8-channel output modules.
The requested configuration is set via the parameters. To check
the function flow the inputs READ or WRITE should remain set
until value 1 appears at the function output CFG_RESULT. If
the data are not the current data or have not yet been updated
or if they cannot be written or read value 0 appears at the
function output CFG_RESULT.

The parameters can be allocated to the function for the run of
the application program.

The configuration data for the I/O module are only accepted in
the "pre-operational" state. When the configuration is carried
out in the state "operational" the new settings only become valid
after switching into the mode "pre-operational" and then into
"operational".

The function has to be called once with READ = TRUE to
initialize the controller. Without this call the controller
cannot process the I/O data.

Name Data type Description
CFG_RESULT BYTE 1 = configuration was successfully

read or written
2 = configuration not yet read or

written
CHANNEL_1_2_ BYTE current configuration parameters for

channel 1/2
CHANNEL_3_4_ BYTE current configuration parameters for

channel 3/4
CHANNEL_5_6_ BYTE current configuration parameters for

channel 5/6
CHANNEL_7_8_ BYTE current configuration parameters for

channel 7/8

page 81

Function SLAVE_CR2011_WORK

Library CSxxxx.LIB

Function symbol

Purpose Writes or reads the I/O data of a module

Parameters Function inputs

Function outputs

Description The SLAVE_CR2011_WORK updates the data for the ifm 8-
channel output module. For this purpose the function has to be
called once per program cycle for each node. In addition, in the
first program cycle the input INIT has to be set to TRUE once.
Thus the configured modules are introduced to the operating
system of the controller.

The input/output date are transferred to the defined flag ranges
as described above. For modules of type CR2011 it has to be
noted that the analog set values (PWM value or current) are
entered as signed values. According to the sign the left or right
socket of the output pair (1/2, 3/4, 5/6 7/8) is triggered.

Name Data type Description
ENABLE BOOL TRUE: function is processed

FALSE: function is not processed
INIT BOOL TRUE: function is initialized

FALSE: data are updated
NODE BYTE node number

Name Data type Description
RESULT BOOL The function was executed successfully

page 82

The data are organised as follows:

One or several output pairs configured as digital outputs:

One or several output pairs configured as analog output (PWM):

One or more output pairs configured as analog output (current
regulated):

Please note that the selected configuration always applies
to two outputs (1/2, 3/4, 5/6 or 7/8).

Address Bit address Description
%MW1010 1st slave, 1st connection

%MX1010.0 1. Slave, 1st connection, digital output
1st slave, 1st connection, digital output

%MW1011 1st slave, 2nd connection
%MX1011.0 1st slave, 2nd connection, digital output

%MW1012 1st slave, 3rd connection
%MX1012.0 1st slave, 3rd connection, digital output

: : :

%MW1017 1st slave, 8th connection
%MX1017.0 1st slave, 8th connection, digital output

Address Chan Description
%MW1010 1 1st slave, value > 0; channel 1; value < 0 channel 2
%MW1011 2

����������
���������� no entry
����������

%MW1012 3 1st slave, value > 0; channel 3; value < 0 channel 4
%MW1013 4

����������
no entry

����������
����������

%MW1014 5 1st slave, value > 0; channel 5; value < 0 channel 6
%MW1015 6

����������
����������

no entry

����������

%MW1016 7 1st slave, value > 0; channel 7; value < 0 channel 8
%MW1017 8

����������
����������

no entry

����������

Address chan Description
%MW1010 1 1st slave, set value > 0; chan. 1; set value < 0 chan. 2
%MW1011 2 actual value of the channel in mA
%MW1012 3 1st slave, set value > 0; chan. 3; set value < 0 chan. 4
%MW1013 4 actual value of the channel in mA
%MW1014 5 1st slave, set value > 0; chan. 5; set value < 0 chan. 6
%MW1015 6 actual value of the channel in mA
%MW1016 7 1st slave, set value > 0; chan. 7; set value < 0 chan. 8
%MW1017 8 actual value of the channel in mA

page 83

6. PWM in the CS0015

PWM is an abbreviation for Pulse Width Modulation. In the field
of controllers it is mainly used for triggering proportional valves
(PWM valves) and drives. Furthermore, an analog output
voltage can be generated from the pulse-width modulated
output signal by adding (accessory) a PWM output.

The PWM output signal is a pulsed signal between GND and
supply voltage. The pulse/break ratio is varied within a defined
period (PWM frequency). The current flowing through the
connected load depends on the pulse/break ratio.

The PWM function of the controller CS0015 is a hardware
function provided by the µcontroller. In order to use the 8
integrated PWM outputs of the controller they need to be
initialised in the user program and to be parameterised in
accordance with the requested output signal.

The outputs 0 ... 7 (connector X3) can be used as PWM
channel in the controller CS0015.

page 84

PWM or PWM100 Depending on the application and the requested resolution you
can choose between the functions PWM and PWM100 when
programming the application. If the application requires a high
accuracy and resolution, the more technical PWM function is
used rather than the PWM100.

If the implementation time is to be kept low and if there are no
high demands with regard to accuracy the function PWM100
can be used. In this function the PWM frequency can be
entered in Hz and the pulse/break ratio in 1% steps.

PWM frequency Each type of valve requires a certain PWM frequency. The
frequency for the PWM function is transferred via the reload
value (function PWM) or directly as a figure in Hz (function
PWM100). The controller CS0015 has 2 x 4 PWM outputs
which differ in their operation, but not in their effects.

The PWM frequency is achieved by means of an internal
counter based on the CPU cycle. The counter is started when
the PWM function is initialised. Depending on the PWM output
group (0..3 or 4...7) the counter either counts down from FFFF
Hex or up from 0000 Hex. When a comparative value (VALUE)
has been reached the output is set. The output is reset when
the counter overflows (count changes from 0000 Hex to FFFF
Hex or from FFFF Hex to 0000 Hex) and the process is
restarted.

If the internal counter does not run between 0000 Hex and
FFFF Hex another preset value (RELOAD value) for the internal
counter can be transferred. This increases the PWM frequency.
The comparative value has to be within the newly defined range.

PWM channels 0 ... 3 These four PWM channels offer the highest flexibility during
parameterisation. An independent PWM frequency (RELOAD
value) can be set for each channel, and it is possible to select
between the functions PWM or PWM100.

page 85

Calculating the RELOAD value

The reload value of the internal PWM counter is calculated as
follows based on the input DIV64:

DIV64 = 0: fPWM = 10.00 MHz / Reload
DIV64 = 1: fPWM = 156.25 kHz / Reload

The input DIV64 has to be set to 0 or 1 depending on whether a
high or a low PWM frequency is required. For PWM frequencies
< 152 Hz DIV64 has to be set to 1 so that the reload value does
not get bigger than FFFF Hex.

Example

The PWM frequency should be 200 Hz.

 10 MHz
Reload value ⇒ ----------- = 50000 ⇒ C350 Hex

 200 Hz

The permissible range for the PWM value is

from 0000 Hex to C350 Hex

The comparative value at which the output switches has to be
between 0000 Hex and C350 Hex.

This results in the following pulse / break ratios:

minimum pulse / break ratio (0 % on): C350 Hex
maximum pulse / break ratio (100 % on): 0000 Hex

50000 intermediate values (PWM values) are possible between
maximum and minimum.

PWM channels 4 ... 7 These four PWM channels can only be set to a common PWM
frequency. The functions PWM and PWM100 must not be
mixed during programming.

page 86

Calculation of the RELOAD value

The reload value of the internal PWM counter is calculated as
follows based on the input DIV64:

DIV64 = 0: fPWM = 2.50 MHz / (10000 Hex - Reload)
DIV64 = 1: fPWM = 156.25 kHz / (10000 Hex - Reload)

The input DIV64 has to be set to 0 or 1 depending on whether a
high or a low PWM frequency is required. For PWM frequencies
< 39 Hz DIV64 has to be set to 1 so that the reload value does
not get smaller than 0000 Hex.

Example

The PWM frequency should be 200 Hz.

 2.5 MHz
 ----------- = 12500 ⇒ 30D4 Hex

 200 Hz

Reload value ⇒ 10000 Hex - 30D4 Hex = CF2C Hex

The permissible range for the PWM value is

from CF2C Hex to FFFF Hex

The comparative value at which the output switches has to be
between CF2C Hex and FFFF Hex.

The PWM frequency is the same for all PWM outputs.
Functions PWM and PWM100 must not be mixed.

This results in the following pulse / break ratios:

minimum pulse / break ratio (0 % on): FFFF Hex
maximum pulse / break ratio (100 % on): CF2C Hex

12500 intermediate values (PWM values) are possible between
maximum and minimum.

PWM dither In some hydraulic valve types the PWM frequency has to be
superimposed by a so-called dither frequency (jitter frequency).
If these valves were triggered with a constant PWM value over a
longer period of time they might stick due to the high system
temperatures. To prevent this, the PWM value is increased or
decreased by a defined value (DITHER_VALUE) based on the
dither frequency. As a result, the constant PWM value is
superimposed by a beat with the dither frequency and the
amplitude DITHER_VALUE. The dither frequency is stated as a
ratio (divider, DITHER_DIVIDER) of the PWM frequency

page 87

The function PWM_DITHER has to be initialised once for each
PWM output with DELTA selected individually. The dither
frequency can be different for channels 0...3, it has to be the
same for channels 4...7.

Ramp function If you do not want a hard change from one PWM value to the
next (e.g. from 15% on to 70% on, see graphics in this chapter)
you can e.g. use the PT1 function (see chapter 9) to achieve a
delayed increase. This can also be accomplished by counting
up step by step to the new set value in the application software.
This way hydraulic systems can e.g. be soft started.

Program example A program example for the PWM functions of the ecomat
CS0015 is saved on the program diskette ecolog 100plus.

The PWM function of the controller CS0015 is a hardware
function provided by the processor. When the PWM
function is initialized at one of the outputs (0 ... 3 or 4 ... 7)
the function remains set until a hardware reset (switching
on and off of the supply voltage) has been carried out at the
controller.

When the PWM function is activated at one of the outputs 0
... 3 or 4 ... 7, all four outputs in the group are switched in
the PWM mode which means that these outputs are no
longer available as digital outputs. With the PWM function
the switching characteristics of the digital output can be
emulated with PWM-maximal (100%) and PWM-minimal
(0%) if necessary.

The maximum PWM frequency depends on the output
transistors used. For the CS0015 it is 200 Hz. Higher
frequencies lead to high imprecisions.

page 88

Function PWM

Library CSxxxx.LIB

Function symbol

Purpose The function is used to initialise and parameterise the PWM
outputs.

Parameters Function inputs

Function outputs, none

Description Function PWM has more than just a technical background. Due
to their construction the PWM values can be read out at a very
high resolution, so that this function is suitable for high-accuracy
proportional control.

Function PWM is called up once for each channel during
initialisation of the user program. Input INIT has to be set to
TRUE. During initialisation the parameter RELOAD is
transferred.

Name Data type Description
INIT BOOL TRUE: PWM output is initialised

FALSE: PWM is allocated new values
RELOAD WORD value to define the PWM frequency
DIV64 BOOL CPU cycle / 64
CHANNEL BYTE current PWM channel/output
VALUE WORD current PWM value
CHANGE BOOL TRUE: new PWM value is taken over

FALSE: changed PWM value has no
influence on the output

DITHER_
VALUE

WORD amplitude of the dither value

DITHER_
DIVIDER

WORD dither frequency = PWM frequency/DIVIDER

page 89

The RELOAD value has to be the same for channels 4...7.
The functions PWM and PWM100 must not be mixed.

The PWM frequency (and thus the RELOAD value) is
internally limited to 10 kHz.

The input DIV64 has to be set to 0 or 1 depending on whether a
high or low PWM frequency is required.

While the program is running INIT must be set to FALSE. The
function is called and the new PWM value is transferred. The
value is accepted when input CHANGE = TRUE.

PWM_DITHER is called up once for each channel during the
initialisation of the user program. Input INIT has to be set to
TRUE. During initialisation the DIVIDER (divisor) for establishing
the dither frequency and DELTA are transferred.

The DIVIDER value has to be the same for channels 4...7.
DELTA can be set individually for each channel.

page 90

Function PWM100

Library CSxxxx.LIB

Function symbol

Purpose The function is used to initialised and parameterise the PWM
outputs.

Parameters Function inputs

Function outputs, none

Description Function PWM100 allows a simple use of the PWM functions.
The PWM frequency can be stated directly in Hz and the pulse
/break ratio in 1% steps. This function is not suited for setting up
high-accuracy proportional controls.

Function PWM100 is called up once for each channel during the
initialisation of the user program. The input INIT has to be set to
TRUE. During initialisation the parameter FREQUENCY is
transferred.

The FREQUENCY value has to be the same for channels
4...7. The functions PWM and PWM100 must not be mixed.

The PWM frequency is internally limited to 10 kHz.

Name Data type Description
INIT BOOL TRUE: PWM100 is initialised

FALSE: PWM100 is allocated new values
FREQUENCY WORD PWM frequency in Hz
CHANNEL BYTE current PWM channel/output
VALUE BYTE current PWM value
CHANGE BOOL TRUE: new PWM value is accepted

FALSE: changed PWM value has no
influence on the output

DITHER_
VALUE

BYTE amplitude of the dither value in percent

DITHER_
FREQUENCY

WORD dither frequency in Hz

page 91

While the program is running INIT must be set to FALSE. The
function is called up and the new PWM value is transferred. The
value is accepted if input CHANGE = TRUE.

PWM_FREQUENCY is called up once for each channel during
the initialisation of the user program. Input INIT has to be set to
TRUE. During initialisation the frequency and the value
(DITHER_VALUE) are transferred.

The PWM_FREQUENCY value has to be the same for
channels 4...7. DITHER_VALUE can be set individually for
each channel.

page 92

page 93

7. Fast inputs

The controller ecomat R 360 has a total of 4 fast inputs which
can process input frequencies up to 500 Hz. Apart from
measuring the frequency at the inputs FRQ0...FRQ3 the inputs
ENC0 and ENC1 can also be used to evaluate encoders
(counter functions).

The functions FREQUENCY, CYCLE and INC_ENCODER are
available for simple evaluation.

If the fast inputs of the controller CS0015 are used as
"normal" digital inputs the increased sensitivity to noise
has to be taken into account (e.g. contact bouncing in the
case of mechanical contacts). The standard digital input
has an input frequency of 50 Hz. If required, the input signal
has to be debounced by means of the software.

Input Connection Description
FRQ 0/ENC 0 X1, In 1 frequency measurement / channel A,

encoder 1
FRQ 1/ENC 0 X1, In 2 frequency measurement / channel B,

encoder 1
FRQ 2/ENC 1 X1, In 0 frequency measurement / channel A,

encoder 2
FRQ 3/ENC 1 X1, In 3 frequency measurement / channel B,

encoder 2

page 94

Function FREQUENCY

Library CSxxxx.LIB

Function symbol

Purpose The function FREQUENCY measures the signal frequency at
the defined channel.

Parameters Function inputs

Function output

Description FREQUENCY measures the frequency of the signal at the
selected channel (CHANNEL). The positive edge is evaluated.
Depending on the time base (TIMEBASE) frequency
measurements can be carried out over a wide range. High
frequencies require a short time base, lower frequencies require
a longer time base. The frequency is stated in Hz. For low
frequencies the function FREQUENCY causes imprecisions. To
avoid those, the function CYCLE can be used.

Only the inputs FRQ0...FRQ3 can be used for function
FREQUENCY.

Name Data type Description
INIT BOOL TRUE: FREQUENCY is initialised

FALSE: frequency measurement active
CHANNEL BYTE input number (0 ... 3)
TIMEBASE TIME time basis

Name Data type Description
F WORD frequency in Hz

page 95

Function CYCLE

Library CSxxxx.LIB

Function symbol

Purpose The function CYCLE measures the period (cycle time) in ms at
the defined channel.

Parameters Function inputs

Function output

Description CYCLE measures the cycle time of the signal at the selected
channel (CHANNEL). The rising edge is evaluated. In the case
of low frequencies the function FREQUENCY causes
imprecisions. To avoid these, the function CYCLE can be used.
The cycle time is displayed in ms.

The maximum measurement range is 65535 ms (= 15 Hz).

For the function CYCLE only the inputs FRQ 0 ... FRQ 3 can be
used.

Name Data type Description
INIT BOOL TRUE: CYCLE is initialised

FALSE: in the cyclical program run
CHANNEL BYTE number of the input (0 ... 3)

Name Data type Description
C WORD cycle time in ms

page 96

Function INC_ENCODER

Library CSxxxx.LIB

Function symbol

Purpose Up/down counter to evaluate encoders

Parameters Function inputs

Function outputs

Description The function INC_ENCODER is an up/down counter. Two
frequency inputs form an input pair which is evaluated via the
function. A total of 2 incremental encoders can be connected.

The counter can be set to a preset value via PRESET_VALUE.
The value is accepted when PRESET is set to TRUE. PRESET
then has to be reset to FALSE so that the counter becomes
active. Output COUNTER shows the current count.

The outputs UP and DOWN show the current count direction of
the counter. The outputs are TRUE when the counter has
counted in the direction in question in the previous program
cycle. When the counter stops the directional output is reset in
the following program cycle.

Name Data type Description
INIT BOOL TRUE: INC_ENCODER is initialised

FALSE: counter is active
CHANNEL BYTE number of the input pair (0,1)
PRESET_
VALUE

WORD preset counter value

PRESET BOOL TRUE: preset value is accepted
FALSE: counter is active

Name Data type Description
COUNTER WORD actual value
UP BOOL TRUE: counter counts up
DOWN BOOL TRUE: counter counts down

page 97

8. Functions for the integrated display

Function LCD_SEGMENTS

Library CSxxxx.LIB

Function symbol

Purpose The function LCD_SEGMENTS triggers the segments in the
display.

Parameters Function inputs

Function outputs, none

Description With the function LCD_SEGMENTS the individual segments on
the integrated display can be triggered. When the bit is set and
the input CHANGE is set to to TRUE the segments are set.
When input CHANGE is set to FALSE, the changes are not
effective.

LCD_SEGMENTS

CHANGE
DIGITS
LETTERS
BLINK
STATES
POINTS

Name Data type Description
CHANGE BOOL TRUE: The new values are transferred to

the display.
DIGITS ARRAY According to the set bit, the segment in

question is triggered. One array element is
available for each figure (array length 0...5
byte).

LETTERS ARRAY According to the set bit the segment in
question is triggered. One array element is
available for each letter (array length 0...2
word)

BLINK BYTE Exactly one bit is assigned to each figure or
letter. For each letter one array element is
available (array length 0...2 word).

STATES BYTE Triggering of the fixed display symbols.
When the bit is set, the element is triggered.

POINTS BYTE Triggering of fixed decimal points. One
point is assigned to each figure. When the
bit is set, the point is triggered.

page 98

Allocation of the segments, attributes, symbols and decimal
points to the individual bits (bit 0 corresponds to the LSB):

Bit Digit 1-5 Letter 1-3 Flash Symbol Point
0 e d Digit 1 CH1 Digit 1
1 f e Digit 2 CH2 Digit 2
2 d f Digit 3 CH3 Digit 3
3 g l Digit 4 CH4 Digit 4
4 a j Digit 5 RUN Digit 5
5 g Letter 1 PRG
6 c m Letter 2 TST
7 b h Letter 3 KEY
8

����������������������������
���������������������������� a

�����������������������
�����������������������

����������������������������
����������������������������

����������������������
����������������������

9
����������������������������
���������������������������� n

�����������������������
�����������������������

����������������������������
����������������������������

����������������������
����������������������

10
����������������������������
���������������������������� k

�����������������������
�����������������������

����������������������������
����������������������������

����������������������
����������������������

11
����������������������������
���������������������������� i

�����������������������
�����������������������

����������������������������
����������������������������

����������������������
����������������������

12
����������������������������
����������������������������

�����������������������
�����������������������

����������������������������
����������������������������

����������������������
����������������������

13
����������������������������
���������������������������� c

�����������������������
�����������������������

����������������������������
����������������������������

����������������������
����������������������

14

����������������������������
���������������������������� b

�����������������������
�����������������������

����������������������������
����������������������������

����������������������
����������������������

15

����������������������������
����������������������������

�����������������������
�����������������������

����������������������������
����������������������������

����������������������
����������������������

bit not used��������������������
��������������������

 invalid range

page 99

Function LCD_TEXT

Library CSxxxx.LIB

Function symbol

Purpose With the function LCD_TEXT a string of maximum 8 digits can
be directly transferred to the display.

Parameters Function inputs

Function outputs, none

Description With the function LCD_Text text with a maximum length of 8
digits can be displayed. Values (e.g. from calculations) have to
be converted into text (String) first by means of the function
STR. The string elements are shown on the individual display
elements according to the formatting.

Please remember that letters can only be shown
insufficiently on the 7-segment elements.

Changes are accepted when input CHANGE is set to TRUE.
When input CHANGE is set to FALSE the modifications do not
become effective.

LCD_TEXT

CHANGE
TEXT
BLINK
STATES
POINTS

Name Data type Description
CHANGE BOOL TRUE: The new values are transferred to

the display..
TEXT STRING A text with the maximum length of 8 digits

can be displayed.
BLINK BYTE Exactly one bit is assigned to each figure or

letter. When the bit is set, that position
flashes.

STATES BYTE Triggering of fixed display symbols. When
the bit is set, the element is triggered.

POINTS BYTE Triggering of fixed decimal points. One
point is assigned to each digit. When the bit
is set, the point is triggered.

page 100

Assignment of attributes, symbols and decimal points to the
individual bits (bit 0 corresponds to the LSB):

Bit Flash Symbol Point
0 Digit 1 CH1 Digit 1
1 Digit 2 CH2 Digit 2
2 Digit 3 CH3 Digit 3
3 Digit 4 CH4 Digit 4
4 Digit 5 RUN Digit 5
5 Letter 1 PRG
6 Letter 2 TST
7 Letter 3 KEY

bit not used

page 101

Function STR

Library CSxxxx.LIB

Function symbol

Purpose The function STR converts a value into a string and formats it.

Parameters Function inputs

Function outputs

Description SFR converts a variable value into a string and formats it.

For this purpose the address of the variable has to be
transferred to the function. The address is formed with the ADR
operator. Additionally a formatting string can be transferred to
the function in accordance with the table.

As a result the function provides the converted string which can
then e.g. be displayed directly on the integrated display.

With functions from the standard library ST167.LIB the strings
can be further processed or linked.

STR

A STR

Name Data type Description
A DINT address of the variable to be converted
F STRING formatting instruction

Name Data type Description
STR STRING formatted string

page 102

Overview of possible formatting signs :

Sign Type of
 variable

Output format

%d Integer signed decimal number
%u Integer

without sign
non-signed decimal number

%o Integer
without sign

non-signed octal number

%x Integer
without sign

non-signed hexadecimal number
(0123456789abcdef)

%X Integer
without sign

non-signed hexadecimal number
(0123456789ABCDEF)

%f floating point floating point number
[-]dddd.dddd

%e floating point floating point number
[-]d.dddde[-]dd

%E floating point floating point number
[-]d..ddddE[-]dd

%g floating point floating point number
%G floating point floating point number
%C sign individual sign

page 103

9. Other functions

9.1. Software reset

Function SOFTRESET

Library CSxxxx.LIB

Function symbol

Purpose The function SOFTRESET restarts the controller completely.

Parameters Function inputs

Function outputs, none

Description SOFTRESET carries out a complete restart of the controller.
The function can e.g. be used in connection with CANopen
when a node reset is to be carried out. After a SOFTRESET the
controller behaves as though the supply voltage has been
switched off and on.

In a running communication the long reset phase has to be
observed, otherwise a guarding error is shown.

Name Data type Description
ENABLE BOOL TRUE: function is processed

FALSE: function is not processed

page 104

9.2. Save data in memory and read

Automatic saving of data The controller CS0015 offers the possibility to save data (BOOL,
BYTE, WORD, DWORD) in a remanent flash memory. When
the supply voltage drops off the data backup is started
automatically, if the data are saved in the flag range MW0 ...
MW127 (MB0 ... MB255).

The advantage of the automatic saving is that the backup is also
started in the case of a sudden voltage drop or an interruption of
the supply voltage and the current data values are saved (e.g.
counts).

When the supply voltage returns, the saved data are read out
from the FLASH via the operating system and are written back
in the flag range.

This data range can also be accessed via the CANopen object
list (index from 2000 Hex).

Manual saving of data Apart from the possibility of automatically saving data in the flag
range up to MW127 (MB255) the data range between
MB256...MB1024 can be saved in the integrated serial
EEPROM via a function call. To read out the data another
function call needs to be carried out. The data are written or
read as a complete block.

Direct memory access In general the programmer has direct read and write access to
the non-remanent flag range via the corresponding IEC
addresses.

From the memory mapping (see annex 1.5) the programmer
can get information on the available memory range.

IEC Byte
address

IEC Word
address

Description

%MB0 ...
%MB255

%MW0 ...
%MW127

remanent data, automatic saving

%MB256
...
%MB1023

%MW128
...
%MW511

volatile data, can only be saved by
calling E2WRITE

%MB1025
...
%MB7935

%MW512
...
%MW3967

volatile data

page 105

Function MEMCPY

Library CSxxxx.LIB

Function symbol

Purpose The function MEMCPY enables the writing and reading of
different data types directly in the memory.

Parameters Function inputs

Function outputs, none

Description MEMCPY writes the contents of the address from SRC to the
address DST transferring exactly as many bytes as were
defined under LEN. This enables the transfer of exactly one byte
of a word date.

The address has to be found with the function ADR and has to
be transferred to MEMCPY.

Name Data type Description
DST DWORD address of target variable
SRC DWORD address of source variable
LEN WORD number of data bytes

page 106

Function E2WRITE

Library CSxxxx.LIB

Function symbol

Purpose The function E2WRITE writes a data block in the serial
EEPROM.

Parameters Function inputs

Function outputs

Description E2WRITE writes the flag range MW128...MW511 in the serial
EEPROM. Since the processing of the function requires some
time the execution has to be monitored via the function output
RESULT. If RESULT = 1 the input ENABLE has to be reset to
FALSE.

Name Data type Description
ENABLE BOOL TRUE: function is executed

FALSE: function is not executed

Name Data type Description
RESULT BYTE 0 = function is inactive

1 = function is completed
2 = function is working

page 107

Function E2READ

Library CSxxxx.LIB

Function symbol

Purpose The function E2READ reads a data block from a serial
EEPROM.

Parameters Function inputs

Function outputs

Description E2READ reads a data block from the serial EEPROM and
writes it in the flag range MW128...MW511. As the processing
of this function requires some time the execution has to be
monitored via the function output RESULT. If RESULT = 1 the
input ENABLE has to be reset to FALSE.

Name Data type Description
ENABLE BOOL TRUE: function is executed

FALSE: function is not executed

Name Data type Description
RESULT BYTE 0 = function is inactive

1 = function is completed
2 = function is working

page 108

Function CHECK_DATA

Library CSxxxx.LIB

Function symbol

Purpose Saving the data in the user data memory via a CRC code

Parameters Function inputs

Function outputs

Description In safety-relevant applications the function CHECK_DATA
monitors a range of the data memory (possible addresses from
%MW0...) for unwanted data changes. For this purpose the
function creates a CRC check sum over the stated data range.
If there is an unwanted change of data RESULT = FALSE. The
result can then be used for further actions (e.g. switching off the
outputs).

The start address has to be transferred to the function via the
address operator ADR. In addition, the number of data bytes
LENGTH (length from STARTADR) has to be indicated. Only if
UPDATE = TRUE can the data in the memory range be
changed (e.g. via the user program or tdm) and no error
message RESULT = FALSE is generated.

The function is a safety function. However, the use of this
function does not automatically make the controller a
safety controller.
Only tested and approved controllers with a special
operating system can be used as safety controllers.

Name Data type Description
STARTADR DINT start address of the monitored data memory

(address from %MW0...)
LENGTH WORD length of the monitored memory (Byte)
UPDATE BOOL TRUE: data changes permissible

FALSE: data changes not permissible

Name Data type Description
RESULT BOOL TRUE: function is executed

FALSE: function is not executed

page 109

9.3. Use of the serial interface

Function SERIAL_TX

Library CSxxxx.LIB

Function symbol

Purpose Transfers a data byte via the serial RS232 interface.

Parameters Function inputs

Function outputs, none

Description SERIAL_TX transfers the data byte DATA via the serial
interface. The transfer can be released or blocked via the
function input ENABLE.

The SERIAL functions are the basis for creating a user-specific
protocol for the serial interface.

In general the serial interface is not available to the user as it is
used for the program download and the debugging. If the user
sets the system flag bit SERIAL_MODE to TRUE the interface
can be used. Program download and debugging are only
possible via the CAN interface.

Name Data type Description
ENABLE BOOL TRUE: transfer released

FALSE: transfer blocked
DATA BYTE byte date to be transferred

page 110

Function SERIAL_RX

Library CSxxxx.LIB

Function symbol

Purpose Reads a received data byte from the serial receiving buffer.

Parameters Function inputs

Function output

Description With each call SERIAL_RX reads a data byte from the serial
receiving buffer. The value of AVAILABLE is then decremented
by 1. If no more data are in the buffer AVAILABLE is 0.

If more than 1000 data bytes are received the buffer overflows
and data are lost. This is shown via the bit OVERFLOW.

The SERIAL function is the basis for creating a user-specific
protocol for the serial interface.

In general the serial interface is not available to the user as it is
used for the program download and the debugging. If the user
sets the system flag bit SERIAL_MODE to TRUE the interface
can be used. Program download and debugging are only
possible via the CAN interface.

Name Data type Description
CLEAR BOOL TRUE: receiving buffer is deleted

FALSE: no data can be stored in buffer

Name Data type Description
RX BYTE received byte data from the receiving

buffer
AVAILABLE WORD number of received data bytes
OVERFLOW BOOL overflow of the data buffer, loss of data!

page 111

Function SERIAL_PENDING

Library CSxxxx.LIB

Function symbol

Purpose The function determinates the number of data bytes saved in
the serial receiving buffer.

Parameters Function inputs, none

Function output

Description SERIAL_PENDING determinates the number of data bytes
received in the receiving buffer. As opposed to the function
SERIAL_RX the contents of the buffer remains unchanged after
calling this function.

The SERIAL functions are the basis for creating a user-specific
protocol for the serial interface.

In general the serial interface is not available to the user as it is
used for the program download and the debugging. If the user
sets the system flag bit SERIAL_MODE to TRUE the interface
can be used. Program download and debugging are only
possible via the CAN interface.

Name Data type Description
NUMBER WORD number of received data bytes

page 112

9.4. Reading the system time

Function TIMER_READ

Library CSxxxx.LIB

Function symbol

Purpose The current system time is read in seconds.

Parameters Function inputs, none

Function output

Description When the supply voltage is applied a time cycle is generated in
the unit and is counted up in a register. This register can be
read by means of the function call and can be used e.g. for
measuring time.

The system timer runs to max. 10 m 55 s 350 ms and then
starts again at 0.

Name Data type Description
T TIME Current system time in seconds

page 113

Function TIMER_US_READ

Library CSxxxx.LIB

Function symbol

Parameter The current system time is read in µseconds.

Parameters Function inputs, none

Function output

Description When the supply voltage is applied a time cycle is generated in
the unit and is counted up in a register. This register can be
read by means of the function call and can be used e.g. for
measuring time.

The system timer runs up to a max. value of 4294967295 (µs)
and then starts again at 0.

Name Data type Description
TIME_US DWORD Current system time in µseconds

page 114

9.5. Processing of variables

Function NORM

Library CSxxxx.LIB

Function symbol

Purpose Norms a value within set limits to a value with new limits

Parameters Function inputs

Function output

Description The function NORM norms a value of type WORD which lies
within the limits XH and HL to an output value within the limits
YH and YL.

This function is e.g. used for creating PWM values from analog
input values.

Example not normed value: 50
bottom limit value input: 0
upper limit value input: 100

bottom limit value output: 0
upper limit value output: 2000

normed value: 1000

Due to rounding errors in hexadecimal figures a normed value
might deviate by 1. If the limits (XH/XL or YH/YL) are stated
invertedly the norming is also inverted.

Name Data type Description
X WORD output value
XH WORD bottom limit input value range
XL WORD upper limit input value range
YH WORD bottom limit output value range
YL WORD upper limit output value range

Name Data type Description
Y WORD normed data type BYTE

page 115

9.6. Real-time processing

Function SET_INTERRUPT_1MS

Library CRxxxx.LIB

Function symbol

Purpose Real-time processing of program parts in 1ms cycle.

Parameters Function inputs

Function outputs, none

Description In classical plc's the cycle time is of extreme importance for
real-time processing. Compared to customer-specific controllers
this is a disadvantage for the plc. A "real-time operating system"
does not make a difference if the complete application program
runs in a single task.

A possible solution would be to keep the cycle time short. This
often means that the aplication is distributed to several control
cycles which makes programming complicated and difficult.

Another possibility would be to call up a certain program part at
fixed intervals (in this case 1 ms) independent of the control
cycle.

The user combines the time-critical part of the application in a
module type PROGRAM (PRG). This module is declared as a 1
ms interrupt routine by once (at the time of initialisation) calling
up the function module SET_INTERRUPT_1MS. As a result this
program module is processed every millisecond. To avoid
calling it up cyclically as well it should be skipped in the cycle
(with the exception of the initialising call). If inputs and outputs in
this program parts are used, they are also read or written in the
1 ms cycle. That way all time-critical events in the program
module can be processed by linking inputs or global variables
and writing outputs. Timers can be monitored more accurately
as would be possible in the "normal" cycle.

Name Data type Description
ENABLE BOOL TRUE: Data changes permissible

FALSE: Data changes not permissible

page 116

Only one timer interrupt module must be active at one time.
You can, however, change to other interrupt modules
within the running program depending on the program
state.

The time requirement has to be kept short! For this reason
calculations, floating point arithmetics or control-loop functions
should not be used in ths module:

Important:

The interrupt routine cancels the definiteness of the inputs and
outputs in the cycle so that only one part per millisecond can be
served.

Inputs: %IX0.00 ... %IX0.07
Outputs: %QX0.00 ... %QX0.07

All other inputs and outputs are processed once per cycle as
usual.

Global variables also lose their definiteness when they
accessed more or less simultaneously in the cycle and by the
interrupt routine. This problem specially concerns big data types
(e.g. DINT).

page 117

10. Closed-loop control functions

Closed-loop control is a process in which the variable to be
controlled (controlled variable x) is permanently monitored and
compared with the reference variable (or preset value). The
result of this comparison influences the controlled variable for
adjustment to the reference variable.

Exact information on the steady-state behaviour and on the
dynamic behaviour of the controlled system is required for
selecting a suitable controller. In most cases the characteristics
are experimentally found and can hardly be influenced.

We distinguish between three types of controlled systems.

Controlled systems with
compensation In a controlled system with compensation control variable x is

moving towards a new final value (steady state). Important in
these controlled systems is the gain (transfer coefficient KS).
The smaller the gain the better the system can be controlled.

These controlled systems are called P(roportional) systems.

page 118

Controlled systems without
compensation Controlled systems with an amplification factor to infinite are

called controlled systems without compensation because of
their integrating behaviour. It means that the controlled variable
continuously grows after a change of the variable or due to
interference. It therefore never reaches a final value.

These controlled systems are called I(ntegral) systems.

Controlled system with delay Most controlled systems are a series connection of P systems
(systems with compensation) and one or several T1 systems
(systems with inertia). A first level controlled systems is e.g.
created by connecting a restrictor and a subsequent memory.

In controlled systems with delay the controlled variable
responds to a change of the variable only after a delay Tt. The
delay Tt or the sum of Tt + Tu is the measure for the possibility to
adjust the system. The bigger the Tq / Tu ratio the better the
possibility to adjust the system.

The controllers integrated in the library are a summary of the
presented basic functions. The functions used and their
combination depend on the controlled system.

page 119

10.1. Adjustment rule for a controller

The adjustment process by Ziegler and Nickols is of advantage
in a closed control loop in the case of controlled systems with
unknown time constant.

Adjustment rule The controller is first operated as a pure P system. The rate
time TV is set to 0 and the reset time is set to a very high value
(ideally to ∞) for a slow system. For a fast controlled system a
small TN should be chosen. The proportional-action coefficient
KP is then increased until the system deviation and the variable
deviation at KP = KPcritical execute constant oscillation at a
constant amplitude. The stability limit has been reached. The
time period Tcritical of the permanent oscillation has to be
determined. Only add a D part if required. TV should be approx.
2 – 10 times smaller than TN and KP = KD.

The ideal controlled system should be set as follows:

Controlling
system

KP = KD TN TV

P 2.0 * KPcritical - -
PI 2.2 * KPcritical 0.83 * Tcritical -
PID 1.7 * KPcritical 0.50 * Tcritical 0.125 * Tcritical

Please note that the controlled system is not affected by the
oscillation. In sensitive controlled systems KP should only
be increased up to a value at which no oscillation will
occur.

Attenuation of overshooting The PT1 (low pass filter) function can be used to attenuate
overshooting. The set value XS should be attenuated by PT1
before it is integrated in the controller function. The setting
variable for T1 should be approx. 4 – 5 times bigger than TN (of
the PID or GLR controller).

page 120

Function DELAY

Library CSxxxx.LIB

Function symbol

Purpose Delays the output of the input value by the time T (delay
variable).

Parameters Function input

Function output

Description The function DELAY is used to delay an input value by the time T.

The output value y has the following time characteristic.

For the function to work without problems it has to be called in
each cycle.

Name Data type Description
X WORD input value
T TIME delay time

Name Data type Description
Y WORD input value delayed by the time T

page 121

Function PT1

Library CSxxxx.LIB

Function symbol

Purpose Controlled system with first order delay

Parameters Function inputs

Function output

Description The function PT1 is a proportional system with one time
constant. It is used e.g. for establishing ramps when using the
PWM functions.

The output variable y (of the low pass filter) has the following
unit step response.

Name Data type Description
X WORD input value
T1 TIME delay time

Name Data type Description
Y WORD variable

page 122

Function PID

Library CSxxxx.LIB

Function symbol

Purpose PID controller

Parameter Function inputs

Function output

Description The change in the output of the PID controller consists of a
proportional, an integral and a differential component. The
variable first changes by an amount (D share) depending on the
change speed of the input variable. After the rate time TV has
elapsed the variable goes back to a value corresponding to the
proportional part and then changes in accordance with the reset
time TN.

The values entered at function inputs KP and KD are internally
divided by 10 to achieve a finer resolution (e.g. KP = 17
corresponds to 1.7)

Variable Y is already normed to the PWM function (RELOAD-
Wert = 65535). Observe the inverse logic (65535 = minimum
value, 0 = maximum value).

If X > XS, the value is increased.
If X < XS, the value is decreased.

Name Data type Description
X WORD actual value
XS WORD preset value
XMAX WORD maximum value of the preset value
KP BYTE constant of the P component (/10)
TN TIME reset time (I component)
KD BYTE proportional part of the D component (/10)
TV TIME rate time (D component)
SO BOOL self optimisation

Name Data type Description
Y WORD variable (actuator value)

page 123

A reference variable is internally added to the value of the
manipulated variable: Y = Y + 65536 - (XS / XMAX x 65536).

Variable y has the following time characteristics.

Typical step response of a PID controller

page 124

Recommended adjustment:

• Select TN according to the time response of the system (fast
system = small TN, slow system = big TN)

• Increase KP slowly step by step up to a value at which no
oscillation will occur.

• Readjust TN if necessary.
• Add D part only if rquired: select TV approx. 2 - 10 times

smaller than TN. KD should be approx. the same as KP.

 Please note that the max. deviation is +/- 127. To get a good
dynamic performance this range should not be exceeded, but
should be used as fully as possible.

Function input SO (self-optimisation) considerably improves the
control characteristics on the condition that the requested
features have been reached:

• The controller is operated with I share (TN ≥ 50 ms)
• The parameters KP and especially TN are already well

adapted to the real controlled system.
• The control range (X - XS) of +/- 127 is used (if necessary

extend the control range by multiplying X, XS and XMAX).

After the parameter settings have been finalised set SO =
TRUE. The control characteristics are considerably improved.
Overshooting in particular is reduced.

page 125

Example PI controller in a simulated system.

 SO = FALSE.

 The example shows that overshooting as well as a control range
spread occur. The signal is 'in steps' due to the small controlled
variable.

 SO = TRUE

 Overshooting does not occur.

page 126

Example Rotational speed control via PID controller

Features:

• double control range spread
• self-optimisation
• adaptation of the controller output Y to a PWM function

module
• TN was adapted to the relatively slow behaviour of the

system (centrifugal mass!)
• Overshooting is relatively low despite the D share

Special feature The motor in the example reaches its maximum speed with

20% PWM. The function module NORM takes this into account.

page 127

Example P controller

 This P controller consists of a 2-point controller with PT1
feeback and a subsequent PT1 element. The controlled system
is simulated.

This controller is particularly robust and is thus suited for difficult
system.

 Please note the intended natural oscillation of the controller
caused by its internal feedback. The initial rough switching
behaviour of the 2-point controller is improved and the
switching frequency increases.

page 128

Function GLR

Library CSxxxx.LIB

Function symbol

Purpose synchro-controller

Parameters Function input

 Function outputs

Description The synchro-controller is a controller with PID behaviour.

 The values entered at function inputs KP and KD are internally
divided by 10 so that a finer grading can be achieved (e.g. KP =
17 corresponds to 1.7)

 The manipulated variables Y1 and Y2 are already normed to the
PWM function (RELOAD value = 65535). Note the inverse logic
(65535 = minimum value, 0 = maximum value).

 The manipulated variable for the higher actual value is

increased, the variable for the smaller actual value corresponds
to the reference variable.

 Reference variable = 65536 - (XS / XMAX x 65536).

 Name Data type Description
 X1 WORD actual value channel 1
 X2 WORD actual value channel 2
 XS WORD preset value = reference variable
 XMAX WORD maximum value of the preset value
 KP BYTE constant of the P share (/10)
 TN TIME reset time (I share)
 KD BYTE proportional share of the D share (/10)
 TV TIME rate time (D share)

 Name Data type Description
 Y1 WORD manipulated variable channel 1
 Y2 WORD manipulated variable channel 2

page 129

 11. Functions of the ecomat tdm R 360

 The ecomat tdm R 360 is a programmable dialogue unit with
graphics capabilities for displaying data, text, graphics and
messages. The functions described below do not deal with the
programming of the units, but present the necessary functions
for exchanging data with the controller CS0015. The actual
programming of the display, e.g. setting up graphic pictures and
defining communication parameters , is done with the easy-to-
use windows editor ecolog tdm R 360.

 Independent of whether or not the controller or the display is
programmed via the serial interface the data between a control
module and a display are exchanged via the CAN bus. We refer
to the description in chapter 6.

The library TDM_x.LIB As opposed to other libraries the TDM_x.LIB is not programmed
in a high-level language (e.g. 'C') or in Assembler, but in the IEC
language 'Structured text' (ST). This has the advantage that the
expert user can adapt and extend functions to his own
requirements.

 In the functions TDM_CONFIG and TDM_DATA_TRANSFER
the number of variables that can be exchanged with the tdm R
360 is limited.

 The basic library only allows communication between a control
module and a display. The identifiers are prefixed to the global
variables. These values have to be entered as communication
parameters in the ecolog tdm R 360 software, menu item
Device parameterise..., CAN interface.

 To access a display with e.g. several control modules via the

BAN bus each control module has to be allocated its own
transmitting identifier in the global variables.

 The functions saved in the library support the exchange of data
for preset and actual values, the calling of so-called plc pictures,
the polling and triggering of unit functions (keyboard, LEDs, unit
parameters).

 receiving identifier rxid : WORD := 220
 transmitting identifier txid : WORD := 221

page 130

Function groups The functions can be subdivided in the following groups:

Program example You will find a program example in function block diagram

(FBD) on the program diskette ecolog 100plus. In this simple
program the general program setup and the data exchange
between the CS0015 and the tdm R 360 are shown .

 The following function descriptions will not describe the
operation and programming of the display series ecomat tdm R
360. For this information please refer to the unit and software
manuals.

• data exchange,
variable definition
of preset and actual
values

 TDM_DATA_TRANSFER
 TDM_CONFIG
 TDM_READ_INTERN
 TDM_WRITE_INTERN

• setting and
resetting of plc
pictures and
messages

 TDM_PICTURE
 TDM_MESSAGE
 TDM_REFRESH

• polling and
evaluation of unit
status and resetting
of the LEDs

 TDM_CONTROL_STATUS_REPORT
 TDM_REQUEST_STATUS
 TDM_REPORT_STATUS
 TDM_REPORT_KEYDATA
 TDM_LED
 TDM_SINGLE_LED_ON_OFF

• unit check TDM_PARAM
 TDM_RESET

page 131

 11.1.Data exchange and variable definition

Function TDM_CONFIG

Library TDM.LIB

Function symbol

Purpose The function serves to define those data objects (variables)
during initialisation which are to be shown in the tdm R 360.

Parameters Function inputs

 Function outputs

Description TDM_CONFIG is only called once during the initialisation

routine of the application software. The execution can then be
blocked via the function call ENABLE.

 The input ADDRESS must be allocated the physical address of
the variable. Determine the hardware address with the address
operator ADR. The result has to be transferred to ADDRESS.

 LEN sets the number of bytes to be transferred from the

address (e.g. 2 = 2 bytes (WORD), 4 = 4 bytes (DWORD).

 Depending on the preset value in the library TDM_x.LIB only 50
values can be defined.

 HANDLE is allocated the set variable number from the tdm R

360. HANDLE is the tdm address of the variable. A handle
number must only be allocated once in the tdm as well as in the
application software.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 ADDRESS DINT variable address
 LEN BYTE number of bytes to be transferred
 HANDLE WORD designation (number) of the variable in the

tdm

 Name Data type Description
 RESULT BOOL TRUE: function call was successful

page 132

 RESULT shows if the function call was successful. Preset and
target values from the controller can only be shown in the
display after a one-time successful function call for each
variable to be exchanged.

page 133

Function TDM_DATA_TRANSFER

Library TDM.LIB

Function symbol

Purpose This function handles the complete data exchange between the
tdm R 360 and the controller module.

Parameters Function inputs

 Function outputs, none

Description DATA_TRANSFER is responsible for the complete
communication between the display and the controller. By
integrating this function the target and preset values,
setting and resetting of pictures and messages and the
complete unit status are transferred.

 To initialise the function it has to be called once with TRUE at
the INIT input. In subsequent cyles the INIT input must be set to
FALSE.

If CANopen is used together with the tdm functions the function
has to be called again with INIT = TRUE after a
NMT_RESET_NODE/_COMM. Since the tdm functions use
direct CAN objects the definitions for those are lost.

In longer controller cycles the function should be called
several times to extend the data throughput between the
units.

 Name Data type Description
 INIT BOOL TRUE: function initialisation

 FALSE: cyclic function call

page 134

Function TDM_READ_INTERN

Library TDM.LIB

Function symbol

Purpose The function reads an internal tdm R 360 variable.

Parameters Function inputs

 Function outputs

Description As opposed to the variables which are processed and

generated in the controller as target and preset values and are
automatically updated by the operating system of the units, the
internal tdm variables (e.g. clock or values saved in the tdm R
360) cannot be 'automatically' read and written.

 Just like any other variable an internal variable has to be
identified to TDM_CONFIG of the application software. The
following read process is executed once by calling the function
TDM_READ_INTERN. The function input ENABLE can block
the execution.

 HANDLE is allocated the defined number of the internal variable
from the tdm R 360. A handle number must only be allocated
once in the tdm R 360 as well as in the application software.

 RESULT = TRUE shows if the handle stated when calling the
function has been found.

The programmer himself has to ensure the administration of
internal data in the controller by means of suitable software
routines. A changed internal variable is not automatically
transferred to the controller, but only when called for via
TDM_READ_INTERN.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 HANDLE WORD designation (number) of the internal variable

in the tdm R 360

 Name Data type Description
 RESULT BOOL TRUE: HANDLE was found (was defined)

page 135

Function TDM_WRITE_INTERN

Library TDM.LIB

Function symbol

Purpose The function writes an internal variable to the tdm R 360.

Parameters Function inputs

 Function outputs

Description As opposed to the variables which are processed and

generated in the controller as target and preset values and are
automatically updated by the operating system of the units, the
internal tdm variables (e.g. clock or values saved in the tdm R
360) cannot be 'automatically' read and written.

 Just like any other variable an internal variable has to be
identified to TDM_CONFIG of the application software. The
following read process is executed once by calling the function
TDM_WRITE_INTERN. The function input ENABLE can block
the execution.

 HANDLE is allocated the defined number of the internal variable
from the tdm R 360. A handle number must only be allocated
once in the tdm R 360 as well as in the application software.

 RESULT = TRUE shows if the handle stated when calling the
function has been found.

The programmer himself has to ensure the administration of
internal data in the controller by means of suitable software
routines. A changed internal variable is not automatically
transferred to the DISPLAY, but only when called for via
TDM_WRITE_INTERN.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 HANDLE WORD designation (number) of the internal variable

in the tdm

 Name Data type Description
 RESULT BOOL TRUE: HANDLE was found (was defined)

page 136

 11.2.Setting and resetting of pictures and
messages

Function TDM_PICTURE

Library TDM.LIB

Function symbol

Purpose The function sets or resets a plc picture..

Parameters Function inputs

 Function outputs, none

Description The call TDM_PICTURE sets or resets a plc picture.

 To save cycle time the function input ENABLE can block the

execution of the function.

 TDM_PICTURE can, but does not have to be called cyclically. A

one-time call of the function with the value TRUE being
allocated to the function input ON sets the picture defined in
input NUMBER. A further call with ON = TRUE has no effect
(but requires cycle time for the check). If ON = FALSE is set and
the function with the corresponding picture number is called, the
picture is reset.

 A call if the function with PRIORITY = TRUE marks the plc
picture additionally as priority picture. Priority pictures are
displayed immediately independent of the current unit status of
the display (e.g. preset value entry). All other display activities
are suppressed.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 NUMBER BYTE tdm picture number
 ON BOOL TRUE: picture is displayed (set)

 FALSE: picture is not displayed (reset)
 PRIORITY BOOL TRUE: picture is displayed (set) as priority

picture

page 137

Function TDM_MESSAGE

Library TDM.LIB

Function symbol

Purpose The function sets or resets a message.

Parameters Function inputs

 Function outputs, none

Description The call TDM_MESSAGE sets or resets a plc message.

 To save cycle time the function input ENABLE can block the

execution of the function.

 TDM_MESSAGE can, but does not have to be called cyclically.

A one-time call of the function with the value TRUE being
allocated to the function input ON sets the picture defined in
input NUMBER. A further call with ON = TRUE has no effect
(but requires cycle time for the check). If ON = FALSE is set and
the function with the corresponding picture number is called, the
message is reset.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 NUMBER BYTE tdm message number
 ON BOOL TRUE: message is displayed (set)

 FALSE: message is not displayed (reset)

page 138

Function TDM_REFRESH

Library TDM.LIB

Function symbol

Purpose The function refreshes the current status of the pictures and
messages between controller and display.

Parameters Function inputs

 Function outputs, none

Description The currently set plc pictures and messages are no longer
displayed e.g. after a power failure at the display. By calling
TDM_REFRESH the current status is transferred to the display
independent of TDM_PICTURE and TDM_MESSAGE.

 This function does not have to, but should be integrated in the
application software. The use of this function relieves the
programmer from his job of permanently monitoring the unit
status and activating the plc pictures and messages by calling
them.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed

page 139

 11.3.The unit status and the LEDs

Function TDM_CONTROL_STATUS_REPORT

Library TDM.LIB

Function symbol

Purpose The function activates or deactivates the automatic status report
of the tdm R 360.

Parameters Function inputs

 Function outputs, none

Description The status report provides the application software with all
relevant unit information:
• currently displayed picture
• currently displayed message
• keyboard status (which key has been pressed or released)
• LED is set or not set
• unit status (e.g. preset value entry active)

 TDM_CONTROL_STATUS_REPORT activates the automatic
status report. Each change of the above points is transferred to
the controller.

 The current status can be evaluated with
TDM_REPORT_STATUS and TDM_REPORT_KEYDATA.

 The function has to be called only once for switching on or
switching off. The execution of the function can then be blocked
via the input ENABLE. It is, however, useful to call the functions
in certain intervals (e.g. every 500 ms) when
TDM_CONTROL_STATUS_REPORT is active. That way it is
prevented that the monitoring of the unit status does not work
e.g. after a failure of the tdm power supply.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 ON BOOL TRUE: automatic status report is

switched on
 FALSE: automatic status report is

switched off

page 140

Function TDM_REQUEST_STATUS

Library TDM.LIB

Function symbol

Purpose The function requests the current status report of the tdm R
360.

Parameters Function input

 Function outputs, none

Description The status report provides the application software with all the

relevant unit information:
• currently displayed picture
• currently displayed message
• keyboard status (which key has been pressed or released)
• LED is set or not set
• unit status (e.g. preset value entry active)
• status of the signal output (not CR1000)

 TDM_REQUEST_STATUS requests a one-time status report
from the display. MODE defines which data are to be polled.
Like a one-shot display the status of the above points is
transferred to the controller.

 The function has to be called again for each status report. To
block the execution of the function the input ENABLE can be set
to FALSE.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 MODE BYTE value for selecting the feedback parameters

 Value Output via Description
 0 TDM_REPORT_STATUS unit status
 1 TDM_REPORT_KEYDATA keyboard status (keys 1-32)
 2 TDM_REPORT_KEYDATA keyboard status (keys 33-64)
 3 TDM_REPORT_KEYDATA LED status (keys 1-32)
 4 TDM_REPORT_KEYDATA LED status (keys 33-64)
 5 TDM_REPORT_OUTPUT status of signal output

page 141

Function TDM_REPORT_STATUS

Library TDM.LIB

Function symbol

Purpose The function shows the current status report of the tdm R 360.

Parameters Function inputs

 Function outputs

Description The function TDM_REPORT_STATUS is called cyclically. Apart
from the current picture and message number the status of the
keys and the unit are displayed.

For the individual values please refer to the tdm R 360 manual

The keyboard bits are generally converted into decimal figures.

The unit status is displayed directly as a decimal value.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 RESET BOOL TRUE: sets output RECEIVED to FALSE

 Name Data type Description
 RECEIVED BOOL TRUE: new data received

 FALSE: no new data received
 PICTURE-
NUMBER

 WORD number of the current picture

 MESSAGE-
NUMBER

 WORD number of the current message

 KEYSTATUS BYTE keyboard status
 DEVICE-
STATUS

 BYTE unit status

page 142

Function TDM_REPORT_KEYDATA

Library TDM.LIB

Function symbol

Purpose The function shows the current keyboard status of the
tdm R 360.

Parameters Function input

 Function outputs

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 RESET BOOL TRUE: sets output RECEIVED to

 FALSE

 Name Data type Description
 RECEIVED BOOL TRUE: new data received

 FALSE: no new data received
 CTRL BYTE control parameters for keys and LED

 polling
 NUMBER BYTE only for CTRL = 0, contains key number

and status
 TA0TA4 BYTE for CTRL = 0 ... 4, status bytes of keys

or LEDs (bit-oriented)
 TA1TA5 BYTE for CTRL = 0 ... 4, status bytes of keys

or LEDs (bit-oriented)
 TA2TA6 BYTE for CTRL = 0 ... 4, status bytes of keys

or LEDs (bit-oriented)
 TA3TA7 BYTE for CTRL = 0...4, status bytes of keys or

LEDs (bit-oriented)

page 143

Description The function TDM_REPORT_KEYDATA can be polled
cyclically. It transfers the current key and LED status.

 TA0 ... TA7 provide the key/LED status in bytes (e.g. bit-
oriented). With CTRL you select the key/LED groups to be
polled.

 For the individual values please refer to the tdm R 360 manual.

 CTRL always returns the value 0 when

TDM_CONTROL_STATUS_REPORT is switched on.

page 144

Function TDM_LED

Library TDM.LIB

Function symbol

Purpose The function activates or deactivates the tdm LEDs.

Parameters Function inputs

 Function outputs, none

Description The function TDM_LED can be polled cyclically. This function

changes the status of the keyboard LEDs (set/reset). Depending
on the defined control parameters the LEDs can be processed
individually or bit-wise in groups of 8 via a mask value.

 For the individual values please refer to the tdm R 360 manual.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 CONTROL BYTE control parameter for setting / resetting

the LEDs
 NUMBER BYTE LED mask number or individual LED

number
 VALUE BYTE mask value when NUMBER = LED

mask number

page 145

Function TDM_SINGLE_LED_ON_OFF

Library TDM.LIB

Function symbol

Purpose The function activates or deactivates a single tdm LED.

Parameters Function inputs

Function outputs, none

Description TDM_SINGLE_LED_ON_OFF can switch an individual LED on
(ON=TRUE) or off (ON=FALSE).

As opposed to the function TDM_LED,
TDM_SINGLE_LED_ON_OFF can be set permanently. The
corresponding CAN command is only transferred once within
the function thus preventing an excess workload on the CAN
bus.

For the individual values please refer to the tdm R 360 manual.

Name Data type Description
ENABLE BOOL TRUE: function is executed

FALSE: function is not executed
ON BOOL TRUE: LED switched on

FALSE: LED switched off
NUMBER BYTE individual LED number

page 146

 11.4.Unit control

Function TDM_PARAM

Library TDM.LIB

Function symbol

Purpose The function monitors and transfers the unit parameters to the
basic setting of the display.

Parameters Function inputs

 Function outputs, none

Description The function TDM_PARAM should only be called to set new unit

parameters. With TDM_PARAM you can e.g. change the
brightness, the softkey mask or the scroll time for the
messages.

 For the individual values please refer to the tdm R 360 manual.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed
 PA BYTE parameter code
 VALUE BYTE additional value, to be stated depending

on the parameter code

page 147

Function TDM_RESET

Library TDM.LIB

Function symbol

Purpose The function resets all unit parameters of the tdm R 360 to the
basic setting

Parameters Function inputs

 Function outputs, none

Description The display is restarted. It behaves as though the voltage has

been switched off and switched on again.

 Name Data type Description
 ENABLE BOOL TRUE: function is executed

 FALSE: function is not executed

page 148

page 149

 Annex 1. Address allocation CS0015

 Annex 1.1. Complete overview

 Address Symbol Description
 %IX0.00-%IX0.07 - Inputs (byte %IB0, word %IW0)
 %IX0.08-%IX0.15 - Inputs (byte %IB1, word %IW0)
 %QX0.00-%QX0.07 - Outputs (byte %QB0, word %QW0)
 %QX0.08-%QX0.15 - Outputs (byte %QB1, word %QW0)
 %IB2 S2 16-step rotary switch
 %IX1.8 S3 pushbutton S3
 %IX2.0 S4 pushbutton S4
 %IX2.8 S5 pushbutton S5
 Flag bit* ERROR Set error bit
 Flag bit* ERROR_MEMORY Memory error
 Flag bit* UNLOCK Release programming mode (FALSE)
 Flag bit* SERIAL_MODE Switch on serial communication (FALSE)
 Flag bit* CAN_OPEN Switch on CANopen mode (FALSE)
 Flag bit* ISO_DIRECTION Transmit or receive data (FALSE)
 Flag bit* CAN_ERROR CAN-Bus error (collective error bit)
 Flag bit* CAN_INIT_ERROR CAN initialisation error
 Flag bit* CAN_BUS_OFF_ERROR CAN-Bus off error
 Flag bit* CAN_DATA_ERROR CAN-Data error
 Flag bit* CAN_TX_OVERRUN_ERROR CAN-TX-Overrun error
 Flag bit* CAN_RX_OVERRUN_ERROR CAN-RX-Overrun error
 Flag bit* COP_SYNCFAIL_ERROR SYNC object missing
 Flag bit* COP_GUARDFAIL_ERROR Guarding object missing
 Flag byte* COP_GUARDFAIL_NODEID Number of missing CANopen slave
 Flag bit* COP_PREOPERATIONAL CANopen mode preoperational
 Flag bit* COP_PRESYNC Presync flag
 Flag bit* COP_SYNC Sync flag
 Flag bit* COP_EVENT_RESETCOM Communication reset triggered by the master
 Flag bit* COP_EVENT_RESETNODE Node reset triggered by the master
 Flag bit* COP_GUARDING_AGAIN Restart Node-Guarding after Reset-Node
 Merkerword* CANBAUDRATE Currently set CAN-baud rate
 Merkerbyte* NODEID Currently set node number
 Flag bit* TEXT_MODE CAN communication compact display (FALSE)
 Flag bit* TEXT_KEY_F1 Function key F1 compact display
 Flag bit* TEXT_KEY_F2 Function key F2 compact display
 Flag bit* TEXT_KEY_F3 Function key F3 compact display
 Flag bit* TEXT_KEY_ESC ESC key compact display
 Flag bit* TEXT_KEY_LEFT Key arrow-LEFT compact display
 Flag bit* TEXT_KEY_RIGHT Key arrow-RIGHT compact display
 Flag bit* TEXT_KEY_DOWN Key arrow-DOWN compact display
 Flag bit* TEXT_KEY_UP Key arrow-UP compact display
 Flag bit* TEXT_KEY_ENTER ENTER key compact display
 Flag bit* TEXT_LED_F1 LED function key F1 compact display
 Flag bit* TEXT_LED_F2 LED function key F1 compact display
 Flag bit* TEXT_LED_F3 LED function key F1 compact display

page 150

Annex 1.2. Inputs and outputs

 Name Bit address Terminal Comment
 I0 %IW0 Input word 0
 %IX0.0 X1, In 0 Frequency/Cycle 0, Encoder 0
 %IX0.1 X1, In 1 Frequency/Cycle 1, Encoder 0
 %IX0.2 X1, In 2 Frequency/Cycle 2, Encoder 0
 %IX0.3 X1, In 3 Frequency/Cycle 3, Encoder 0
 %IX0.4 X1, In 4
 %IX0.5 X1, In 5
 %IX0.6 X1, In 6
 %IX0.7 X1, In 7
 %IX0.8 X2, In 8
 %IX0.9 X2, In 9
 %IX0.10 X2, In 10
 %IX0.11 X2, In 11
 %IX0.12 X2, In 12
 %IX0.13 X2, In 13
 %IX0.14 X2, In 14
 %IX0.15 X2, In 15
 Q0 %QW0 Output word 0
 %QX0.00 X3, Out 0 PWM 0
 %QX0.01 X3, Out 1 PWM 1
 %QX0.02 X3, Out 2 PWM 2
 %QX0.03 X3, Out 3 PWM 3
 %QX0.04 X3, Out 4 PWM 4
 %QX0.05 X3, Out 5 PWM 5
 %QX0.06 X3, Out 6 PWM 6
 %QX0.07 X3, Out 7 PWM 7
 %QX0.08 X4, Out 8
 %QX0.09 X4, Out 9
 %QX0.10 X4, Out 10
 %QX0.11 X4, Out 11
 %QX0.12 X4, Out 12
 %QX0.13 X4, Out 13
 %QX0.14 X4, Out 14
 %QX0.15 X4, Out 15

page 151

 Annex 1.3. The flag range

 Contents Flag address Comment

 %MW 4096
 I/O and system data %MW 3968 do not write

 TX - PDOs %MW 2032 64 bytes TX-PDOs

 RX - PDOs %MW 2000 64 bytes RX-PDOs

 %MB 1329

 slave Data range for
 data 32 CANopen I/O slaves

 %MW 1010

 %MW 511
 remanent 768 byte to be saved
 data (function) via function call
 %MW 128
 %MW 127
 remanent 256 bytes
 data retains) remanent data
 % MW 0

 The complete flag range in the CS0015 covers 8 kByte. The highlighted fields are allocated directly via
the operating system and can only be used for the purpose stated. The remaining memory space can
be used by the programming system. It has to be checked for each individual case if it is available to
the user. If possible direct addressing should be avoided.

page 152

 Annex 1.4. CANopen unit interface

• The unit is classified and marked in unit class "Programmable Device" in accordance with CiA DS

405.

• 1 server SDO and the 4 default PDOs are set up in accordance with CiA DS 401. The default

Identifiers are allocated in accordance with the "predefined connection set". 2 x 6 PDOs are
available in addition.

• The COB-IDs of PDOs and the transfer type (synch / asynch) of the individual PDO can be

configured.

• The I/O module expects a SYNC object in the slave mode. The CAN identifier of the synch object

can be configured. After a change the ID is automatically saved.

• In the master mode the I/O module generates a SYNC object. The Can identifier of the synch

object can be configured. After a change the ID is automatically saved.

• The I/O module supports "node guarding". The "guard time", the "life time factor" and the CAN

identifier of the guard object can be configured and are saved.

• The I/O module generates an Emergency Objekt . The COB-ID of the EMCY object can be

configured.

 Parameter overview

 Parameter Default value set by
the manufacturer

 Change
saved
automatically

 Valid after

 Node ID 32 X immediately
 Baud rate 3 (125 kBit/s) X Reset
 COB ID SynchOobject 0x80 X immediately
 Communication Cycle 0 (Off) X immediately
 Guard Time 0 (Off) X immediately
 Life Time Factor 0 (Off) X immediately
 COB ID Guarding 0x700 + Node ID X immediately
 COB ID EMCY 0x80 + Node ID X immediately
 Transmit Type Receive PDO1 asynchron - operational*
 Transmit Type Receive PDO2 asynchron - operational*
 Transmit Type Transmit PDO1 asynchron - operational*
 Transmit Type Transmit PDO2 asynchron - operational*
 COP ID Receive PDO1 0x200 + Node ID - immediately
 COP ID Receive PDO2 0x300 + Node ID - immediately
 COP ID Transmit PDO1 0x180 + Node ID - immediately
 COP ID Transmit PDO2 0x280 + Node ID - immediately

 * The change with PDO_RX_CONFIG und PDO_TX_CONFIG causes a CANopen Reset.
 All settings that have not been saved are set to default value.
 For this reason a two-step boot-up has to be carried out (see CS0015 as CANopen-Master).

page 153

 Annex 1.5. Object list

 Annex 1.5.1. Data range communication profile, index 1000 to 1FFF

 Index S-Idx Name Type Default Description
 1000 0 device type u32, ro 0x195 Prof. 405; programmable unit
 1001 0 error register u8, ro 0x0 Bit coded to prof. 301;

supports:
 0b0000 0000 no error
 0b0000 0001 generic error
 0b0001 0000 communication
 error
 0b1000 0000 manufacturer
 specific error

 1004 0 number of PDOs u32 ro 0x20002 2 transmitting PDOs
 2 receiving PDOs

 1 number of synch PDOs u32 ro 0x20002 All PDOs can be transferred
synchronous or asynchronous.

 2 number of asynch PDOs u32 ro 0x20002 All PDOs can be transferred
synchronous or asynchronous.

 1005 0 COB ID SYNC-Object u32 rw 0x80000080 CAN identifier of the SYNC
 object

 1006 0 Communic. Cycle u32 rw 0x0 max. time between 2 SYNC
objects in µs.
 resolution = 1 ms.

 1007 0 synch window is not implemented
 1008 0 device name str ro ecomat 100 unit name: "ecomat 100"
 1009 0 HW version str ro CSxxxx_x Operating system version
 100A 0 SW version str ro jjmmtt Software date
 100B 0 Node ID u32 ro only on request
 100C 0 guard time u16 rw 0x0 Time in ms.

 The unit expects a "node
guarding" of the network
master during this time.
 If value 0 is entered this
function is not supported.

 100D 0 life time factor u8 rw 0x0 If no "node guarding" is
received for "guard time" x "life
time" the unit gives an error
message
 COP_GUARDFAIL_ERROR

 100E 0 COB ID guarding u32 rw 0x00000700
+ Node ID

 CAN identifier of the node
guard object

 100F 0 number of SDOs not implemented
 (Only the default SDO is
supported)

 1012 0 Time Stamp not implemented
 1013 0 high res. Time Stamp not implemented

page 154

 Index S-Idx Name Type Default Description
 1014 0 COB ID Emergcy u32 rw 0x40000080

+Node ID
• I/O module does not

respond to external EMCY
Message

 (Bit 31 = 0)
• I/O module generates

EMCY Message (Bit 30 = 1)
• 11 Bit ID (Bit 29 = 0)
• ID = 0x80 + Node ID
 CAN identifier can be

changed by the user.
 1200 0 Server SDOs u8 ro 0x02 number of entries
 1 COB ID Rec SDO u32 rw 0x600+ID • SDO is valid (Bit 31 = 0)

• CAN ID of Receive SDOs
 2 COB ID Trans SDO u32 rw 0x580 +

Node ID
• SDO is valid (Bit 31 = 0)
• CAN ID of Transmit SDOs

 1400 0 Receive PDO 1 u8 ro 0x02 number of entries RX PDO 1
 1 COB ID u32 rw 0x200 +

 Node ID
• PDO is valid (Bit 31 = 0)
• CAN ID of 1st RX PDOs

 2 Trans Type u8 rw 0xFF • 0x00 = synch acyclic
• 0x01 ... 0xF0 = synch cyclic;

number of synch objects
between two accesses

• 0xFC not implemented
• 0xFD not implemented
• 0xFE = asynch manufac.

specific event
• 0xFF = asynch device
 profile event

 1401 0 Receive PDO 2 u8 ro 0x02 number of entries RX PDO 2
 1 COB ID u32 rw 0x300 +

 Node ID
• PDO is valid (Bit 31 = 0)
• CAN ID of 2nd RX PDOs

 2 Trans Type u8 rw 0xFF permissible values as for
 RX PDO1

 1402 0 Receive PDO 3 u8 ro 0x02 number of entries RX PDO 3
 1 COB ID u32 rw 0x382 • PDO is valid (Bit 31 = 0)

• CAN ID of 3rd RX PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 RX PDO1
 1403 0 Receive PDO 4 u8 ro 0x02 number of entries RX PDO 4
 1 COB ID u32 rw 0x383 • PDO is valid (Bit 31 = 0)

• CAN ID of 4th RX PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 RX PDO1
 1404 0 Receive PDO 5 u8 ro 0x02 number of entries RX PDO 5
 1 COB ID u32 rw 0x384 • PDO is valid (Bit 31 = 0)

• CAN ID of 5th RX PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 RX PDO1

page 155

 Index S-Idx Name Type Default Description
 1405 0 Receive PDO 6 u8 ro 0x02 number of entries RX PDO 6
 1 COB ID u32 rw 0x385 • PDO is valid (Bit 31 = 0)

• CAN ID of 6th RX PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 RX PDO1
 1406 0 Receive PDO 7 u8 ro 0x02 number of entries RX PDO 7
 1 COB ID u32 rw 0x386 • PDO is valid (Bit 31 = 0)

• CAN ID of 7th RX PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 RX PDO1
 1407 0 Receive PDO 8 u8 ro 0x02 number of entries RX PDO 8
 1 COB ID u32 rw 0x387 • PDO is valid (Bit 31 = 0)

• CAN ID of 8th RX PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 RX PDO1
 1600 0 Mapping Receive PDO 1 u32 ro 0x04 number of implemented

application objects
 1 Index in

 object directory
 u32 ro 0x5800 01 in 5800 SIdx 01, 1st word

 received data RX PDO 1
 2 Index in

 object directory
 u32 ro 0x5800 02 in 5800 SIdx 02, 2nd word

 received data RX PDO 1
 3 Index in

 object directory
 u32 ro 0x5800 03 in 5800 SIdx 03, 3rd word

 received data RX PDO 1
 4 Index in

 object directory
 u32 ro 0x5800 04 in 5800 SIdx 04, 4th word

 received data RX PDO 1
 1601 0 Mapping Receive PDO 2 u32 ro 0x04 number of implemented

application objects
 1 Index in

 object directory
 u32 ro 0x5810 01 in 5810 SIdx 01, 1st word

 received data RX PDO 2
 2 Index in

 object directory
 u32 ro 0x5810 02 in 5810 SIdx 02, 2nd word

 received data RX PDO 2
 3 Index in

 object directory
 u32 ro 0x5810 03 in 5810 SIdx 03, 3rd word

 received data RX PDO 2
 4 Index in

 object directory
 u32 ro 0x5810 04 in 5810 SIdx 04, 4th word

 received data RX PDO 2
 1602 0 Mapping Receive PDO 3 u32 ro 0x04 number of implemented

application objects
 1 Index in

 object directory
 u32 ro 0x5820 01 in 5820 SIdx 01, 1st word

 received data RX PDO 3
 2 Index in

 object directory
 u32 ro 0x5820 02 in 5820 SIdx 02, 2nd word

 received data RX PDO 3
 3 Index in

 object directory
 u32 ro 0x5820 03 in 5820 SIdx 03, 3rd word

 received data RX PDO 3
 4 Index in

 object directory
 u32 ro 0x5820 04 in 5820 SIdx 04, 4th word

 received data RX PDO 3

page 156

 Index S-Idx Name Type Default Description
 1603 0 Mapping Receive PDO 4 u32 ro 0x04 number of implemented

application objects
 1 Index in

 object directory
 u32 ro 0x5830 01 in 5830 SIdx 01, 1st word

 received data RX PDO 4
 2 Index in

 object directory
 u32 ro 0x5830 02 in 5830 SIdx 02, 2nd word

 received data RX PDO 4
 3 Index in

 object directory
 u32 ro 0x5830 03 in 5830 SIdx 03, 3rd word

 received data RX PDO 4
 4 Index in

 object directory
 u32 ro 0x5830 04 in 5830 SIdx 04, 4th word

 received data RX PDO 4
 1604 0 Mapping Receive PDO 5 u32 ro 0x04 number of implemented

application objects
 1 Index in

 object directory
 u32 ro 0x5840 01 in 5840 SIdx 01, 1st word

 received data RX PDO 5
 2 Index in

 object directory
 u32 ro 0x5840 02 in 5840 SIdx 02, 2nd word

 received data RX PDO 5
 3 Index in

 object directory
 u32 ro 0x5840 03 in 5840 SIdx 03, 3rd word

 received data RX PDO 5
 4 Index in

 object directory
 u32 ro 0x5840 04 in 5840 SIdx 04, 4th word

 received data RX PDO 5
 1605 0 Mapping Receive PDO 6 u32 ro 0x04 number of implemented

application objects
 1 Index in

 object directory
 u32 ro 0x5850 01 in 5850 SIdx 01, 1st word

 received data RX PDO 6
 2 Index in

 object directory
 u32 ro 0x5850 02 in 5850 SIdx 02, 2nd word

 received data RX PDO 6
 3 Index in

 object directory
 u32 ro 0x5850 03 in 5850 SIdx 03, 3rd word

 received data RX PDO 6
 4 Index in

 object directory
 u32 ro 0x5850 04 in 5850 SIdx 04, 4th word

 received data RX PDO 6
 1606 0 Mapping Receive PDO 7 u32 ro 0x04 number of implemented

application objects
 1 Index in

 object directory
 u32 ro 0x5860 01 in 5860 SIdx 01, 1st word

 received data RX PDO 7
 2 Index in

 object directory
 u32 ro 0x5860 02 in 5860 SIdx 02, 2nd word

 received data RX PDO 7
 3 Index in

 object directory
 u32 ro 0x5860 03 in 5860 SIdx 03, 3rd word

 received data RX PDO 7
 4 Index in

 object directory
 u32 ro 0x5860 04 in 5860 SIdx 04, 4th word

 received data RX PDO 7
 1607 0 Mapping Receive PDO 8 u32 ro 0x04 number of implemented

application objects
 1 Index in

 object directory
 u32 ro 0x5870 01 in 5870 SIdx 01, 1st word

 received data RX PDO 8
 2 Index in

 object directory
 u32 ro 0x5870 02 in 5870 SIdx 02, 2nd word

 received data RX PDO 8
 3 Index in

 object directory
 u32 ro 0x5870 03 in 5870 SIdx 03, 3rd word

 received data RX PDO 8
 4 Index in

 object directory
 u32 ro 0x5870 04 in 5870 SIdx 04, 4th word

 received data RX PDO 8

page 157

 Index S-Idx Name Type Default Description
 1800 0 Transmit PDO 1 u8 ro 0x02 Number of entries TX PDO 1
 1 COB ID u32 rw 0x180 +

 Node ID
• PDO is valid (Bit 31 = 0)
• CAN ID of 1st TX PDOs

 2 Trans Type u8 rw 0xFF • 0x00 = synch acyclic
• 0x01...0xF0 = synch cyclic;

number of synch objects
between two accesses

• 0xFC not implemented
• 0xFD not implemented
• 0xFE = asynch manufac.

specific event
• 0xFF = asynch device
 profile event

 1801 0 Transmit PDO 2 u8 ro 0x02 number of entries TX PDO 2
 1 COB ID u32 rw 0x280 +

 Node ID
• PDO is valid (Bit 31 = 0)
• CAN ID of 2nd TX PDOs

 2 Trans Type u8 rw 0xFF permissible values as for
 TX PDO1

 1802 0 Transmit PDO 3 u8 ro 0x02 number of entries TX PDO 3
 1 COB ID u32 rw 0x38A • PDO is valid (Bit 31 = 0)

• CAN ID of 3rd TX PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 TX PDO1
 1803 0 Transmit PDO 4 u8 ro 0x02 number of entries TX PDO 4
 1 COB ID u32 rw 0x38B • PDO is valid (Bit 31 = 0)

• CAN ID of 4th TX PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 TX PDO1
 1804 0 Transmit PDO 5 u8 ro 0x02 number of entries TX PDO 5
 1 COB ID u32 rw 0x38C • PDO is valid (Bit 31 = 0)

• CAN ID of 5th TX PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 TX PDO1
 1805 0 Transmit PDO 6 u8 ro 0x02 number of entries TX PDO 6
 1 COB ID u32 rw 0x38D • PDO is valid (Bit 31 = 0)

• CAN ID of 6th X PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 TX PDO1
 1806 0 Transmit PDO 7 u8 ro 0x02 number of entries TX PDO 7
 1 COB ID u32 rw 0x38E • PDO is valid (Bit 31 = 0)

• CAN ID of 7th TX PDOs
 2 Trans Type u8 rw 0xFF permissible values as for

 TX PDO1
 1807 0 Transmit PDO 8 u8 ro 0x02 number of entries TX PDO 8
 1 COB ID u32 rw 0x38F • PDO is valid (Bit 31 = 0)

• CAN ID of 8th TX PDOs
2 Trans Type u8 rw 0xFF permissible values as for

TX PDO1

page 158

Index S-Idx Name Type Default Description
1A00 0 Mapping Transmit PDO 1 u32 ro 0x04 number of implemented

application objects
1 Index in

object directory
u32 ro 0xA100 01 in A100 SIdx 01, 1st word

transmitted data TX PDO 1
2 Index in

object directory
u32 ro 0xA100 02 in A100 SIdx 02, 2nd word

transmitted data TX PDO 1
3 Index in

object directory
u32 ro 0xA100 03 in A100 SIdx 03, 3rd word

transmitted data TX PDO 1
4 Index in

object directory
u32 ro 0xA100 04 in A100 SIdx 04, 4th word

transmitted data TX PDO 1
1A01 0 Mapping Transmit PDO 2 u32 ro 0x04 number of implemented

application objects
1 Index in

object directory
u32 ro 0xA101 01 in A101 SIdx 01, 1st word

transmitted data TX PDO 2
2 Index in

object directory
u32 ro 0xA101 02 in A101 SIdx 02, 2nd word

transmitted data TX PDO 2
3 Index in

object directory
u32 ro 0xA101 03 in A101 SIdx 03, 3rd word

transmitted data TX PDO 2
4 Index in

object directory
u32 ro 0xA101 04 in A101 SIdx 04, 4th word

transmitted data TX PDO 2
1A02 0 Mapping Transmit PDO 3 u32 ro 0x04 number of implemented

application objects
1 Index in

object directory
u32 ro 0xA102 01 in A102 SIdx 01, 1st word

transmitted data TX PDO 3
2 Index in

object directory
u32 ro 0xA102 02 in A102 SIdx 02, 2nd word

transmitted data TX PDO 3
3 Index in

object directory
u32 ro 0xA102 03 in A102 SIdx 03, 3rd word

transmitted data TX PDO 3
4 Index in

object directory
u32 ro 0xA102 04 in A102 SIdx 04, 4th word

transmitted data TX PDO 3
1A03 0 Mapping Transmit PDO 4 u32 ro 0x04 number of implemented

application objects
1 Index in

object directory
u32 ro 0xA103 01 in A103 SIdx 01, 1st word

transmitted data TX PDO 4
2 Index in

object directory
u32 ro 0xA103 02 in A103 SIdx 02, 2nd word

transmitted data TX PDO 4
3 Index in

object directory
u32 ro 0xA103 03 in A103 SIdx 03, 3rd word

transmitted data TX PDO 4
4 Index in

object directory
u32 ro 0xA103 04 in A103 SIdx 04, 4th word

transmitted data TX PDO 4
1A04 0 Mapping Transmit PDO 4 u32 ro 0x04 number of implemented

application objects
1 Index in

object directory
u32 ro 0xA104 01 in A104 SIdx 01, 1st word

transmitted data TX PDO 5
2 Index in

object directory
u32 ro 0xA104 02 in A104 SIdx 02, 2nd word

transmitted data TX PDO 5
3 Index in

object directory
u32 ro 0xA104 03 in A104 SIdx 03, 3rd word

transmitted data TX PDO 5
4 Index in

object directory
u32 ro 0xA104 04 in A104 SIdx 04, 4th word

transmitted data TX PDO 5

page 159

Index S-Idx Name Type Default Description
1A05 0 Mapping Transmit PDO 6 u32 ro 0x04 number of implemented

application objects
1 Index in

object directory
u32 ro 0xA105 01 in A105 SIdx 01. 1st word

transmitted data TX PDO 6
2 Index in

object directory
u32 ro 0xA105 02 in A105 SIdx 02, 2nd word

transmitted data TX PDO 6
3 Index in

object directory
u32 ro 0xA105 03 in A105 SIdx 03, 3rd word

transmitted data TX PDO 6
4 Index in

object directory
u32 ro 0xA105 04 in A105 SIdx 04,4th word

transmitted data TX PDO 6
1A06 0 Mapping Transmit PDO 7 u32 ro 0x04 number of implemented

application objects
1 Index in

object directory
u32 ro 0xA106 01 in A106 SIdx 01,1st word

transmitted data TX PDO 7
2 Index in

object directory
u32 ro 0xA106 02 in A106 SIdx 02,2nd word

transmitted data TX PDO 7
3 Index in

object directory
u32 ro 0xA106 03 in A106 SIdx 03,3rd word

transmitted data TX PDO 7
4 Index in

object directory
u32 ro 0xA106 04 in A106 SIdx 04,4th word

transmitted data TX PDO 7
1A07 0 Mapping Transmit PDO 8 u32 ro 0x04 number of implemented

application objects
1 Index in

object directory
u32 ro 0xA107 01 in A107 SIdx 01,1st word

transmitted data TX PDO 8
2 Index in

object directory
u32 ro 0xA107 02 in A107 SIdx 02,2nd word

transmitted data TX PDO 8
3 Index in

object directory
u32 ro 0xA107 03 in A107 SIdx 03, 3rd word

transmitted data TX PDO 8
4 Index in

object directory
u32 ro 0xA107 04 in A107 SIdx 04,4th word

transmitted data TX PDO 8

page 160

Annex 1.5.2. Range of manufacturer-specific data, index 2000 to 5FFF

Index S-Idx Name Type Default Description
2000 0 Retain Data dom. rw 0x0 Maximum 256 Byte data stored

in the retain marker range
between %MW0 ... %MW127.

20F0 0 Setting Node ID u8 rw 0x20 Node ID with which the I/O
module in the CANopen
network is addressed.

20F1 0 Setting Node ID u8 rw 0x20 A change is only taken over
when the same changed
value is entered in the entries
20F0 and 20F1. The change
is valid immediately .

20F2 0 Setting Baud Rate u8 rw 0x3 Baud Rate of CAN network
entry 0 => 1000 kBaud
entry 1 => 500 kBaud
entry 2 => 250 kBaud
entry 3 => 125 kBaud
entry 4 => 100 kBaud
entry 5 => 50 kBaud
entry 6 => 20 kBaud
entry 7 => 10 kBaud

20F3 0 Setting Baud Rate u8 rw 0x3 A change is only taken over
when the same changed
value is entered in entries
20F2 and 20F3. A change
only becomes valid after a
reset.

Annex 1.5.3. Legend to object library

Abbrev. Name Explanation
u8 unsigned 8 Data length 1 Byte, without sign
u16 unsigned 16 Data length 2 Byte, without sign
u32 unsigned 32 Data length 4 Byte, without sign
dom domain Data length variable
ro read only Values can only be read
rw read write Values can be read and written
0x.... Hex Hexadezimal presentation
0b.... binär Presentation as dual/binary figure

Index and sub-index (S-Idx) of the object directory are shown as hex value.

page 161

Annex 2. Wiring

S3 S4 S5

CH1CH2CH3CH4RUNPRGTSTKEY

LED
POWER

STAT

LED LED

0 • 2
•

4
•

6

•8•A

•
C

•

E •

CAN2

LED LED

S1

CM3 0 1 2 3 4 5 6 7 CM4 8 9 10 11 12 13 14 15

X3 X4

CM1 0 1 2 3 4 5 6 7 CM2 8 9 10 11 12 13 14 15

X1 X2 RS232 CAN1
H GND L H GND LT GND R

CM5 – +

X5

S2

LOCK

UNLOCK

E
in

g
ä
n
g
e

IN
7...

IN
0

C
M

1 S
törschu

tz G
N

D

A
u
sg

ä
n
g
e

O
U

T
7

...O
U

T
0

C
M

3
 +

 2
4
 V

 D
C

E
in

g
ä
n
g
e

IN
1
5...

IN
8

C
M

2 S
törschu

tz G
N

D

A
u
sg

ä
n
g
e

O
U

T
15

...O
U

8
C

M
4

+
 2

4
 V

 D
C

S
p
a
n
n
u

ng
sve

rso
rg

u
n
g

+
2

4 V
 D

C
G

N
D

C
M

5
 S

tö
rsch

u
tz G

N
D

C
A

N
-B

u
s

S
e

rie
lle

-
S

ch
n

ittstelle

