
 
 

 
 

 

System Manual
SmartController

CR2500

CoDeSys® V2.3
Target V05

73
90

67
5 

/ 0
0 

   
 1

0 
/ 2

00
9 

 



 

2 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Contents 

Contents 

1 About this manual 7 
1.1 What do the symbols and formats mean?.........................................................................7 
1.2 How is this manual structured? .........................................................................................8 

2 Safety instructions 9 
2.1 General..............................................................................................................................9 
2.2 What previous knowledge is required? ...........................................................................10 

3 System description 11 
3.1 Information concerning the device ..................................................................................11 
3.2 Information concerning the software ...............................................................................11 
3.3 PLC configuration............................................................................................................12 

4 Configurations 13 
4.1 Set up programming system ...........................................................................................14 

4.1.1 Set up programming system manually..........................................................14 
4.1.2 Set up programming system via templates...................................................16 
4.1.3 ifm demo programs .......................................................................................25 

4.2 Function configuration of the inputs and outputs ............................................................29 
4.2.1 Configure inputs ............................................................................................29 
4.2.2 Configure outputs..........................................................................................33 

4.3 Hints to wiring diagrams ..................................................................................................34 

5 Operating states and operating system 35 
5.1 Operating states ..............................................................................................................35 

5.1.1 Reset .............................................................................................................35 
5.1.2 Run state.......................................................................................................35 
5.1.3 Stop state ......................................................................................................35 
5.1.4 Fatal error......................................................................................................35 
5.1.5 No operating system .....................................................................................36 

5.2 Status LED ......................................................................................................................36 
5.3 Load the operating system..............................................................................................37 
5.4 Operating modes.............................................................................................................37 

5.4.1 TEST mode ...................................................................................................38 
5.4.2 SERIAL_MODE.............................................................................................38 
5.4.3 DEBUG mode ...............................................................................................38 

6 Error codes and diagnostic information 39 
6.1 Response to the system error .........................................................................................40 

6.1.1 Notes on devices with monitoring relay ........................................................40 
6.1.2 Example process for response to a system error .........................................41 



 

3 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Contents 

7 Programming and system resources 42 
7.1 Above-average stress .....................................................................................................42 
7.2 Limits of the SmartController...........................................................................................43 
7.3 Watchdog behaviour .......................................................................................................44 
7.4 Available memory............................................................................................................44 
7.5 Program creation and download in the PLC ...................................................................45 

8 CAN in the ecomatmobile controller 47 
8.1 General about CAN .........................................................................................................47 

8.1.1 Topology .......................................................................................................47 
8.1.2 CAN interfaces ..............................................................................................48 
8.1.3 System configuration.....................................................................................48 

8.2 Exchange of CAN data....................................................................................................49 
8.2.1 CAN-ID..........................................................................................................49 
8.2.2 Data reception...............................................................................................50 
8.2.3 Data transmission .........................................................................................50 

8.3 Physical connection of CAN............................................................................................51 
8.3.1 Network structure ..........................................................................................51 
8.3.2 Bus level........................................................................................................52 
8.3.3 Bus cable length............................................................................................53 
8.3.4 Wire cross-sections.......................................................................................54 

8.4 Software for CAN and CANopen.....................................................................................55 
8.5 CAN errors and error handling ........................................................................................55 

8.5.1 Error message...............................................................................................55 
8.5.2 Error counter .................................................................................................56 
8.5.3 Participant, error active .................................................................................56 
8.5.4 Participant, error passive ..............................................................................56 
8.5.5 Participant, bus off ........................................................................................57 

8.6 Description of the CAN functions ....................................................................................58 
8.6.1 Function CAN1_BAUDRATE ........................................................................59 
8.6.2 Function CAN1_DOWNLOADID...................................................................61 
8.6.3 Function CAN1_EXT.....................................................................................63 
8.6.4 Function CAN1_EXT_TRANSMIT ................................................................65 
8.6.5 Function CAN1_EXT_RECEIVE...................................................................67 
8.6.6 Function CAN1_EXT_ERRORHANDLER ....................................................69 
8.6.7 Function CAN2..............................................................................................70 
8.6.8 Function CANx_TRANSMIT .........................................................................72 
8.6.9 Function CANx_RECEIVE ............................................................................74 
8.6.10 Function CANx_RECEIVE_RANGE .............................................................76 
8.6.11 Function CANx_EXT_RECEIVE_ALL...........................................................79 
8.6.12 Function CANx_ERRORHANDLER..............................................................81 

8.7 ifm CANopen library ........................................................................................................83 
8.7.1 CANopen support by CoDeSys ....................................................................83 
8.7.2 CANopen master...........................................................................................85 
8.7.3 Start-up of the network without [Automatic startup] ......................................96 
8.7.4 CAN device ................................................................................................ 100 
8.7.5 CAN network variables............................................................................... 108 
8.7.6 Information on the EMCY and error codes ................................................ 113 
8.7.7 Library for the CANopen master ................................................................ 117 
8.7.8 Library for the CANopen slave................................................................... 129 
8.7.9 Further ifm libraries for CANopen .............................................................. 139 

8.8 Summary CAN / CANopen........................................................................................... 144 
8.9 Use of the CAN interfaces to SAE J1939..................................................................... 145 

8.9.1 Function J1939_x....................................................................................... 148 
8.9.2 Function J1939_x_RECEIVE..................................................................... 150 



 

4 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Contents 

8.9.3 Function J1939_x_TRANSMIT .................................................................. 152 
8.9.4 Function J1939_x_RESPONSE................................................................. 154 
8.9.5 Function J1939_x_SPECIFIC_REQUEST................................................. 156 
8.9.6 Function J1939_x_GLOBAL_REQUEST................................................... 158 

9 PWM in the ecomatmobile controller 160 
9.1 PWM signal processing................................................................................................ 161 

9.1.1 PWM functions and their parameters (general) ......................................... 161 
9.1.2 Function PWM............................................................................................ 166 
9.1.3 Function PWM100...................................................................................... 168 
9.1.4 Function PWM1000.................................................................................... 170 

9.2 Current control with PWM ............................................................................................ 172 
9.2.1 Current measurement with PWM channels ............................................... 172 
9.2.2 Function OUTPUT_CURRENT_CONTROL .............................................. 173 
9.2.3 Function OCC_TASK................................................................................. 175 
9.2.4 Function OUTPUT_CURRENT.................................................................. 177 

9.3 Hydraulic control in PWM............................................................................................. 178 
9.3.1 The purpose of this library? – An introduction ........................................... 178 
9.3.2 What does a PWM output do? ................................................................... 179 
9.3.3 What is the dither? ..................................................................................... 180 
9.3.4 Functions of the library "ifm_HYDRAULIC_16bitOS05_Vxxyyzz.Lib" ....... 182 
9.3.5 Function CONTROL_OCC......................................................................... 183 
9.3.6 Function JOYSTICK_0............................................................................... 186 
9.3.7 Function JOYSTICK_1............................................................................... 190 
9.3.8 Function JOYSTICK_2............................................................................... 194 
9.3.9 Function NORM_HYDRAULIC .................................................................. 197 

10 More functions in the ecomatmobile controller 200 
10.1 Counter functions for frequency and period measurement.......................................... 200 

10.1.1 Applications................................................................................................ 201 
10.1.2 Use as digital inputs ................................................................................... 201 
10.1.3 Function FREQUENCY.............................................................................. 202 
10.1.4 Function PERIOD....................................................................................... 204 
10.1.5 Function PERIOD_RATIO ......................................................................... 206 
10.1.6 Function PHASE ........................................................................................ 208 
10.1.7 Function INC_ENCODER .......................................................................... 210 
10.1.8 Function FAST_COUNT ............................................................................ 213 

10.2 Software reset .............................................................................................................. 215 
10.2.1 Function SOFTRESET............................................................................... 215 

10.3 Saving, reading and converting data in the memory.................................................... 216 
10.3.1 Automatic data backup............................................................................... 216 
10.3.2 Manual data storage .................................................................................. 216 
10.3.3 Function MEMCPY..................................................................................... 217 
10.3.4 Function FLASHWRITE ............................................................................. 218 
10.3.5 Function FLASHREAD............................................................................... 220 
10.3.6 Function E2WRITE .................................................................................... 221 
10.3.7 Function E2READ...................................................................................... 222 

10.4 Data access and data check ........................................................................................ 223 
10.4.1 Function SET_DEBUG............................................................................... 223 
10.4.2 Function SET_IDENTITY........................................................................... 224 
10.4.3 Function GET_IDENTITY........................................................................... 226 
10.4.4 Function SET_PASSWORD ...................................................................... 228 
10.4.5 Function CHECK_DATA ............................................................................ 230 

10.5 Processing interrupts.................................................................................................... 232 
10.5.1 Function SET_INTERRUPT_XMS............................................................. 233 
10.5.2 Function SET_INTERRUPT_I.................................................................... 236 



 

5 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Contents 

10.6 Use of the serial interface............................................................................................. 239 
10.6.1 Function SERIAL_SETUP ......................................................................... 240 
10.6.2 Function SERIAL_TX................................................................................. 242 
10.6.3 Function SERIAL_RX................................................................................. 243 
10.6.4 Function SERIAL_PENDING ..................................................................... 245 

10.7 Reading the system time.............................................................................................. 246 
10.7.1 Function TIMER_READ ............................................................................. 246 
10.7.2 Function TIMER_READ_US ...................................................................... 247 

10.8 Processing analogue input values................................................................................ 248 
10.8.1 Function INPUT_ANALOG......................................................................... 249 
10.8.2 Function INPUT_VOLTAGE ...................................................................... 251 
10.8.3 Function INPUT_CURRENT...................................................................... 252 

10.9 Adapting analogue values ............................................................................................ 253 
10.9.1 Function NORM ......................................................................................... 254 

11 Controller functions in the ecomatmobile controller 256 
11.1 General......................................................................................................................... 256 

11.1.1 Self-regulating process .............................................................................. 256 
11.1.2 Controlled system without inherent regulation........................................... 257 
11.1.3 Controlled system with delay ..................................................................... 257 

11.2 Setting rule for a controller ........................................................................................... 258 
11.2.1 Setting control ............................................................................................ 258 
11.2.2 Damping of overshoot ................................................................................ 258 

11.3 Functions for controllers ............................................................................................... 259 
11.3.1 Function DELAY......................................................................................... 260 
11.3.2 Function PT1.............................................................................................. 262 
11.3.3 Function PID1 ............................................................................................ 264 
11.3.4 Function PID2 ............................................................................................ 266 
11.3.5 Function GLR ............................................................................................. 269 

12 Annex 271 
12.1 Address assignment and I/O operating modes ............................................................ 272 

12.1.1 Addresses / variables of the I/Os ............................................................... 272 
12.1.2 Address assignment inputs / outputs ......................................................... 272 
12.1.3 Possible operating modes inputs / outputs ................................................ 273 

12.2 System flags ................................................................................................................. 274 
12.3 Overview of the files and libraries used ....................................................................... 275 

12.3.1 General overview ....................................................................................... 275 
12.3.2 What are the individual files and libraries used for? .................................. 277 

13 Glossary of Terms 281 

14 Index 293 

  





 

7 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

About this manual What do the symbols and formats mean?

1 About this manual 
 
What do the symbols and formats mean?...................................................................................7 
How is this manual structured? ...................................................................................................8 

 

In this chapter you will find an overview of the following points: 

• What do the symbols and formats stand for? 

• How is this manual structured? 

In the additional "Programming Manual for CoDeSys® V2.3" you will obtain more details about the use 
of the programming system "CoDeSys for Automation Alliance™". This manual can be downloaded 
free of charge from ifm's website:  
→ www.ifm.com > Select country/language > [Service] > [Download] > [Control systems] 
→ ifm-CD "Software, tools and documentation" 

Nobody is perfect. Send us your suggestions for improvements to this manual and you will receive a 
little gift from us to thank you. 

© All rights reserved by ifm electronic gmbh. No part of this manual may be reproduced and used 
without the consent of ifm electronic gmbh. 

All product names, pictures, companies or other brands used on our pages are the property of the 
respective rights owners. 
 

 

1.1 What do the symbols and formats mean? 
The following symbols or pictograms depict different kinds of remarks in our manuals: 
 

 DANGER 
Death or serious irreversible injuries are to be expected. 

 

 WARNING 
Death or serious irreversible injuries are possible. 

 

 CAUTION 
Slight reversible injuries are possible. 

 

NOTICE 
Property damage is to be expected or possible. 

 

 NOTE 
Important notes to faults and errors. 

 

http://www.ifm.com/�


 

8 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

About this manual How is this manual structured?

 

 Info 
Further hints. 

 

► ... Required action 

> ... Response, effect 

→ ... "see" 

abc Cross references (links) 

[...] Designations of keys, buttons or display 
 

 

1.2 How is this manual structured? 
This documentation is a combination of different types of manuals. It is for beginners and also a 
reference for advanced users. 

How to use this documentation: 

• Refer to the table of contents to select a specific subject. 

• At the beginning of a chapter we will give you a brief overview of its contents. 

• Abbreviations and technical terms are listed in the glossary. 

• The print version of the manual contains a search index in the annex. 

In case of malfunctions or uncertainties please contact the manufacturer at: 
→ www.ifm.com > Select country/language > [Contact] 

We reserve the right to make alterations which can result in a change of contents of the 
documentation. You can find the current version on ifm's website at:  
→ www.ifm.com > Select country/language > [Service] > [Download] > [Control systems] 
 

 

http://www.ifm.com/�
http://www.ifm.com/�


ifm System Manual ecomatmobile SmartController (CR2500) V05 

Safety instructions General
 

9 

2 Safety instructions 
 
General ........................................................................................................................................9 
What previous knowledge is required?......................................................................................10 

 

 

2.1 General 
No characteristics are warranted with the information, notes and examples provided in this manual. 
The drawings, representations and examples imply no responsibility for the system and no application-
specific particularities. 

The manufacturer of the machine/equipment is responsible for the safety of the machine/equipment. 
 

 WARNING 
Property damage or bodily injury possible when the notes in this manual are not adhered to!  
ifm electronic gmbh does not assume any liability in this regard. 

► The acting person must have read and understood the safety instructions and the corresponding 
chapters of this manual before performing any work on or with this device. 

► The acting person must be authorised to work on the machine/equipment. 

► Adhere to the technical data of the devices! 
You can find the current data sheet on ifm's homepage at:  
→ www.ifm.com > Select country/language > [Data sheet direct] > (Article no.) > [Technical data in 
PDF format] 

► Note the installation and wiring information as well as the functions and features of the devices!  
→ supplied installation instructions or on ifm's homepage:  
→ www.ifm.com > Select country/language > [Data sheet direct] > (Article no.) > [Operating 
instructions] 

 

ATTENTION 
The driver module of the serial interface can be damaged!  

Disconnecting the serial interface while live can cause undefined states which damage the driver 
module. 

► Do not disconnect the serial interface while live.  

 

Start-up behaviour of the controller 

The manufacturer of the machine/equipment must ensure with his application program that when the 
controller starts or restarts no dangerous movements can be triggered. 

A restart can, for example, be caused by: 

• voltage restoration after power failure 

• reset after watchdog response because of too long a cycle time 
 

 

http://www.ifm.com/�
http://www.ifm.com/�


 

10 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Safety instructions What previous knowledge is required?

2.2 What previous knowledge is required? 
This document is intended for people with knowledge of control technology and PLC programming 
with IEC 61131-3. 

If this device contents a PLC, in addition these persons should know the CoDeSys® software. 

The document is intended for specialists. These specialists are people who are qualified by their 
training and their experience to see risks and to avoid possible hazards that may be caused during 
operation or maintenance of a product. The document contains information about the correct handling 
of the product. 

Read this document before use to familiarise yourself with operating conditions, installation and 
operation. Keep the document during the entire duration of use of the device.  

Adhere to the safety instructions. 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

System description Information concerning the device
 

11 

3 System description 
 
Information concerning the device.............................................................................................11 
Information concerning the software .........................................................................................11 
PLC configuration ......................................................................................................................12 

 

 

3.1 Information concerning the device 
This manual describes the ecomatmobile controller family of ifm electronic gmbh with a 16-bit 
microcontroller for mobile vehicles: 

• SmartController: CR2500 
 

 

3.2 Information concerning the software 
The controller operates with CoDeSys®, version 2.3.9.1 or higher. 

In the "programming manual CoDeSys® 2.3" you will find more details about how to use the 
programming system "CoDeSys for Automation Alliance". This manual can be downloaded free of 
charge from ifm's website at: 
→ www.ifm.com > Select country/language > [Service] > [Download] > [Control systems] 
→ ifm-CD "Software, tools and documentation" 

The application software can be easily designed by the user with the programming system CoDeSys®. 

Moreover the user must take into account which software version is used (in particular for the 
operating system and the function libraries). 
 

 NOTE: 
The software versions suitable for the selected target must always be used: 

• of the operating system (CRnnnn_Vxxyyyzz.H86), 

• of the PLC configuration (CRnnnn_Vxx.CFG), 

• of the device library (CRnnnn_Vxxyyyzz.LIB), 

• and the further files (→ chapter Overview of the files and libraries used, → page 275) 

CRnnnn device article number 
Vxx: 00...99 target version number 
yy: 00...99 release number 
zz: 00...99  patch number 

The basic file name (e.g. "CR0032") and the software version number "xx" (e.g. "02") must always have 
the same value! Otherwise the controller goes to the STOP mode. 

The values for "yy" (release number) and "zz" (patch number) do not have to match. 
 

Also note: the following files must also be loaded: 

• The for the project required internal libraries (designed in IEC1131), 

• the configuration files (*.CFG) 

• and the target files (*.TRG). 

http://www.ifm.com/�


 

12 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

System description PLC configuration

Also note:  

The target for CRnn32 must be > V02, for all other devices > V05. 

The user is responsible for the reliable function of the application programs he designed. If necessary, 
he must additionally carry out an approval test by corresponding supervisory and test organisations 
according to the national regulations. 
 

 

3.3 PLC configuration 
The control system ecomatmobile is a device concept for series use. This means that the controllers 
can be configured in an optimum manner for the applications. If necessary, special functions and 
hardware solutions can be implemented. In addition, the current version of the ecomatmobile 
software can be downloaded from our website at: www.ifm.com. 

Before using the controllers it must be checked whether certain functions, hardware options, inputs 
and outputs described in the documentation are available in the hardware. 
 

 

http://www.ifm.com/�


ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations PLC configuration
 

13 

4 Configurations 
 
Set up programming system......................................................................................................14 
Function configuration of the inputs and outputs.......................................................................29 
Hints to wiring diagrams ............................................................................................................34 

 

The device configurations described in the corresponding installation instructions and in the annex 
(→ page 271) to this documentation are used for standard devices (stock items). They fulfil the 
requested specifications of most applications. 

Depending on the customer requirements for series use it is, however, also possible to use other 
device configurations, e.g. with respect to the inputs/outputs and analogue channels. 
 

 WARNING 
Property damage or bodily injury possible due to malfunctions! 

The software functions described in this documentation only apply to the standard configurations. In 
case of use of customer-specific devices: 

► Note the special hardware versions and additional remarks (additional documentation) on use of 
the software. 

 

Installation of the files and libraries in the device: 

Factory setting: the device contains only the boot loader. 

► Load the operating system (*.H86) 

► Create the project (*.PRO) in the PC: enter the target (*.TRG) 

► (Additionally for targets before V05:) define the PLC configuration (*.CFG) 

> CoDeSys® integrates the files belonging to the target into the project: 
*.TRG, *.CFG, *.CHM, *.INI, *.LIB 

► If required, add further libraries to the project (*.LIB). 

Certain libraries automatically integrate further libraries into the project. 
Some functions in ifm libraries (ifm_*.LIB) e.g. are based on functions in CoDeSys® libraries 
(3S_*.LIB). 
 



 

14 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system

 

4.1 Set up programming system 

4.1.1 Set up programming system manually 

Setup the target 
When creating a new project in CoDeSys® the target file corresponding to the controller must be 
loaded. It is selected in the dialogue window for all hardware and acts as an interface to the hardware 
for the programming system. 

 
Figure: Target system settings 

At the same time, all important libraries and the PLC configuration are loaded when selecting the 
target. These can be removed by the programmer or complemented by further libraries, if necessary. 
 

 NOTE: 
The software versions suitable for the selected target must always be used: 

• of the operating system (CRnnnn_Vxxyyyzz.H86), 

• of the PLC configuration (CRnnnn_Vxx.CFG), 

• of the device library (CRnnnn_Vxxyyyzz.LIB), 

• and the further files (→ chapter Overview of the files and libraries used, → page 275) 

CRnnnn device article number 
Vxx: 00...99 target version number 
yy: 00...99 release number 
zz: 00...99  patch number 

The basic file name (e.g. "CR0032") and the software version number "xx" (e.g. "02") must always have 
the same value! Otherwise the controller goes to the STOP mode. 

The values for "yy" (release number) and "zz" (patch number) do not have to match. 
 

Also note: the following files must also be loaded: 

• The for the project required internal libraries (designed in IEC1131), 

• the configuration files (*.CFG) 

• and the target files (*.TRG). 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system
 

15 

 

Activating the PLC configuration 
During the configuration of the programming system (→ previous section) automatically also the PLC 
configuration was carried out. 

The point [PLC Configuration] is reached via the tab [Resources]. Double-click on [PLC Configuration] 
to open the corresponding window. 

► Click on the tab [Resources] in CoDeSys®: 

 
► Double-click on [PLC Configuration] in the left column. 

> Display of the current PLC configuration (→ following figure): 

 
Based on the configuration the following is available in the program environment for the user: 

• All important system and error flags  
Depending on the application and the application program, these flags must be processed and 
evaluated. Access is made via their symbolic names. 

• The structure of the inputs and outputs 
These can be directly symbolically designated (highly recommended!) in the window [PLC 
Configuration] (example → figure below) and are available in the whole project as [Global 
Variables]. 



 

16 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system

 

 
 

4.1.2 Set up programming system via templates 
 

ifm offers ready-to-use templates (program templates) for a fast, simple, and complete setting  up of 
the programming system.  
 

 NOTE 
When installing the ecomatmobile CD "Software, Tools and Documentation", projects with templates 
have been stored in the program directory of your PC:  
…\ifm electronic\CoDeSys V…\Projects\Template_CDVxxyyzz 

► Open the requested template in CoDeSys via: 
[File] > [New from template…] 

> CoDeSys creates a new project which shows the basic program structure. It is strongly 
recommended to follow the shown procedure. 
→ chapter Set up programming system via templates (→ page 16) 

 

How do you set up the programming system fast and simply? 

► In the CoDeSys menu select: [File] > [New from template...] 

► Select directory of the current CD, e.g. ...\Projects\TEMPLATE_CDV010500: 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system
 

17 

► Find article number of the unit in the list, e.g. CR2500 as CANopen master: 

 
► How is the CAN network organised? 

Do you want to work on layer 2 basis or is there a master with several slaves (for CANopen)? 
(Here an example: CANopen-Slave, → figure above) 

► Confirm the selection with [Open]. 

> A new CoDeSys project is generated with the following folder structure (left): 

Example for CR2500 as CANopen master: Another example for CR1051 as CANopen slave: 

 

 

(via the folder structures in Templates → Section About the ifm Templates, → page 18). 

► Save the new project with [file] > [Save as...], and define suitable directory and project name. 

► Configuration of the CAN network in the project: 
Double click the element [PLC configuration] above the tabulator [resources] in the CoDeSys 
project. 

► Right mouse click in the entry [CR2500, CANopen Master]  

► Click in the context menu [Append subelement]: 

 
> A list of all available EDS files appears in the extended context menu.  



 

18 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system

► Select requested element, e.g. "System R360": I/O CompactModule CR2011 (EDS)". 
The EDS files are in directory C:\…\CoDeSys V…\Library\PLCConf\. 

> The window [PLC configuration] changes as follows: 

 
► Set CAN parameters, PDO mapping and SDOs for the entered slave according to the 

requirements. Note:  Better deselect [Create all SDOs]. 

► With further slaves proceed as described above. 

► Save the project! 

This should be a sufficient description of your project. You want to supplement this project with further 
elements and functions? 
→ chapter Supplement project with further functions (→ page 23) 
 

 

About the ifm templates 
As a rule the following templates are offered for each unit: 

• ifm_template_CRnnnnLayer2_Vxxyyzz.pro for the operation of the unit with CAN layer 2 

• ifm_template_CRnnnnMaster_Vxxyyzz.pro for the operation of the unit as CAN master 

• ifm_template_CRnnnnSlave_Vxxyyzz.pro for the operation of the unit as CAN slave 

The templates described here are for: 
 - CoDeSys from version 2.3.9.6 
 - on the ecomatmobile-CD from version 010500 

The templates all have the same structures. 

The selection of this program template for CAN operation already is an important basis for a 
functioning program. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system
 

19 

 

Folder structure in general 
The POUs are sorted in the following folders: 

Folder Description 

CAN_OPEN for Controller and PDM,  
CAN operation as master or slave: 

contains the functions for CANopen. 

I_O_CONFIGURATION for Controller,  
CAN operation with layer 2 or as master or slave: 

Functions for parameter setting of the operating modes of the inputs and outputs. 

PDM_COM_LAYER2 for Controller, 
CAN operation as layer 2 or as slave: 

Functions for basis communication via layer 2 between PLC and PDM. 

CONTROL_CR10nn for PDM,  
CAN operation with layer 2 or as master or slave: 

Contains functions for image and key control during operation. 

PDM_DISPLAY_SETTINGS for PDM,  
CAN operation with layer 2 or as master or slave: 

Contains functions for adjusting the monitor. 
 

 

Programs and functions in the folders of the templates 
The above folders contain the following programs and functions (= POUs): 

POUs in the folder 
CAN_OPEN 

Description 

CANopen for Controller and PDM, 
CAN operation as master: 

Contains the following parameterised POUs: 
 - CAN1_MASTER_EMCY_HANDLER 
 (→ Function CANx_MASTER_EMCY_HANDLER, → page 118), 
 - CAN1_MASTER_STATUS (→ Function CANx_MASTER_STATUS, → page 123), 
 - SELECT_NODESTATE (→ down). 

CANopen for Controller and PDM, 
CAN  operation as slave: 

Contains the following parameterised POUs: 
 - CAN1_SLAVE_EMCY_HANDLER 
 (→ Function CANx_SLAVE_EMCY_HANDLER, → page 131), 
 - CAN1_SLAVE_STATUS (→ Function CANx_SLAVE_STATUS, → page 136), 
 - SELECT_NODESTATE (→ down). 

Objekt1xxxh for Controller and PDM, 
CAN operation as slave: 

Contains the values [STRING] for the following parameters:  
 - ManufacturerDeviceName, e.g.: 'CR1051' 
 - ManufacturerHardwareVersion, e.g.: 'HW_Ver 1.0' 
 - ManufacturerSoftwareVersion, e.g.: 'SW_Ver 1.0' 



 

20 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system

POUs in the folder 
CAN_OPEN 

Description 

SELECT_NODESTATE for PDM, 
CAN operation as master or slave: 

Converts the value of the node status [BYTE] into the corresponding text [STRING]: 
 4 → 'STOPPED' 
 5 → 'OPERATIONAL' 
 127 → 'PRE-OPERATIONAL' 

 

POUs in the folder 
I_O_CONFIGURATION 

Description 

CONF_IO_CRnnnn for Controller, 
CAN operation with layer 2 or as master or slave: 

Parameterises the operating modes of the inputs and outputs. 
 

POUs in the folder 
PDM_COM_LAYER2 

Description 

PLC_TO_PDM for Controller, 
CAN operation with layer 2 or as slave: 

Organises the communication from the Controller to the PDM: 
- monitors the transmission time, 
- transmits control data for image change, input values etc. 

TO_PDM for Controller, 
CAN operation with layer 2 or as slave: 

Organises the signals for LEDs and keys between Controller and PDM. 

Contains the following parameterised POUs: 
 - PACK (→ 3S), 
 - PLC_TO_PDM (→ up), 
 - UNPACK (→ 3S). 

 

POUs in the folder 
CONTROL_CR10nn 

Description 

CONTROL_PDM for PDM, 
CAN operation with layer 2 or as master or slave: 

Organises the image control in the PDM. 

Contains the following parameterised POUs: 
 - PACK (→ 3S), 
 - PDM_MAIN_MAPPER, 
 - PDM_PAGECONTROL, 
 - PDM_TO_PLC (→ down), 
 - SELECT_PAGE (→ down). 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system
 

21 

POUs in the folder 
CONTROL_CR10nn 

Description 

PDM_TO_PLC for PDM, 
CAN operation with layer 2: 

Organises the communication from the PDM to the Controller: 
 - monitors the transmission time, 
 - transmits control data for image change, input values etc. 

Contains the following parameterised POUs: 
 - CAN_1_TRANSMIT, 
 - CAN_1_RECEIVE. 

RT_SOFT_KEYS for PDM, 
CAN operation with layer 2 or as master or slave: 

Provides the rising edges of the (virtual) key signals in the PDM. As many variables as 
desired (as virtual keys) can be mapped on the global variable SoftKeyGlobal when e.g. 
a program part is to be copied from a CR1050 to a CR1055. It contains only the keys 
F1...F3: 

→ For the virtual keys F4...F6 variables have to be created. Map these self-created 
variables on the global softkeys. Work only with the global softkeys in the program. 
Advantage: Adaptations are only required in one place. 

SELECT_PAGE for PDM, 
CAN operation with layer 2 or as master or slave: 

Organises the selection of the visualisations. 

Contains the following parameterised POUs: 
 - RT_SOFT_KEYS (→ up). 

 

POUs in the folder 
PDM_DISPLAY_SETTINGS 

Description 

CHANGE_BRIGHTNESS for PDM, 
CAN operation with layer 2 or as master or slave: 

Organises brightness / contrast of the monitor. 

DISPLAY_SETTINGS for PDM, 
CAN operation with layer 2 or as master or slave: 

Sets the real-time clock, controls brightness / contrast of the monitor, shows the 
software version. 

Contains the following parameterised POUs: 
 - CHANGE_BRIGHTNESS (→ up), 
 - CurTimeEx (→ 3S), 
 - PDM_SET_RTC, 
 - READ_SOFTWARE_VERS (→ down), 
 (→ 3S). 

READ_SOFTWARE_VERS for PDM, 
CAN operation with layer 2 or as master or slave: 

Shows the software version. 

Contains the following parameterised POUs: 
 - DEVICE_KERNEL_VERSION1, 
 - DEVICE_RUNTIME_VERSION, 
 - LEFT (→ 3S). 

 



 

22 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system

POUs in the root directory Description 

PLC_CYCLE for Controller, 
CAN operation with layer 2 or as master or slave: 

Determines the cycle time of the PLC in the unit. 

PDM_CYCLE_MS for PDM, 
CAN operation with layer 2 or as master or slave: 

Determines the cycle time of the PLC in the unit. 

PLC_PRG for Controller and PDM, 
CAN operation with layer 2 or as master or slave: 

Main program This is where further program elements are included. 
 

 

Structure of the visualisations in the templates 
(Only for PDM) 

The visualisations are structured in folders as follows: 

Folder Image no. Description contents  

START_PAGE P00001 Setting / display of... 
-  node ID 
- CAN baud rate 
- status 
 - GuardErrorNode 
- PLC cycle time 

__MAIN_MENUES P00010 Menu screen: 
 - Display setup 

____MAIN_MENUE_1   

______DISPLAY_SETUP   

________1_DISPLAY_SETUP1 P65000 Menu screen: 
- Software version 
- brightness / contrast 
- display / set real-time clock  

__________1_SOFTWARE_VERSION P65010 Display of the software version. 

__________2_BRIGHTNESS P65020 Adjustment of brightness / contrast  

__________3_SET_RTC P65030 Display / set real-time clock 

In the templates we have organised the image numbers in steps of 10. This way you can switch into 
different language versions of the visualisations by means of an image number offset. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system
 

23 

 

Supplement project with further functions 
You have created a project using an ifm template and you have defined the CAN network. Now you 
want to add further functions to this project. 

For the example we take a CabinetController CR2500 as CAN open Master to which an I/O 
CabinetModule CR2011 and an I/O compact module are connected as slaves: 

PLC configuration: 

 
A joystick is connected to the CR2012 which is to trigger a PWM output on the CR2032. How is that 
achieved in a fast and simple way? 

► Save CoDeSys project! 

► In CoDeSys use [Project] > [Copy...] to open the project containing the requested function: 
e.g. CR2500Demo_CR2012_02.pro from directory DEMO_PLC_CDV… underC:\...\CoDeSys 
V…\Projects\: 

 
► Confirm the selection with [Open].  

> Window [Copy objects] appears: 

 



 

24 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system

► Highlight the elements which contain only the requested function, in this case e.g.: 

 
NOTE: In other cases libraries and/or visualisations might be required.  

► Confirm the selection with [OK]. 

> In our example project the elements selected in the demo project have been added: 

POUs: Resources: 

  

► Insert the program [CR2012] in the main program [PLC_PRG] e.g.: 

 
► The comments of the POUs and global variables usually contain information on how the individual 

elements have to be configured, included or excluded. This information has to be followed. 

► Adapt input and output variables as well as parameters and possible visualisations to your own 
conditions. 

► [Project] > [Save] and  
[Project] > [Rebuild all]. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system
 

25 

► After possibly required corrections and addition of missing libraries (→ Error messages after 
rebuild) save the project again. 

► Follow this principle to step by step (!) add further functions from other projects and check the 
results. 

► [Project] > [Save] and  
[Project] > [Rebuild all]. 

 

4.1.3 ifm demo programs 
 

In directory DEMO_PLC_CDV… (for Controller) or DEMO_PDM_CDV… (für PDMs) under 
C:\¼\CoDeSys V…\Projects\ we explain certain functions in tested demo programs. If required, 
these functions can be implemented in own projects. Structures and variables of the ifm demos match 
those in the ifm templates.  

Each demo program shows just one topic. For the Controller as well some visualisations are shown 
which demonstrate the tested function on the PC screen. 

Comments in the POUs and in the variable lists help you adapt the demo to your project. 

If not stated otherwise the demo programs apply to all controllers or to all PDMs. 

The demo programs described here apply for: 
 - CoDeSys from version 2.3.9.6 
 - on the ecomatmobile CD from version 010500 
 

 

Demo program for controller 
Demo program Function 

CR2500Demo_CanTool_xx.pro separate for PDM360, PDM360 compact, PDM360 
smart and Controller: 

Contains functions to set and analyse the CAN 
interface. 

CR2500Demo_ClockFu_xx.pro 
CR2500Demo_ClockKo_xx.pro 
CR2500Demo_ClockSt_xx.pro 

Clock generator for Controller as a function of a 
value on an analogue input: 
Fu = in function block diagram 
K0 = in ladder diagram 
St = in structured text 

CR2500Demo_CR1500_xx.pro Connection of a keypad module CR1500 as slave of 
a Controller (CANopen master). 

CR2500Demo_CR2012_xx.pro I/O cabinet module CR2012 as slave of a Controller 
(CANopen master), 

Connection of a joystick with direction switch and 
reference medium voltage. 

CR2500Demo_CR2016_xx.pro I/O cabinet module CR2016 as slave of a Controller 
(CANopen master), 

4 x frequency input,  
4 x digital input high side,  
4 x digital input low side,  
4 x analogue input ratiometric, 
4 x PWM1000 output and  
12 x digital output. 



 

26 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system

Demo program Function 

CR2500Demo_CR2031_xx.pro I/O compact module CR2031 as slave of a Controller 
(CANopen master), 

Current measurement on the PWM outputs 

CR2500Demo_CR2032_xx.pro I/O compact module CR2032 as slave of a Controller 
(CANopen master), 

4 x digital input,  
4 x digital input analogue evaluation,  
4 x digital output,  
4 x PWM output. 

CR2500Demo_CR2033_xx.pro I/O compact module CR2033 as slave of a Controller 
(CANopen master), 

4 x digital input, 
4 x digital input analogue evaluation, 
4 x digital output, 

CR2500Demo_CR2101_xx.pro Inclination sensor CR2101 as slave of a Controller 
(CANopen master). 

CR2500Demo_CR2102_xx.pro Inclination sensor CR2102 as slave of a Controller 
(CANopen master). 

CR2500Demo_CR2511_xx.pro I/O smart module CR2511 as slave of a Controller 
(CANopen master), 

8 x PWM output current-controlled. 

CR2500Demo_CR2512_xx.pro I/O smart module CR2512 as slave of a Controller 
(CANopen master), 

8 x PWM output. 
Display of the current current for each channel pair. 

CR2500Demo_CR2513_xx.pro I/O smart module CR2513 as slave of a Controller 
(CANopen master), 

4 x digital input, 
4 x digital output, 
4 x analogue input 0...10 V. 

CR2500Demo_Interrupt_xx.pro Example with function SET_INTERRUPT_XMS 
(→ page 232). 

CR2500Demo_Operating_hours_xx.pro Example of an operating hours counter with 
interface to a PDM. 

CR2500Demo_PWM_xx.pro Converts a potentiometer value on an input into a 
normed value on an output with the following POUs:
 - Function INPUT_VOLTAGE (→ page 250), 
 - Function NORM (→ page 253), 
 - Function PWM100 (→ page 167). 

CR2500Demo_RS232_xx.pro Example for the reception of data on the serial 
interface by means of the Windows hyper terminal. 

StartersetDemo.pro 
StartersetDemo2.pro 
StartersetDemo2_fertig.pro 

Various e-learning exercises with the starter set 
EC2074. 

_xx = indication of the demo version 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system
 

27 

Demo program for PDM: 
Demo program Function 

CR1051Demo_CanTool_xx.pro 
CR1053Demo_CanTool_xx.pro 
CR1071Demo_CanTool_xx.pro 

separate for PDM360, PDM360 compact, PDM360 
smart and Controller: 

Contains functions to set and analyse the CAN 
interface. 

CR1051Demo_Input_Character_xx.pro Allows to enter any character in a character string: 
- capital letters, 
- small letters, 
- special characters, 
- figures. 

Selection of the characters via encoder. Example 
also suited for e.g. entering a password. 

Figure P01000: Selection and takeover of characters

CR1051Demo_Input_Lib_xx.pro Demo of function INPUT_INT from the library 
ifm_pdm_input_Vxxyyzz (possible alternative to 
3S standard). Select and set values via encoder. 

Figure P10000: 6 values INT 
Figure P10010: 2 values INT 
Figure P10020: 1 value REAL 

CR1051Demo_Linear_logging_on_flash 
_intern_xx.pro 

Writes a CVS data block with the contents of a CAN 
message in the internal flash memory 
(/home/project/daten.csv), when [F3] is 
pressed or a CAN message is received on ID 100. 
When the defined memory range is full the recording 
of the data is finished. 

POUs used: 
 - Function WRITE_CSV_8BYTE, 
 - Function SYNC. 

Figure P35010: Display of data information 
Figure P35020: Display of current data record 
Figure P35030: Display of list of 10 data records 

CR1051Demo_O2M_1Cam_xx.pro Connection of 1 camera O2M100 to the monitor with 
function CAM_O2M. Switching between partial 
screen and full screen.  

Figure 39000:  Selection menu 
Figure 39010:  Camera image + text box 
Figure 39020:  Camera image as full screen 
Figure 39030:  Visualisation only 

CR1051Demo_O2M_2Cam_xx.pro Connection of 2 cameras O2M100 to the monitor 
with function CAM_O2M. Switching between the 
cameras and between partial screen and full screen.

Figure 39000:  Selection menu 
Figure 39010:  Camera image + text box 
Figure 39020:  Camera image as full screen 
Figure 39030:  Visualisation only 



 

28 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Set up programming system

Demo program Function 

CR1051Demo_Powerdown_Retain_bin 
_xx.pro 

Example with function PDM_POWER_DOWN from 
the library ifm_CR1051_Vxxyyzz.Lib, to save 
retain variable in the file Retain.bin. Simulation of 
ShutDown with [F3]. 

CR1051Demo_Powerdown_Retain_bin2 
_xx.pro 

Example with function PDM_POWER_DOWN from 
the library ifm_CR1051_Vxxyyzz.Lib, to save 
retain variable in the file Retain.bin. Simulation of 
ShutDown with [F3]. 

CR1051Demo_Powerdown_Retain_cust 
_xx.pro 

Example with function PDM_POWER_DOWN and 
the function PDM_READ_RETAIN from the library 
ifm_CR1051_Vxxyyzz.Lib, to save retain 
variable in the file 
/home/project/myretain.bin. Simulation of 
ShutDown with [F3]. 

CR1051Demo_Read_Textline_xx.pro The example program reads 7 text lines at a time 
from the PDM file system using function 
READ_TEXTLINE. 

Figure P01000: Display of read text 

CR1051Demo_Real_in_xx.pro Simple example for entering a REAL value in the 
PDM. 

Figure P01000: Enter and display REAL value 

CR1051Demo_Ringlogging_on_flash 
_intern_xx.pro 

Writes a CVS data block in the internal flash memory 
when [F3] is pressed or a CAN message is received 
on ID 100. The file names can be freely defined. 
When the defined memory range is full the recording 
of the data starts again. 

POUs used: 
 - Function WRITE_CSV_8BYTE, 
 - Function SYNC. 

Figure P35010: Display of data information 
Figure P35020: Display of current data record 
Figure P35030: Display of list of 8  data records 

CR1051Demo_Ringlogging_on_flash 
_pcmcia_xx.pro 

Writes a CVS data block on the PCMCIA card when 
[F3] is pressed or a CAN message is received on 
ID 100. The file names can be freely defined. When 
the defined memory range is full the recording of the 
data starts again. 

POUs used: 
 - Function WRITE_CSV_8BYTE, 
 - Function OPEN_PCMCIA, 
 - Function SYNC. 

Figure P35010: Display of data information 
Figure P35020: Display of current data record 
Figure P35030: Display of list of 8  data records 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Function configuration of the inputs and outputs
 

29 

Demo program Function 

CR1051Demo_RW-Parameter_xx.pro In a list parameters can be selected and changed. 

Example with the following POUs: 
 - Function READ_PARAMETER_WORD, 
 - Function WRITE_PARAMETER_WORD. 

Figure P35010: List of 20 parameters 

_xx = indication of the demo version 
 

4.2 Function configuration of the inputs and 
outputs 

For some devices of the ecomatmobile controller family, additional diagnostic functions can be 
activated for the inputs and outputs. So, the corresponding input and output signal can be monitored 
and the application program can react in case of a fault. 

Depending on the input and output, certain marginal conditions must be taken into account when 
using the diagnosis: 

• It must be checked by means of the data sheet if the device used has the described input and 
output groups. 

• Constants are predefined (e.g. IN_DIGITAL_H) in the device libraries (e.g. 
ifm_CR0020_Vx.LIB) for the configuration of the inputs and outputs. For details → annex 
(→ page 271). 

 

4.2.1 Configure inputs 

Digital inputs 
Depending on the controller, the digital inputs can be configured differently. In addition to the 
protective mechanisms against interference, the digital inputs are internally evaluated via an analogue 
stage. This enables diagnosis of the input signals. But in the application software the switching signal 
is directly available as bit information. For some of these inputs the potential can be selected. 

Spannung
Voltage

Input FilterDigital
Eingang / Input

UB

 
Figure: Block diagram high/low side input for negative and positive sensor signals 



 

30 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Function configuration of the inputs and outputs

 

GND

Sensor

UB

 GND

Sensor

UB

 
High side input for negative sensor signal Low side input for positive sensor signal 
 

 

Fast inputs 
In addition, the ecomatmobile controllers have up to 16 fast counter/pulse inputs for an input 
frequency up to 50 kHz (→ data sheet). If, for example, mechanical switches are connected to these 
inputs, there may be faulty signals in the controller due to contact bouncing. Using the application 
software, these "faulty signals" must be filtered if necessary. 

Furthermore it has to be noted whether the pulse inputs are designed for frequency measurement 
(FRQx) and/or period measurement (CYLx) (→ data sheet). 

The following functions, for example, can be used here: 

On FRQx inputs: 

• Frequency measurement with function FREQUENCY (→ page 201) 

• Fast counter with function FAST_COUNT (→ page 212) 

On CYLx inputs: 

• Period measurement with function PERIOD (→ page 203) or with function PERIOD_RATIO 
(→ page 205) 

• Phase position of 2 fast inputs compared via the function PHASE (→ page 207) 
 

 Info 
When using this function, the parameterised inputs and outputs are automatically configured, so the 
programmer of the application does not have to do this. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Function configuration of the inputs and outputs
 

31 

 

Analogue inputs 
The analogue inputs can be configured via the application program. The measuring range can be set 
as follows: 

• current input 0...20 mA 

• voltage input 0...10 V 

• voltage input 0...30 / 32 V 

If in the operating mode "0...30 / 32 V" the supply voltage is read back, the measurement can also be 
performed ratiometrically. This means potentiometers or joysticks can be evaluated without additional 
reference voltage. A fluctuation of the supply voltage then has no influence on this measured value. 

As an alternative, an analogue channel can also be evaluated digitally. 
 

 NOTE 
In case of ratiometric measurement the connected sensors should be supplied via the same voltage 
source as the controller. So, faulty measurements caused by offset voltage are avoided. 

In case of digital evaluation the higher input resistance must be taken into account. 
 

UB

Analog
Eingang / Input Input Filter

S
tr

om
m

es
su

ng
C

ur
re

nt
 m

ea
su

re
m

en
t

S
pa

nn
un

gs
m

es
su

ng
V

ol
ta

ge
 m

ea
su

re
m

en
t

0.
..1

0 
/ 3

2 
V

Referenz-Spannung
Reference Voltage

Spannung
Voltage

 
Figure: block diagram of the analogue inputs 
 

 

Analogue inputs ANALOG4...7 (%IW6...%IW9) 
These inputs are a group of analogue channels which can also be evaluated digitally. 

The configuration can be carried out via the system variable I4_MODE...I7_MODE or, preferably, via 
the function INPUT_ANALOG (→ page 248) (input MODE). 

If the analogue inputs are configured for current measurement, the device switches to the safe voltage 
measurement range (0...32V DC) and the corresponding error bit in the flag byte ERROR_Ix is set 
when the final value (> 23 mA) is exceeded. When the value is again below the limit value, the input 
automatically switches back to the current measurement range. 
 



 

32 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Function configuration of the inputs and outputs
 

Digital input group I0...I3 (%IX0.0...%IX1.8) 
These inputs are digital inputs with internal analogue evaluation for diagnosis. The configuration of the 
diagnostic function is carried out via the system variables Ix_MODE. The diagnostic information is 
indicated via the system flag bit ERROR_Ix. The system flag bit DIAGNOSE indicates wire break or 
short circuit of the input signal as group error. 

 

Figure: non-electronic switches 

To monitor the input signals of non-
electronic switches, they must be 
equipped with an additional resistor 
connection. 

 

 Info 
Sensors with diagnostic capabilities to NAMUR can be used on all inputs. In this case, no additional 
resistor connection is required. 

 

If the diagnostic function is active, the system variable ANALOG_0...ANALOG_3 with the voltage 
values is available for each input channel on the input. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Function configuration of the inputs and outputs
 

33 

 

4.2.2 Configure outputs 

Digital and PWM outputs 
Three types of controller outputs can be distinguished: 

• high side digital outputs with and without diagnostic function 

• high side digital outputs with and without diagnostic function and additional PWM mode 

• PWM outputs which can be operated with and without current control function. Current-controlled 
PWM outputs are mainly used for triggering proportional hydraulic functions. 

 

 WARNING 
Property damage or bodily injury due to malfunctions possible! 

Outputs which are operated in the PWM mode do not support any diagnostic functions and no ERROR 
flags are set. This is due to the structure of the outputs. 

The function OUT_OVERLOAD_PROTECTION is not active in this mode! 

 

 NOTE 
If an output is switched off in case of a fault (e.g. short circuit) via the hardware (by means of a fuse), 
the logic state created by the application program does not change. 

To set the outputs again after removal of the peripheral fault, the outputs must first be logically reset in 
the application program and then set again if required. 

 
 

Output group Q0...Q4 (%QX0.0...%QX1.8) 
If the group Q0...Q4 is used as PWM outputs, the diagnosis is implemented via the integrated current 
measurement channels which are also used for the current-controlled output functions. Using the 
function OUTPUT_CURRENT (→ page 176) load currents ≥ 100 mA can be indicated. 

This function can also be used for diagnosis when the outputs are used as digital channel (only for 
load currents ≥ 100 mA). 



 

34 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Configurations Hints to wiring diagrams

 

4.3 Hints to wiring diagrams 
 

The wiring diagrams (→ installation instructions of the controllers, chapter "Wiring") show the standard 
device configurations. The wiring diagrams help allocate the input and output channels to the IEC 
addresses and the device terminals. 
 

Examples: 

12 GNDA 

12 Terminal number 

GNDA Terminal designation 
 

30 %IX0.7 BL 

30 Terminal number 

%IX0.7 IEC address for a binary input 

BL Hardware version of the input,  
here: Binary Low side 

 

47 %QX0.3 BH/PH 

47 Terminal number 

%QX0.3 IEC address for a binary output 

BH/PH Hardware version of the output,  
here: Binary High side or PWMHigh side 

 

The different abbreviations have the following meaning: 

A Analogue input 

BH Binary input/output, high side 

BL Binary input/output, low side 

CYL Input period measurement 

ENC Input encoder signals  

FRQ Frequency input 

H-bridge Output with H-bridge function 

PWM Pulse-widthmodulated signal 

PWMI PWM output with current measurement 

IH Pulse/counter input, high side 

IL Pulse/counter input, low side 

R Read back channel for one output 
 

Allocation of the input/output channels: 

Depending on the device configuration there is one input and/or one output on a device terminal 
(→ catalogue, installation instructions or data sheet of the corresponding device). 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Operating states and operating system Operating states
 

35 

5 Operating states and operating system 
 
Operating states ........................................................................................................................35 
Status LED.................................................................................................................................36 
Load the operating system ........................................................................................................37 
Operating modes .......................................................................................................................37 

 

 

5.1 Operating states 
After power on the ecomatmobile controller can be in one of five possible operating states: 
 

 

5.1.1 Reset 
This state is passed through after every power on reset: 

• The operating system is initialised. 

• Various checks are carried out. 

• This temporary state is replaced by the Run or Stop state. 

> The LED lights orange for a short time. 
 

 

5.1.2 Run state 
This state is reached in the following cases: 

• From the reset state (autostart) 

• From the stop state by the Run command  
 - only for the operating mode = Test (→ chapter TEST mode, → page 38) 

 

 

5.1.3 Stop state 
This state is reached in the following cases: 

• From the reset state if no program is loaded 

• From the Run state if: 
- the stop command is sent via the interface 
- AND: operating mode = Test (→ chapter TEST mode, → page 38) 

 

 

5.1.4 Fatal error 
The ecomatmobile controller goes to this state if a non tolerable error was found. This state can only 
be left by a reset. 

> The LED lights red. 
 



 

36 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Operating states and operating system Status LED
 

5.1.5 No operating system 
No operating system was loaded, the controller is in the boot loading state. Before loading the 
application software the operating system must be downloaded. 

> The LED flashes green (quickly). 
 

 

5.2 Status LED 
The operating states are indicated by the integrated status LED (default setting). 

LED colour Flashing 
frequency 

Description 

out permanently out no operating voltage 

green 5 Hz no operating system loaded 

green 2 Hz RUN state 

green permanently on STOP state 

red 2 Hz RUN state with error 

red permanently on fatal error or stop with error 

yellow/orange briefly on initialisation or reset checks 

 

The operating states STOP and RUN can be changed by the programming system. 

For this controller the status LED can also be set by the application program. To do so, the following 
system variable is used: 

LED_MODE flashing frequency from the data structure "LED_MODES"  
allowed: LED_2HZ, LED_1HZ, LED_05HZ, LED_0HZ (permanently) 

 

 NOTE 
If the flashing mode is changed by the application program, the above-mentioned table (default setting) 
is no longer valid. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Operating states and operating system Load the operating system
 

37 

 

5.3 Load the operating system 
On delivery of the ecomatmobile controller no operating system is normally loaded (LED flashes 
green at 5 Hz). Only the boot loader is active in this operating mode. It provides the minimum functions 
for loading the operating system (e.g. RS232, CAN). 

Normally it is necessary to download the operating system only once. The  application program can 
then be loaded to the controller (also several times) without influencing the operating system. 
Advantage: 

• No EPROM replacement is necessary for an update of the operating system. 

The operating system is provided with this documentation on a separate data carrier. In addition, the 
current version can be downloaded from the website of ifm electronic gmbh at:  
→ www.ifm.com > Select country/language > [Service] > [Download] > [Control systems] 
 

 NOTE: 
The software versions suitable for the selected target must always be used: 

• of the operating system (CRnnnn_Vxxyyyzz.H86), 

• of the PLC configuration (CRnnnn_Vxx.CFG), 

• of the device library (CRnnnn_Vxxyyyzz.LIB), 

• and the further files (→ chapter Overview of the files and libraries used, → page 275) 

CRnnnn device article number 
Vxx: 00...99 target version number 
yy: 00...99 release number 
zz: 00...99  patch number 

The basic file name (e.g. "CR0032") and the software version number "xx" (e.g. "02") must always have 
the same value! Otherwise the controller goes to the STOP mode. 

The values for "yy" (release number) and "zz" (patch number) do not have to match. 
 

Also note: the following files must also be loaded: 

• The for the project required internal libraries (designed in IEC1131), 

• the configuration files (*.CFG) 

• and the target files (*.TRG). 

The operating system is transferred to the controller using the separate program "downloader". (The 
downloader is on the ecomatmobile CD "Software, Tools and Documentation" or can be downloaded 
from ifm's website, if necessary). 

Normally the application program is loaded to the controller via the programming system. But it can 
also be loaded using the downloader if it was first read from the controller (→ upload). 
 

 

5.4 Operating modes 
Independent of the operating states the ecomatmobile controller can be operated in different modes. 
The corresponding control bits can be set and reset with the programming software CoDeSys 
(window: Global Variables) via the application software or in test mode (→ chapter TEST mode, 
→ page 38). 
 

 

http://www.ifm.com/�


 

38 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Operating states and operating system Operating modes

5.4.1 TEST mode 
This operating mode is achieved by applying a high level (supply voltage) to the test input 
(→ installation instructions, chapter "wiring"). The ecomatmobile controller can now receive 
commands via one of the interfaces in the RUN or STOP mode and, for example, communicate with 
the programming system. Moreover the software can only be downloaded to the controller in this 
operating state. 

The state of the application program can be queried via the flag TEST. 

 

NOTICE 
Loss of the stored software possible! 

In the test mode there is no protection of the stored operating system and application software. 

 

Note for the following controllers: 

• SmartController CR2500 

• CabinetController CR0301, CR0302 

• PCB controller CS0015: 

NOTICE 
Destruction of the EEPROM possible! 

The test input must not be activated permanently because otherwise the allowed write cycles are 
exceeded in the EEPROM. 

 
 

5.4.2 SERIAL_MODE 
The serial interface is available for the exchange of data in the application. Debugging the application 
software is then only possible via the CAN interface. 
For CRnn32: Debugging of the application software is then only possible via all 4 CAN interfaces or 
via USB. 

This function is switched off as standard (FALSE). Via the flag SERIAL_MODE the state can be 
controlled and queried via the application program or the programming system. 

→ chapter Use of the serial interface (→ page 239)  
 

 

5.4.3 DEBUG mode 
If the input DEBUG of the function SET_DEBUG (→ page 223) is set to TRUE, the programming 
system or the downloader, for example, can communicate with the controller and execute system 
commands (e.g. for service functions via the GSM modem CANremote). 

In this operating mode a software download is not possible because the test input (→ chapter TEST 
mode, → page 38) is not connected to supply voltage.  
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Error codes and diagnostic information Operating modes
 

39 

6 Error codes and diagnostic information 
 
Response to the system error ...................................................................................................40 

 

To ensure maximum operational reliability the operating system checks the ecomatmobile controller 
in the start phase (reset phase) and during the program execution by internal error checks. 

The following error flags are set in case of an error: 

Error Description 

CANx_BUSOFF CAN interface x: Interface is not on the bus 

CANx_LASTERROR ¹) CAN interface x: Error number of the last CAN transmission: 

0= no error 
≠0 → CAN specification → LEC 

CANx_WARNING CAN interface x: Warning threshold reached (> 96) 

ERROR ³) Set ERROR bit / switch off the relay *) 

ERROR_MEMORY Memory error 

ERROR_POWER Undervoltage/overvoltage error 

ERROR_TEMPERATURE  Excessive temperature error (> 85 °C) 

ERROR_VBBR Terminal voltage error VBBR 

CANx stands for the number of the CAN interface (CAN 1...x, depending on the device). 

¹) Access to this flags requires detailed knowledge of the CAN controller and is normally not required. 

²) Flag NOT available for CR2500, CR0301, CR0302. 

³) By setting the ERROR system flag the ERROR output (terminal 13) is set to FALSE. In the "error-
free state" the output ERROR = TRUE (negative logic). 

*) Relay NOT available for CR2500 and CR030n. 
 

The following diagnostic messages are only available for devices with periphery terminals: 

Diagnostic message 

(only devices with periphery connections) 

Type Description 

ERROR_BREAK_Qx *) BYTE Wire break error on the output group x 

ERROR_Ix BYTE Peripheral error on the input group x 

ERROR_SHORT_Qx *) BYTE Short circuit error on the output group x 

x stands for the input/output group x  (word 0...x, depending on the device). 

*) Flags only available for ClassicController, ExtendedController, SafetyController. 
 

 NOTE 
In adverse cases the output transistor can already switch off a disturbed output before the operating 
system could detect the error. The corresponding error flag is then NOT set. 

We recommend that the application programmer (additionally) evaluates the error by reading back the 
outputs. 

 



 

40 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Error codes and diagnostic information Response to the system error

Complete list of the device-specific error codes and diagnostic messages  
→ chapter system flags (→ page 274). 
 

 

6.1 Response to the system error 
In principle, the programmer is responsible to react to the error flags (system flags) in the application 
program. 

The specific error bits and bytes should be processed in the application program. An error description 
is provided via the error flag. These error bits/bytes can be further processed if necessary. 

In principle, all error flags must be reset by the application program. Without explicit reset of the error 
flags the flags remain set with the corresponding effect on the application program. 

In case of serious errors the system flag bit ERROR can also be set. At the same time this also has 
the effect that the operation LED (if available) lights red, the ERROR output is set to FALSE and the 
monitoring relays (if available) are de-energised. So the outputs protected via these relays are 
switched off. 
 

 

6.1.1 Notes on devices with monitoring relay 
Only available for the following controllers: 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

Using the logic function via the system flag RELAIS or RELAIS_CLAMP_15 (→ chapter Latching) all 
other outputs are also switched off. 

Depending on the application it must now be decided whether by resetting the system flag bit ERROR 
the relay – and so also the outputs – may be switched on again. 

In addition it is also possible to set the system flag bit ERROR as "defined error" by the application 
program. 
 

NOTICE 
Premature wear of the relay contacts possible. 

► Only use this function for a general switch-off of the outputs in case of an "emergency". 

► In normal operation switch off the relays only without load!  
To do so, first switch off the outputs via the application program! 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Error codes and diagnostic information Response to the system error
 

41 

 

6.1.2 Example process for response to a system error 
The system determines an excessive temperature in the controller. 

The operating system sets the error bit ERROR_TEMPERATURE. 

The application program recognises this state by querying the corresponding bits. 

> The application program switches off outputs. 

If necessary, the error bit ERROR can be set additionally via the application program. 

> Consequences: 
 - operation LED flashes red  
 - safety relay is de-energised 
 - supply voltage of all outputs is switched off 
 - level of the output ERROR*) is LOW 

► Rectify the cause of the error. 

> The operating system resets the error bit ERROR_TEMPERATURE. 

► If set, the error bit ERROR must be deleted via the application program. 

> The relay is energised again and the LED flashes green again. 

*) Output not available for CR0301, CR0302, CS0015. 
 

 



 

42 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Programming and system resources Above-average stress

7 Programming and system resources 
 
Above-average stress................................................................................................................42 
Limits of the SmartController .....................................................................................................43 
Watchdog behaviour..................................................................................................................44 
Available memory ......................................................................................................................44 
Program creation and download in the PLC..............................................................................45 

 

For the programmable devices from the controller family ecomatmobile numerous functions are 
available which enable use of the devices in a wide range of applications. 

As these functions use more or fewer system resources depending on their complexity it is not always 
possible to use all functions at the same time and several times. 
 

NOTICE 
Risk that the controller acts too slowly! Cycle time must not become too long! 

► When designing the application program the above-mentioned recommendations must be complied 
with and tested. If necessary, the cycle time must be optimised by restructuring the software and 
the system set-up. 

 

It must also be taken into account which CPU is used in the device.  

Controller family Article no. CPU frequency [MHz] 

ClassicController (16 bits) CR0020 
CR0505 

40 

ExtendedController (16 bits) CR0200 40 

CabinetController CR0301 
CR0302 

20 

CabinetController CR0303 40 

SmartController CR2500 20 

ClassicController (32 bits) CR0032 150 

ExtendedController (32 bits) CR0232 150 

SafetyController (16 bits) CR7020, CR7021
CR7200, CR7201
CR7505; CR7506

40 

The higher the CPU frequency, the higher the performance when complex functions are used at the 
same time. 
 

 

7.1 Above-average stress 
The following functions, for example, utilise the system resources above average: 

Function Above average load 

CYCLE,  
PERIOD,  
PERIOD_RATIO,  
PHASE 

Use of several measuring channels with a high input frequency



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Programming and system resources Limits of the SmartController
 

43 

Function Above average load 

OUTPUT_CURRENT_CONTROL,  
OCC_TASK 

Simultaneous use of several current controllers 

CAN interface High baud rate (> 250 kbits) with a high bus load 

PWM,  
PWM1000 

Many PWM channels at the same time. In particular the 
channels as from 4 are much more time critical 

INC_ENCODER Many encoder channels at the same time 

The functions listed above as examples trigger system interrupts. This means: Each activation 
prolongs the cycle time of the application program. 

The following indications should be seen as reference values: 
 

 

7.2 Limits of the SmartController 
Current controller max. 1 If possible, do not use any other 

performance-affecting functions 

1 channel Input frequency < 5 kHz CYCLE,  
PERIOD,  
PERIOD_RATIO,  
PHASE 

4 channels Input frequency < 1 kHz 

INC_ENCODER max. 2 If possible, do not use any other 
performance-affecting functions! 

 

ATTENTION 
Risk that the controller works too slowly! Cycle time must not become too long! 

► When the application program is designed the above-mentioned recommendations must be 
complied with and tested. If necessary, the cycle time must be optimised by restructuring the 
software and the system set-up. 

 



 

44 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Programming and system resources Watchdog behaviour
 

7.3 Watchdog behaviour 
For all ecomatmobile controllers the program runtime is monitored by a watchdog. If the maximum 
watchdog time is exceeded, the controller carries out a reset and starts again (SafetyController: 
controller remains in the reset; LED goes out). 

Depending on the hardware the individual controllers have a different time behaviour: 

Controller Watchdog [ms] 

ClassicController 100 

ExtendedController 100 

SmartController 100…200 

SafetyController 100 

CabinetController 100…200 

PCB controller 100…200 

PDM360 smart 100…200 

PDM360 compact no watchdog 

PDM360 no watchdog 
 

 

7.4 Available memory 
Physically existing FLASH memory (non-volatile, slow memory) 512 Kbytes 

Physically existing RAM (volatile, fast memory) 256 Kbytes 

Physically existing EEPROM (non-volatile, slow memory) 4 Kbytes 

Physical 
memory 

Physically existing FRAM (non-volatile, fast memory) --- 

Memory reserved for the code of the IEC application 192 Kbytes 

Memory for data other than the IEC application that can be written by the user such as 
files, bitmaps, fonts 

48 Kbytes 

Use of the 
FLASH 
memory 

Memory for data other than the IEC application that can be processed by the user by 
means of functions such as FLASHREAD, FLASHWRITE 

16 Kbytes 

RAM Memory for the data in the RAM reserved for the IEC application 48 Kbytes 

Memory for the data declared as VAR_RETAIN in the IEC application 256 bytes 

Memory for the flags agreed as RETAIN in the IEC application 512 Kbytes 

Remanent memory freely available to the user. Access is made via the functions 
FRAMREAD, FRAMWRITE, E2READ, E2WRITE. 

256 Kbytes 

Remanent 
memory 

FRAM freely available to the user. Access is made via the address operator. 4 Kbytes 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Programming and system resources Program creation and download in the PLC
 

45 

 

7.5 Program creation and download in the PLC 
The application program is generated by the CoDeSys programming system and loaded in the 
controller several times during the program development for testing:  
In CoDeSys: [Online] > [Write file in the controller]. 

For each such download via CoDeSys the source code is translated again. The result is that each time 
a new checksum is formed in the controller memory. This process is also permissible for safety 
controllers until the release of the software. 

At least for safety-related applications the software and its checksum have to be identical for the series 
production of the machine. 

Programmieren in CoDeSys
Programming in CoDeSys

ja
yes

nein
no

Applikation testen
Test application

ja
yes

nein
no

Downloader: Projekt auslesen
Downloader: Read project

Downloader: Projekt in SPS schreiben
Downloader: Write project to PLC

R360 / PDM360 smartR360 / PDM360 smartR360 / PDM360 smartR360 / PDM360 smartR360 Controller / PDM360 smart

[Projekt] > [Alles übersetzen]
[Project] > [Compile all]

fehlerfrei?
no errors?

[Online] > [Datei in Steuerung schreiben]
[Online] > [Write file to PLC]

R360 Controller / PDM360
PDM360 compact / PDM360 smart

[Online] > [Bootprojekt erzeugen]
[Online] > [Create boot project]

[Online] > [Einloggen]
[Online] > [Login]

Prüfen und Zertifizieren
Verify and certify

Im Speicher ergänzt mit CRC
In the memory added with CRC

Test in Ordnung?
Test okay? ...

Datei.H86  (mit CRC)
File.H86 (with CRC)

Quellcode + Dokumentation
Source code + documentation

Nur wenn Sicherheits-Software:
Only if safety software:

 
Graphics: Creation and distribution of the (certified) software 



 

46 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Programming and system resources Program creation and download in the PLC

 

ifm downloader 

The ifm downloader serves for easy transfer of the program code from the programming station to the 
controller. As a matter of principle each application software can be copied to the controllers using the 
ifm downloader. Advantage: A programming system with CoDeSys licence is not required. 

Safety-related application software MUST be copied to the controllers using the ifm downloader so as 
not to falsify the checksum by which the software has been identified. 
 

 NOTE 
The ifm downloader cannot be used for the following devices: 
 - PDM360: CR1050, CR1051, CR1060, 
 - PDM360 compact: CR1052, CR1053, CR1055, CR1056. 

 

Certification and distribution of the safety-related software 

Only safety-related application software must be certified before it is copied to the series machine and 
used. 

• Saving the approved software 
After completion of program development and approval of the entire system by the responsible 
certification body (e.g. TÜV, BiA) the latest version of the application program loaded in the 
controller using the ifm downloader has to be read from the controller and saved on a data carrier 
using the name  name_of the_project file.H86. Only this process ensures that the 
application software and its checksums are stored. 

• Download of the approved software. 
To equip all machines of a series production with an identical software only this file may be loaded 
in the controllers using the ifm downloader. 

• An error in the data of this file is automatically recognised by the integrated checksum when 
loaded again using the ifm downloader. 

 

Changing the safety-relevant software after certification 

Changes to the application software using the CoDeSys programming system automatically create a 
new application file which may only be copied to the safety-related controllers after a new certification. 
To do so, follow again the process described above! 

Under the following conditions the new certification may not be necessary: 

• a new risk assessment was made for the change, 

• NO safety-related elements were changed, added or removed, 

• the change was correctly documented. 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller General about CAN
 

47 

8 CAN in the ecomatmobile controller 
 
General about CAN ...................................................................................................................47 
Exchange of CAN data ..............................................................................................................49 
Physical connection of CAN ......................................................................................................51 
Software for CAN and CANopen ...............................................................................................55 
CAN errors and error handling ..................................................................................................55 
Description of the CAN functions...............................................................................................58 
ifm CANopen library...................................................................................................................83 
Summary CAN / CANopen ..................................................................................................... 144 
Use of the CAN interfaces to SAE J1939............................................................................... 145 

 

 

8.1 General about CAN 
The CAN bus (Controller Area Network) belongs to the fieldbuses.  

It is an asynchronous serial bus system which was developed for the networking of control devices in 
automotives by Bosch in 1983 and presented together with Intel in 1985 to reduce cable harnesses 
(up to 2 km per vehicle) thus saving weight. 
 

 

8.1.1 Topology 
The CAN network is set up in a line structure. A limited number of spurs is allowed. Moreover, a ring 
type bus (infotainment area) and a star type bus (central locking) are possible. Compared to the line 
type bus both variants have one disadvantage: 

In the ring type bus all control devices are connected in series so that the complete bus fails if one 
control device fails.  

The star type bus is mostly controlled by a central processor as all information must flow through this 
processor. Consequently no information can be transferred if the central processor fails. If an 
individual control device fails, the bus continues to function.  

The linear bus has the advantage that all control devices are in parallel of a central cable. Only if this 
fails, the bus no longer functions.  

The disadvantage of spurs and star-type bus is that the wave resistance is difficult to determine. In the 
worst case the bus no longer functions.  

For a high-speed bus (> 125 kbits/s) 2 terminating resistors of 120 Ω (between CAN_HIGH and 
CAN_LOW) must additionally be used at the cable ends. 
 



 

48 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller General about CAN
 

8.1.2 CAN interfaces 
The controllers have several CAN interfaces depending on the hardware structure. In principle, all 
interfaces can be used with the following functions independently of each other: 

• CAN at level 2 (layer 2) 

• CANopen (→ page 83) protocol to CiA 301/401 for master/slave operation (via CoDeSys)  

• CAN Network variables (→ page 108) (via CoDeSys) 

• Protocol SAE J1939 (→ page 145) (for engine management) 

• Bus load detection 

• Error frame counter 

• Download interface 

• 100 % bus load without package loss 

Which CAN interface of the device has which potential, → datasheet of the device. 
 

Informative: more interesting CAN protocols: 

• "Truck & Trailer Interface" to ISO 11992 (only available for SmartController CR2051)  

• ISOBUS to ISO 11783 for agricultural machines 

• NMEA 2000 for maritime applications 

• CANopen truck gateway to CiA 413 (conversion between ISO 11992 and SAE J1939) 
 

 

8.1.3 System configuration 
The controllers are delivered with the download identifier 127. The download system uses this 
identifier (= ID) for the first communication with a non configured module via CAN. The download ID 
can be set via the PLC browser of the programming system, the downloader or the application 
program. 

As the download mechanism works on the basis of the CANopen SDO service (even if the controller is 
not operated in the CANopen mode) all controllers in the network must have a unique identifier. The 
actual COB IDs are derived from the module numbers according to the "predefined connection set". 
Only one non configured module is allowed to be connected to the network at a time. After assignment 
of the new participant number 1...126, a download or debugging can be carried out and then another 
device can be connected to the system. 

The download ID is set irrespective of the CANopen identifier. Ensure that these IDs do not overlap 
with the download IDs or the CANopen node numbers of the other controllers or network participants. 

Controller program download CANopen 

ID COB ID SDO Node ID COB ID SDO 

TX: 58016 + download ID TX: 58016 + node ID 1…127 

RX: 60016 + download ID 

1…127 

RX: 60016 + node ID 
 

 NOTE 
The CAN download ID of the device must match the CAN download ID set in CoDeSys! 

In the CAN network the CAN download IDs must be unique! 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Exchange of CAN data
 

49 

 

8.2 Exchange of CAN data 
 

CAN data is exchanged via the CAN protocol of the link layer (level 2) of the seven-layer ISO/OSI 
reference model specified in the international standard ISO 11898. 

Every bus participant can transmit messages (multimaster capability). The exchange of data functions 
similarly to radio. Data is transferred on the bus without transmitter or address. The data is only 
marked by the identifier. It is the task of every participant to receive the transmitted data and to check 
by means of the identifier whether the data is relevant for this participant. This procedure is carried out 
automatically by the CAN controller together with the operating system. 

For the normal exchange of CAN data the programmer only has to make the data objects with their 
identifiers known to the system when designing the software. This is done via the following functions: 

• function CANx_RECEIVE (→ page 73) (receive CAN data) and 

• function CANx_TRANSMIT (→ page 71) (transmit CAN data). 

Using these functions the following units are combined into a data object: 

• RAM address of the useful data, 

• data type, 

• selected identifier (ID). 

These data objects participate in the exchange of data via the CAN bus. The transmit and receive 
objects can be defined from all valid IEC data types (e.g. BOOL, WORD, INT, ARRAY). 

The CAN message consists of a CAN identifier (CAN-ID, → page 49) and maximum 8 data bytes. The 
ID does not represent the transmit or receive module but identifies the message. To transmit data it is 
necessary that a transmit object is declared in the transmit module and a receive object in at least one 
other module. Both declarations must be assigned to the same identifier. 
 

 

8.2.1 CAN-ID 
Depending of the CAN-ID the following CAN identifiers are free available for the data transfer: 

CAN-ID base CAN-ID extended 

11 bits 29 bits 

2 047 CAN identifiers 536 870 912 CAN identifiers 

Standard applications Motor management (SAE J1939),  
Truck & Trailer interface (ISO 11992) 

 

 NOTE 
In some devices the 29 bits CAN-ID is not available for all CAN interfaces, → datasheet. 

 



 

50 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Exchange of CAN data

 

Example 11 bits CAN-ID (base): 

S 
O 
F 

CAN-ID base 

Bit 28   ...   Bit 18 

R
T
R

I
D
E

0 0 0 0 0 1 1 1 1 1 1 1 0 0

 0 7 F   
 

Example 29 bits CAN-ID (extended): 

S 
O 
F 

CAN-ID base 

Bit 28   ...   Bit 18 

S
R
R

I
D
E

CAN-ID extended 

Bit 17   ...   Bit 0 

R
T
R

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 1 F C 0 0 0 0  
 

Legend: 
SOF = Start of frame 
Edge of recessive to dominant 

RTR = Remote transmission request 
dominant: This message sends data 
recessive: This message requests data 

IDE = Identifier extension flag 
dominant: After this control bits follows 
recessive: After this the second part of the 29 bits identifier follows 

SRR = Substitute remote request 
recessive: Extended CAN-ID: Replaces the RTR bit at this position 
 

 

8.2.2 Data reception 
In principle the received data objects are automatically stored in a buffer (i.e. without influence of the 
user). 

Each identifier has such a buffer (queue). Depending on the application software this buffer is emptied 
according to the FIFO principle (First In, First Out) via the function CANx_RECEIVE (→ page 73). 
 

 

8.2.3 Data transmission 
By calling the function CANx_TRANSMIT (→ page 71) the application program transfers exactly one 
CAN message to the CAN controller. As feedback you are informed whether the message was 
successfully transferred to the CAN controller. Which then automatically carries out the actual transfer 
of the data on the CAN bus. 

The transmit order is rejected if the controller is not ready because it is in the process of transferring a 
data object. The transmit order must then be repeated by the application program. This information is 
indicated by a bit. 

If several CAN messages are ready for transmission, the message with the lowest ID is transmitted 
first. Therefore, the programmer must assign the CAN ID (→ page 49) very carefully. 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Physical connection of CAN
 

51 

8.3 Physical connection of CAN 
The mechanisms of the data transmission and error handling described in the chapters Exchange of 
CAN data (→ page 49) and CAN errors (→ page 55) are directly implemented in the CAN controller. 
ISO 11898 describes the physical connection of the individual CAN participants in layer 1. 
 

 

8.3.1 Network structure 
The ISO 11898 standard assumes a line structure of the CAN network. 

 

 
Figure: network structure 

 

 NOTE 
The line must be terminated at its two ends using a terminating resistor of 120 Ω to prevent corruption 
of the signal quality. 

The devices of ifm electronic equipped with a CAN interface have no terminating resistors. 
 

Spurs 

Ideally no spur should lead to the bus participants (node 1 ... node n) because reflections occur 
depending on the total cable length and the time-related processes on the bus. To avoid system 
errors, spurs to a bus participant (e.g. I/O module) should not exceed a certain length. 2 m spurs 
(referred to 125 kbits/s) are considered to be uncritical. The sum of all spurs in the whole system 
should not exceed 30 m. In special cases the cable lengths of the line and spurs must be calculated 
exactly. 
 

 



 

52 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Physical connection of CAN

8.3.2 Bus level 
The CAN bus is in the inactive (recessive) state if the output transistor pairs are switched off in all bus 
participants. If at least one transistor pair is switched on, a bit is transferred to the bus. This activates 
the bus (dominant). A current flows through the terminating resistors and generates a difference 
voltage between the two bus cables. The recessive and dominant states are converted into voltages in 
the bus nodes and detected by the receiver circuits. 

5 V

3,5 V

2,5 V

1,5 V

0 V

U

t

CAN_H

CAN_L

rezessiv
recessive

rezessiv
recessive

dominant
dominant  

Figure: bus level 

This differential transmission with common return considerably improves the transmission security. 
Noise voltages which interfere with the system externally or shifts of the ground potential influence 
both signal cables with the same interference. These influences are therefore not considered when the 
difference is formed in the receiver. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Physical connection of CAN
 

53 

 

8.3.3 Bus cable length 
The length of the bus cable depends on: 

• type of the bus cable (cable, connector), 

• cable resistance, 

• required transmission rate (baud rate), 

• length of the spurs. 

To simplify matters, the following dependence between bus length and baud rate can be assumed: 

100 50 1000 10000
5

10

20

50

100

200

500

1000

Bus-Länge
Bus length
[m]

Baudrate
Baud rate

[kBit/s]

 
Figure: bus cable length 

Baud rate [kBit/s] Bus length [m] Bit length nominal [µs] 

1 000 30 1 

800 50 1.25 

500 100 2 

250 250 4 

125 500 8 

62.5 1 000 20 

20 2 500 50 

10 5 000 100 
Table: Dependencies bus length / baud rate / bit time 

 

 NOTE 
These declarations apply to CAN layer 2. 

Other CAN protocols (e.g. SAE J1939 or ISO 11992) have other requirements! 
 



 

54 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Physical connection of CAN
 

8.3.4 Wire cross-sections 
For the layout of the CAN network the wire cross-section of the bus cable used must also be taken into 
account. The following table describes the dependence of the wire cross-section referred to the cable 
length and the number of the connected nodes. 

Cable length [m] Wire cross-section at
32 nodes [mm2] 

Wire cross-section at 
64 nodes [mm2] 

Wire cross-section at 
100 nodes [mm2] 

< 100 0.25 0.25 0.25 

< 250 0.34 0.50 0.50 

< 500 0.75 0.75 1.00 

Depending on the EMC requirements the bus cables can be laid out as follows: 

• in parallel, 

• as twisted pair 

• and/or shielded. 
 

 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Software for CAN and CANopen
 

55 

 

8.4 Software for CAN and CANopen 
In principle, ecomatmobile controllers can directly participate in the CAN communication (layer 2) by 
using the functions CANx_TRANSMIT and CANx_RECEIVE. In the operating mode CANopen the 
programmer is provided with the defined services from the programming system CoDeSys. 

The following points must be considered: 

• In the operating mode CAN layer 2 the programmer is responsible for all services. The controller is 
in this state after the following events:  
- after a program download or  
- after a reset command by the programming system 

• The operating mode CANopen is activated by integrating the CoDeSys CANopen system libraries 
(activate functions in the target settings). Depending on the selected function the controller 
operates as CANopen master or slave (→ from chapter ifm CANopen library, → page 83). 

 

8.5 CAN errors and error handling 
 

The error mechanisms described are automatically processed by the CAN controller integrated in the 
controller. This cannot be influenced by the user. (Depending on the application) the user should react 
to signalled errors in the application software. 

Goal of the CAN error mechanisms: 

• Ensuring uniform data objects in the complete CAN network 

• Permanent functionality of the network even in case of a faulty CAN participant 

• Differentiation between temporary and permanent disturbance of a CAN participant 

• Localisation and self-deactivation of a faulty participant in 2 steps: 
- error passive  
- disconnection from the bus (bus off) 
This gives a temporarily disturbed participant a "rest". 

To give the interested user an overview of the behaviour of the CAN controller in case of an error, 
error handling is easily described below. After error detection the information is automatically prepared 
and made available to the programmer as CAN error bits in the application software. 
 

 

8.5.1 Error message 
If a bus participant detects an error condition, it immediately transmits an error flag. The transmission 
is then aborted or the correct messages already received by other participants are rejected. This 
ensures that correct and uniform data is available to all participants. Since the error flag is directly 
transmitted the sender can immediately start to repeat the disturbed message as opposed to other 
fieldbus systems (they wait until a defined acknowledgement time has elapsed). This is one of the 
most important features of CAN. 

One of the basic problems of serial data transmission is that a permanently disturbed or faulty bus 
participant can block the complete system. Error handling for CAN would increase such a risk. To 
exclude this, a mechanism is required which detects the fault of a participant and disconnects this 
participant from the bus, if necessary. 
 

 



 

56 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller CAN errors and error handling

8.5.2 Error counter 
A transmit and receive error counter are integrated in the CAN controller. They are counted up 
(incremented) for every faulty transmit or receive operation. If a transmission was correct, these 
counters are counted down (decremented). 

However, the error counters are more incremented in case of an error than decremented in case of 
success. Over a defined period this can lead to a considerable increase of the counts even if the 
number of the undisturbed messages is greater than the number of the disturbed messages. Longer 
undisturbed periods slowly reduce the counts. So the counts indicate the relative frequency of 
disturbed messages.  

If the participant itself is the first to detect errors (= self-inflicted errors), the error is more severely 
"punished" for this participant than for other bus participants. To do so, the counter is incremented by 
a higher amount. 

If the count of a participant exceeds a defined value, it can be assumed that this participant is faulty. 
To prevent this participant from disturbing bus communication by active error messages (error active), 
it is switched to "error passive". 

error
passive

error
active

bus off

REC > 127
or TEC > 127

REC < 128
and TEC < 128

TEC > 255

CAN Restart
CAN Neustart

REC = Receive error counter / Zähler Empfangsfehler
TEC = Transmit error counter / Zähler Sendefehler  

Figure: mechanism of the error counter 

error active 
→ participant, error active (→ page 56) 

error passive 
→ participant, error passive (→ page 56) 

bus off 
→ participant, bus off (→ page 57) 

CAN restart 
→ participant, bus off (→ page 57) 

 

 

8.5.3 Participant, error active 
An error active participant participates in the bus communication without restriction and is allowed to 
signal detected errors by transmitting the active error flag. As already described the transmitted 
message is destroyed. 
 

 

8.5.4 Participant, error passive 
An error passive participant can also communicate without restriction. However, it is only allowed to 
identify a detected error by a passive error flag, which does not interfere with the bus communication. 
An error passive participant becomes error active again if it is below a defined count value. 

To inform the user about incrementing of the error counter, the system variable CANx_WARNING is 
set if the value of the error counter is > 96. In this state the participant is still error active. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller CAN errors and error handling
 

57 

 

8.5.5 Participant, bus off 
If the error count value continues to be incremented, the participant is disconnected from the bus (bus 
off) after exceeding a maximum count value. 

To indicate this state the flag CANx_BUSOFF is set in the application program. 
 

 NOTE 
The error CANx_BUSOFF is automatically handled and reset by the operating system. If the error is to 
be handled or evaluated more precisely via the application program, the function 
CANx_ERRORHANDLER (→ page 80) must be used. The error CANx_BUSOFF must then be reset 
explicitly by the application program. 

 



 

58 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions

 

8.6 Description of the CAN functions 
 

The CAN functions are described for use in the application program. 
 

 NOTE 
To use the full capacity of CAN it is absolutely necessary for the programmer to define an exact bus 
concept before starting to work: 

• How many data objects are needed with what identifiers? 

• How is the ecomatmobile controller to react to possible CAN errors? 

• How often must data be transmitted? The functions CANx_TRANSMIT and CANx_RECEIVE must 
be called accordingly.  
→ chapter function CANx_TRANSMIT (→ page 71) and function CANx_RECEIVE (→ page 73) 

► Check whether the transmit orders were successfully assigned to CANx_TRANSMIT (FB output 
RESULT) or ensure that the received data is read from the data buffer of the queue using 
CANx_RECEIVE and processed in the rest of the program immediately. 

 

To be able to set up a communication connection, the same transmission rate (baud rate) must first be 
set for all participants of the CAN network. For the controller this is done using the function 
CAN1_BAUDRATE (→ page 58) (for the 1st CAN interface) or via the function CAN2 (→ page 69) (for 
the 2nd CAN interface). 

Irrespective of whether the devices support one or several CAN interfaces the functions related to the 
interface are specified by a number in the CAN function (e.g. CAN1_TRANSMIT or CAN2_RECEIVE). 
To simplify matters the designation (e.g. CANx_TRANSMIT) is used for all variants in the 
documentation. 
 

 NOTE 
When installing the ecomatmobile CD "Software, Tools and Documentation", projects with templates 
have been stored in the program directory of your PC:  
…\ifm electronic\CoDeSys V…\Projects\Template_CDVxxyyzz 

► Open the requested template in CoDeSys via: 
[File] > [New from template…] 

> CoDeSys creates a new project which shows the basic program structure. It is strongly 
recommended to follow the shown procedure. 
→ chapter Set up programming system via templates (→ page 16) 

 

In this example data objects are exchanged with other CAN participants via the identifiers 1 and 2. To 
do so, a receive identifier must exist for the transmit identifier (or vice versa) in the other participant. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

59 

8.6.1 Function CAN1_BAUDRATE 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

CAN1_BAUDRATE

ENABLE
BAUDRATE  

 

 

Description 
CAN1_BAUDRATE sets the transmission rate for the bus participant. 

Using this function, the transmission rate for the controller is set. To do so, the corresponding value in 
kbits/s is entered at the function input BAUDRATE. After executing the function the new value is 
stored in the device and will even be available after a power failure.  
 

ATTENTION 
Please note for CR2500, CR0301, CR0302 and CS0015: 

The EEPROM memory module may be destroyed by the permanent use of this function! 

► Only carry out the function once during initialisation in the first program cycle!  
Afterwards block the function again (ENABLE = "FALSE")! 

 

 NOTE 
The new baud rate will become effective on RESET (voltage OFF/ON or soft reset). 

ExtendedController: In the slave module, the new baud rate will become effective after voltage 
OFF/ON. 

 



 

60 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE (only 1 cycle):  
 function is executed 

FALSE: function is not executed 

BAUDRATE WORD Baud rate [kbits/s] 
Permissible values: 50, 100, 125, 250, 500, 1000 
Preset value = 125 kbits/s 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

61 

8.6.2 Function CAN1_DOWNLOADID 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

CAN1_DOWNLOADID

ENABLE
ID  

 

 

Description 
CAN1_DOWNLOADID sets the download identifier for the first CAN interface. 

Using the function the communication identifier for the program download and for debugging can be 
set. The new value is entered when the function input ENABLE is set to TRUE. The new download ID 
will become effective after voltage OFF/ON or after a soft reset. 
 

ATTENTION 
Please note for CR2500, CR0301, CR0302 and CS0015: 

The EEPROM memory module may be destroyed by the permanent use of this function! 

► Only carry out the function once during initialisation in the first program cycle!  
Afterwards block the function again (ENABLE = "FALSE")! 

 

 NOTE 
Make sure that a different download ID is entered for each controller in the same network! 

If the controller is operated in the CANopen network, the download ID must not coincide with any 
module ID (node number) of the other participants, either! 

ExtendedController: In the slave module the download ID becomes effective after voltage OFF/ON. 

 



 

62 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE (only 1 cycle): 
 ID is set 

FALSE: function is not executed 

ID BYTE Download identifier 
Permissible values: 1…127 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

63 

8.6.3 Function CAN1_EXT 
Contained in the library: 
ifm_CAN1_EXT_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CAN1_EXT

ENABLE
START
EXTENDED_MODE

BAUDRATE  
 

 

Description 
The function CAN1_EXT initialises the first CAN interface for the extended identifier (29 bits). 

The function has to be retrieved if the first CAN interface e.g. with the function libraries for SAE J1939 
(→ page 145) is to be used. 

A change of the baud rate will become effective after voltage OFF/ON. The baud rates of CAN 1 and 
CAN 2 can be set differently. 

The input START is only set for one cycle during reboot or restart of the interface. 
 

 NOTE 
The function must be executed before the functions CAN1_EXT_... . 

 



 

64 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: Function is executed 

FALSE: Function is not executed 

START BOOL TRUE (in the 1st cycle):  
 interface is initialised 

FALSE: Initialisation cycle completed 

EXTENDED_MODE BOOL TRUE: Identifier of the 1st CAN interface operates with 
29 bits 

FALSE: Identifier of the 1st CAN interface operates with 
11 bits 

BAUDRATE WORD Baud rate [kbits/s] 
Permissible values = 50, 100, 125, 250, 500, 1000  
Preset value = 125 kbits/s 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

65 

8.6.4 Function CAN1_EXT_TRANSMIT 
Contained in the library: 
ifm_CAN1_EXT_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CAN1_EXT_TRANSMIT

ID RESULT
DLC
DATA

ENABLE  
 

 

Description 
CAN1_EXT_TRANSMIT transfers a CAN data object (message) to the CAN controller for 
transmission. 

The function is called for each data object in the program cycle; this is done several times in case of 
long program cycles. The programmer must ensure by evaluating the function block output RESULT 
that his transmit order was accepted. To put it simply, at 125 kbits/s one transmit order can be 
executed per 1 ms. 

The execution of the function can be temporarily blocked via the input ENABLE (ENABLE = FALSE). 
This can, for example, prevent a bus overload. 

Several data objects can be transmitted virtually at the same time if a flag is assigned to each data 
object and controls the execution of the function via the ENABLE input. 
 

 NOTE 
If this function is to be used, the 1st CAN interface must first be initialised for the extended ID with the 
function CAN1_EXT (→ page 63). 

 



 

66 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

Parameters of the function inputs 
Name Data type Description 

ID DWORD Number of the data object identifier 
Permissible values: 11-bit ID = 0...2 047,  
29-bit ID = 0...536 870 911 

DLC BYTE Number of bytes to be transmitted from the array DATA
Permissible values = 0...8 

DATA ARRAY[0...7] OF BYTE The array contains max. 8 data bytes 

ENABLE BOOL TRUE: Function is executed 

FALSE: Function is not executed 
 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BOOL TRUE (only 1 cycle):  
 the function has accepted the transmit order 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

67 

8.6.5 Function CAN1_EXT_RECEIVE 
Contained in the library: 
ifm_CAN1_EXT_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CAN1_EXT_RECEIVE

CONFIG DATA
CLEAR  DLC
ID RTR

AVAILABLE
 OVERFLOW  

 

 

Description 
CAN1_EXT_RECEIVE configures a data receive object and reads the receive buffer of the data 
object. 

The function must be called once for each data object during initialisation to inform the CAN controller 
about the identifiers of the data objects. 

In the further program cycle CAN1_EXT_RECEIVE is called for reading the corresponding receive 
buffer, this is done several times in case of long program cycles The programmer must ensure by 
evaluating the byte AVAILABLE that newly received data objects are retrieved from the buffer and 
further processed. 

Each call of the function decrements the byte AVAILABLE by 1. If the value of AVAILABLE is 0, there 
is no data in the buffer. 

By evaluating the output OVERFLOW, an overflow of the data buffer can be detected. If 
OVERFLOW = TRUE at least 1 data object has been lost. 
 

 NOTE 
If this function is to be used, the 1st CAN interface must first be initialised for the extended ID with the 
function CAN1_EXT (→ page 63). 

 



 

68 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

Parameters of the function inputs 
Name Data type Description 

CONFIG BOOL TRUE (only for 1 cycle):  
 Configure data object 

FALSE: function is not executed 

CLEAR BOOL TRUE: deletes the data buffer (queue) 

ID WORD Number of the data object identifier  
Permissible values normal frame = 0...2 047 (211) 
Permissible values extended frame = 0...536 870 912 (229) 

 

 

Parameters of the function outputs 
Name Data type Description 

DATA ARRAY[0...7] OF 
BYTES 

The array contains a maximum of 8 data bytes. 

DLC BYTE Number of bytes transmitted in the array DATA. 
Possible values = 0...8. 

RTR BOOL Not supported 

AVAILABLE BYTE Number of received messages 

OVERFLOW BOOL TRUE: Overflow of the data buffer → loss of data! 

FALSE: buffer not yet full 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

69 

8.6.6 Function CAN1_EXT_ERRORHANDLER 
Contained in the library: 
ifm_CAN1_EXT_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CAN1_EXT_ERRORHANDLER

BUSOFF_RECOVER
 

 

 

Description 
Error routine for monitoring the first CAN interface. 

The function CAN1_EXT_ERRORHANDLER monitors the first CAN interface and evaluates the CAN 
errors. If a certain number of transmission errors occurs, the CAN participant becomes error passive. If 
the error frequency decreases, the participant becomes error active again (= normal condition). 

If a participant already is error passive and still transmission errors occur, it is disconnected from the 
bus (= bus off) and the error bit CANx_BUSOFF is set. Returning to the bus is only possible if the "bus 
off" condition has been removed (signal BUSOFF_RECOVER). 

Afterwards, the error bit CANx_BUSOFF must be reset in the application program. 

 

 NOTE 
If the automatic bus recover function is to be used (default setting) the function 
CAN1_EXT_ERRORHANDLER must not be integrated and instanced in the program! 

 
 

Parameters of the function inputs 
Name Data type Description 

BUSOFF_RECOVER BOOL TRUE (only for 1 cycle):  
>  Reboot of the CAN interface  x 
>  Remedy "bus off" status 

FALSE: function is not executed 
 



 

70 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions

8.6.7 Function CAN2 
(can only be used for devices with a 2nd CAN interface) 

Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

CAN2

ENABLE
START
EXTENDED_MODE

BAUDRATE  
 

 

Description 
The function CAN2 initialises the 2nd CAN interface. 

The function must be called if the 2nd CAN interface is to be used. 

A change of the baud rate will become effective after voltage OFF/ON. The baud rates of CAN 1 and 
CAN 2 can be set differently. 

The input START is only set for one cycle during reboot or restart of the interface. 

For the 2nd CAN interface the function libraries for SAE J1939 (→ page 145), among others, are 
available. 

 

 NOTE 
The function must be executed before the functions CAN2_... . 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

71 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

START BOOL TRUE (in the 1st cycle):  
 interface is initialised 

FALSE: initialisation cycle completed 

EXTENDED_MODE BOOL TRUE: identifier of the 2nd CAN interface operates with 
29 bits 

FALSE: identifier of the 2nd CAN interface operates with 
11 bits 

BAUDRATE WORD Baud rate [kbits/s] 
Permissible values: 50, 100,125, 250, 500, 800, 1000  
Preset value = 125 kbits/s 

 



 

72 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions

8.6.8 Function CANx_TRANSMIT 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 
Function NOT for safety signals! 
(For safety signals → function CAN_SAFETY_TRANSMIT) 

• SmartController: CR2500 
 

Function symbol: 

CANx_TRANSMIT

ID RESULT
DLC
DATA

ENABLE  
 

 

Description 
CANx_TRANSMIT transmits a CAN data object (message) to the CAN controller for transmission. 

The function is called for each data object in the program cycle, also repeatedly in case of long 
program cycles. The programmer must ensure by evaluating the function output RESULT that his 
transmit order was accepted. Simplified it can be said that at 125 kbits/s one transmit order can be 
executed per ms.  

The execution of the function can be temporarily blocked (ENABLE = FALSE) via the input ENABLE. 
So, for example a bus overload can be prevented. 

Several data objects can be transmitted virtually at the same time if a flag is assigned to each data 
object and controls the execution of the function via the ENABLE input. 

 

 NOTE 
If the function CAN2_TRANSMIT is to be used, the second CAN interface must be initialised first using 
the function CAN2 (→ page 69). 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

73 

 

Parameters of the function inputs 
Name Data type Description 

ID WORD Number of the data object identifier 
Permissible values = 0...2 047 

DLC BYTE Number of bytes to be transmitted from the array DATA 
Permissible values = 0...8 

DATA ARRAY[0...7] OF 
BYTES 

The array contains a maximum of 8 data bytes 

ENABLE BOOL TRUE:  function is executed 

FALSE: function is not executed 
 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BOOL TRUE (only 1 cycle):  
 the function has accepted the transmit order 

 



 

74 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions

8.6.9 Function CANx_RECEIVE 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 
Function NOT for safety signals! 
(For safety signals → function CAN_SAFETY_RECEIVE) 

• SmartController: CR2500 
 

Function symbol: 

CANx_RECEIVE

CONFIG DATA
CLEAR  DLC
ID RTR

AVAILABLE
 OVERFLOW  

 

 

Description 
CANx_RECEIVE configures a data receive object and reads the receive buffer of the data object. 

The function must be called once for each data object during initialisation, in order to inform the CAN 
controller about the identifiers of the data objects. 

In the further program cycle CANx_RECEIVE is called for reading the corresponding receive buffer, 
also repeatedly in case of long program cycles. The programmer must ensure by evaluating the byte 
AVAILABLE that newly received data objects are retrieved from the buffer and further processed. 

Each call of the function decrements the byte AVAILABLE by  1. If the value of AVAILABLE is  0, there 
is no data in the buffer. 

By evaluating the output OVERFLOW, an overflow of the data buffer can be detected. If 
OVERFLOW = TRUE at least 1 data object has been lost. 

 

 NOTE 
If the function CAN2_RECEIVE is to be used, the second CAN interface must be initialised first using 
the function CAN2 (→ page 69). 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

75 

 

Parameters of the function inputs 
Name Data type Description 

CONFIG BOOL TRUE (only 1 cycle):  
 Configure data object 

FALSE: function is not executed 

CLEAR BOOL TRUE: deletes the data buffer (queue) 

ID WORD Number of the data object identifier  
Permissible values = 0...2 047 

 

 

Parameters of the function outputs 
Name Data type Description 

DATA ARRAY[0...7] OF 
BYTES 

The array contains a maximum of 8 data bytes. 

DLC BYTE Number of bytes transmitted in the array DATA. 
Possible values = 0...8. 

RTR BOOL Not supported 

AVAILABLE BYTE Number of received messages 

OVERFLOW BOOL TRUE: Overflow of the data buffer → loss of data! 

FALSE: buffer not yet full 
 



 

76 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions

8.6.10 Function CANx_RECEIVE_RANGE 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
from ifm_CRnnnn_V05yyzz.LIB 

Available for: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 
Function NOT for safety signals! 
(For safety signals → function CAN_SAFETY_RECEIVE) 

• PCB controller: CS0015 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CANx_RECEIVE_RANGE

CONFIG ID
CLEAR DATA
FIRST_ID DLC
LAST_ID AVAILABLE

OVERFLOW
 

 

 

Description 
CANx_RECEIVE_RANGE configures a sequence of data receive objects and reads the receive buffer 
of the data objects. 

For the first CAN interface max. 2048 IDs per bit are possible. 
For the second CAN interface max. 256 IDs per 11 OR 29 bits are possible. 
The second CAN interface requires a long initialisation time. To ensure that the watchdog does not 
react, the process should be distributed to several cycles in the case of bigger ranges. → Example 
(→ page 78). 

The function must be called once for each sequence of data objects during initialisation to inform the 
CAN controller about the identifiers of the data objects. 

The function must NOT be mixed with function CANx_RECEIVE (→ page 73) or function 
CANx_RECEIVE_RANGE for the same IDs at the same CAN interfaces. 

In the further program cycle CANx_RECEIVE_RANGE is called for reading the corresponding receive 
buffer, also repeatedly in case of long program cycles. The programmer has to ensure by evaluating 
the byte AVAILABLE that newly received data objects are retrieved from buffer SOFORT and are 
further processed as the data are only available for one cycle. 

Each call of the function decrements the byte AVAILABLE by 1. If the value of AVAILABLE is 0, there 
is no data in the buffer. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

77 

By evaluating the output OVERFLOW, an overflow of the data buffer can be detected. If 
OVERFLOW = TRUE, at least 1 data object has been lost. 

Receive buffer: max. 16 software buffers per identifier. 
 

 

Parameters of the function inputs 
Name Data type Description 

CONFIG BOOL TRUE (only for 1 cycle):  
 Configure data object 

FALSE: Function is not executed 

CLEAR BOOL TRUE: Deletes the data buffer (queue) 

FIRST_ID CAN1: WORD 

CAN2: DWORD 

Number of the first data object identifier of the sequence.  
Permissible values normal frame = 0...2 047 (211) 
Permissible values extended frame = 0...536 870 912 (229) 

LAST_ID CAN1: WORD 

CAN2: DWORD 

Number of the last data object identifier of the sequence. 
Permissible values normal frame = 0...2 047 (211) 
Permissible values extended frame = 0...536 870 912 (229) 
LAST_ID has to be bigger than FIRST_ID. 

 

 

Parameters of the function outputs 
Name Data type Description 

ID CAN1: WORD 

CAN2: DWORD 

ID of the transmitted data object 

DATA ARRAY[0...7] OF BYTE The array contains max. 8 data bytes 

DLC BYTE Number of bytes transmitted in the array DATA 
Possible values = 0...8. 

AVAILABLE BYTE Number of messages in the buffer 

OVERFLOW BOOL TRUE: Overflow of the data buffer → loss of data! 

FALSE: Buffer not yet full 
 

 



 

78 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions

Example Initialisation of CANx_RECEIVE_RANGE in 4 cycles 

 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

79 

8.6.11 Function CANx_EXT_RECEIVE_ALL 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 

For CAN interface 1: ifm_CAN1_EXT_Vxxyyzz.LIB 

For CAN interface 2...n: ifm_CRnnnn_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 
Function NOT for safety signals! 
(For safety signals → function CAN_SAFETY_RECEIVE) 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CANx_EXT_RECEIVE_ALL

CONFIG ID
CLEAR DATA

DLC
AVAILABLE

OVERFLOW
 

 

 

Description 
CANx_EXT_RECEIVE_ALL configures all data receive objects and reads the receive buffer of the 
data objects.  

The function must be called once during initialisation to inform the CAN controller about the identifiers 
of the data objects. 

In the further program cycle CANx_EXT_RECEIVE_ALL is called for reading the corresponding 
receive buffer, also repeatedly in case of long program cycles. The programmer must ensure by 
evaluating the byte AVAILABLE that newly received data objects are retrieved from the buffer and 
further processed. 

Each call of the function decrements the byte AVAILABLE by 1. If the value of AVAILABLE is 0, there 
is no data in the buffer. 

By evaluating the output OVERFLOW, an overflow of the data buffer can be detected. If 
OVERFLOW = TRUE at least 1 data object has been lost. 

Receive buffer: max. 16 software buffers per identifier. 
 



 

80 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

Parameters of the function inputs 
Name Data type Description 

CONFIG BOOL TRUE (only for 1 cycle):  
 Configure data object 

FALSE: Function is not executed 

CLEAR BOOL TRUE: Deletes the data buffer (queue) 
 

 

Parameters of the function outputs 
Name Data type Description 

ID DWORD ID of the transmitted data object 

DATA ARRAY[0...7] OF BYTE The array contains max. 8 data bytes 

DLC BYTE Number of bytes transmitted in the array DATA 
Possible values = 0...8. 

AVAILABLE BYTE Number of messages in the buffer 

OVERFLOW BOOL TRUE: Overflow of the data buffer → loss of data! 

FALSE: Buffer not yet full 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions
 

81 

8.6.12 Function CANx_ERRORHANDLER 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

CAN1_ERRORHANDLER

BUSOFF_RECOVER
CAN_RESTART  

CAN2_ERRORHANDLER

BUSOFF_RECOVER
 

 

 

Description 
Error routine for monitoring the CAN interfaces 

The function CANx_ERRORHANDLER monitors the CAN interfaces and evaluates the CAN errors. If 
a certain number of transmission errors occurs, the CAN participant becomes error passive. If the 
error frequency decreases, the participant becomes error active again (= normal condition). 

If a participant already is error passive and still transmission errors occur, it is disconnected from the 
bus (= bus off) and the error bit CANx_BUSOFF is set. Returning to the bus is only possible if the "bus 
off" condition has been removed (signal BUSOFF_RECOVER). 

The function input CAN_RESTART is used for rectifying other CAN errors. The CAN interface is 
reinitialised. 

Afterwards, the error bit must be reset in the application program. 

The procedures for the restart of the interfaces are different: 

• For CAN interface 1 or devices with only one CAN interface:  
set the input CAN_RESTART = TRUE (only 1 cycle) 

• For CAN interface 2: 
set the input START = TRUE (only 1 cycle) in the function CAN2 (→ page 69) 



 

82 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Description of the CAN functions

 

 NOTE 
In principle, the function CAN2 (→ page 69) must be executed to initialise the second CAN interface, 
before functions can be used for it. 

If the automatic bus recover function is to be used (default setting) the function 
CANx_ERRORHANDLER must not be integrated and instanced in the program! 

 
 

Parameters of the function inputs 
Name Data type Description 

BUSOFF_RECOVER BOOL TRUE (only 1 cycle):  
 Remedy 'bus off' status 

FALSE: function is not executed 

CAN_RESTART BOOL TRUE (only 1 cycle):  
 Completely reinitialise CAN interface 1 

FALSE: function is not executed 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

83 

8.7 ifm CANopen library 
 

CANopen network configuration, status and error handling 

For all programmable devices the CANopen interface of CoDeSys is used. Whereas the network 
configuration and parameter setting of the connected devices are directly carried out via the 
programming software, the error messages can only be reached via nested variable structures in the 
CANopen stack. The documentation below shows you the structure and use of the network 
configuration and describes the functions of the ifm CANopen device libraries. 

The chapters CANopen support by CoDeSys (→ page 83), CANopen master (→ page 85), CAN 
device (→ page 100) and CAN network variables (→ page 108) describe the internal functions of the 
CoDeSys CANopen stacks and their use. They also give information of how to use the network 
configurator. 

The chapters concerning the libraries ifm_CRnnnn_CANopenMaster_Vxxyyzz.lib and 
ifm_CRnnnn_CANopenSlave_Vxxyyzz.lib describe all functions for error handling and polling the 
device status when used as master or slave (CAN device). 
 

 NOTE 
Irrespective of the device used the structure of the function interfaces of all libraries is the same. The 
slight differences (e.g. CANOPEN_LED_STATUS) are directly described in the corresponding 
functions. 

It is absolutely necessary to use only the corresponding device-specific library. The context can be 
seen from the integrated article number of the device, e.g.: 

CR0020: → ifm_CR0020_CANopenMaster_V040003.lib 

→ chapter Setup the target (→ page 14) 

When other libraries are used the device can no longer function correctly. 
 

8.7.1 CANopen support by CoDeSys 

General information about CANopen with CoDeSys 
CoDeSys® is one of the leading systems for programming control systems to the international 
standard IEC 61131. To make CoDeSys® more interesting for users many important functions were 
integrated in the programming system, among them a configurator for CANopen. This CANopen 
configurator enables configuration of CANopen networks (with some restrictions) under CoDeSys®. 

CANopen is implemented as a CoDeSys® library in IEC 61131-3. The library is based on simple basic 
CAN functions called CAN driver. 

Implementation of the CANopen functions as CoDeSys® library enables simple scaling of the target 
system.  The CANopen function only uses target system resources if the function is really used. To 
use target system resources carefully CoDeSys® automatically generates a data basis for the 
CANopen master function which exactly corresponds to the configuration.  

From the CoDeSys® programming system version 2.3.6.0 onwards an ecomat mobile controller can 
be used as CANopen master and slave (CAN device). 



 

84 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

 

 NOTE: 
For all ecomat mobile controllers and the PDM360 smart you must use CANopen libraries with the 
following addition: 

• For CR0032 target version up to V01, all other devices up to V04.00.05: "OptTable" 

• For CR0032 target version from V02 onwards, all other devices from V05 onwards: "OptTableEx" 

If a new project is created, these libraries are in general automatically loaded. If you add the libraries 
via the library manager, you must ensure a correct selection. 

The CANopen libraries without this addition are used for all other programmable devices (e.g. PDM360 
compact). 

 
 

CANopen terms and implementation 
According to the CANopen specification there are no masters and slaves in a CAN network. Instead of 
this there is an NMT master (NMT = network management), a configuration master, etc. according to 
CANopen. It is always assumed that all participants of a CAN network have equal rights.  

Implementation assumes that a CAN network serves as periphery of a CoDeSys programmable 
controller. As a result of this an ecomatmobile controller or a PDM360 display is called CAN master in 
the CAN configurator of CoDeSys. This master is an NMT master and configuration master. Normally 
the master ensures that the network is put into operation. The master takes the initiative to start the 
individual nodes (= network nodes) known via the configuration. These nodes are called slaves. 

To bring the master closer to the status of a CANopen node an object directory was introduced for the 
master. The master can also act as an SDO server (SDO = Service Data Object) and not only as SDO 
client in the configuration phase of the slaves. 
 

 

"Addresses" in CANopen 
In CANopen there are different types of addresses (IDs): 

• COB ID 
The CAN Object Identifier addresses the message (= the CAN object) in the list of devices. 
Identical messages have the same COB ID. The COB ID entries in the object directory contain the 
CAN identifier (CAN ID) among others. 

• CAN ID 
The CAN Identifier identifies CAN messages in the complete network. The CAN ID is part of the 
COB ID in the object directory. 

• Node ID 
The Node Identifier identifies the CANopen devices in the complete network. The Node ID is part 
of some predefined CAN IDs (lower 7 bits). 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

85 

 

8.7.2 CANopen master 

Differentiation from other CANopen libraries 
The CANopen library implemented by 3S (Smart Software Solutions) differentiates from the systems 
on the market in various points. It was not developed to make other libraries of renowned 
manufacturers unnecessary but was deliberately optimised for use with the CoDeSys programming 
and runtime system.  

The libraries are based on the specifications of CiA DS301, V402. 

For users the advantages of the CoDeSys CANopen library are as follows:  

• Implementation is independent of the target system and can therefore be directly used on every 
controller programmable with CoDeSys. 

• The complete system contains the CANopen configurator and integration in the development 
system.  

• The CANopen functionality is reloadable. This means that the CANopen functions can be loaded 
and updated without changing the operating system. 

• The resources of the target system are used carefully. Memory is allocated depending on the used 
configuration, not for a maximum configuration. 

• Automatic updating of the inputs and outputs without additional measures. 

The following functions defined in CANopen are at present supported by the ifm CANopen library: 

• Transmitting PDOs: master transmits to slaves (slave = node, device) 
Transmitting event-controlled (i.e. in case of a change), time-controlled (RepeatTimer) or as 
synchronous PDOs, i.e. always when a SYNC was transmitted by the master. An external SYNC 
source can also be used to initiate transmission of synchronous PDOs. 

• Receiving PDOs: master receives from slave 
Depending on the slave: event-controlled, request-controlled, acyclic and cyclic. 

• PDO mapping  
Assignment between a local object directory and PDOs from/to the CAN device (if supported by 
the slave). 

• Transmitting and receiving SDOs (unsegmented, i.e. 4 bytes per entry in the object directory) 
Automatic configuration of all slaves via SDOs at the system start. 
Application-controlled transmission and reception of SDOs to/from configured slaves. 

• Synchronisation 
Automatic transmission of SYNC messages by the CANopen master. 

• Nodeguarding 
Automatic transmission of guarding messages and lifetime monitoring for every slave configured 
accordingly. 
We recommend: It is better to work with the heartbeat function for current devices since then the 
bus load is lower. 

• Heartbeat 
Automatic transmission and monitoring of heartbeat messages. 

• Emergency 
Reception of emergency messages from the configured slaves and message storage. 

• Set Node-ID and baud rate in the slaves 
By calling a simple function, node ID and baud rate of a slave can be set at runtime of the 
application. 



 

86 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

The following functions defined in CANopen are at present not supported by the CANopen 3S (Smart 
Software Solutions) library: 

• Dynamic identifier assignment, 

• Dynamic SDO connections, 

• SDO transfer block by block, segmented SDO transfer (the functionality can be implemented via 
the function CANx_SDO_READ (→ page 139) and function CANx_SDO_WRITE (→ page 141) in 
the corresponding ifm device library). 

• All options of the CANopen protocol which are not mentioned above. 
 

 

Create a CANopen project 
Below the creation of a new project with a CANopen master is completely described step by step. It is 
assumed that you have already installed CoDeSys on your processor and the Target and EDS files 
have also been correctly installed or copied. 

A more detailed description for setting and using the dialogue [controller and CANopen configuration] 
is given in the CoDeSys manual under [Resources] > [PLC Configuration] or in the Online help. 

After creation of a new project (→ chapter Setup the target, → page 14) the CANopen master must 
first be added to the controller configuration via [Insert] > [Append subelement]. For controllers with 2 
or more CAN interfaces interface 1 is automatically configured for the master. 

The following libraries and software modules are automatically integrated: 

• The Standard.LIB which provides the standard functions for the controller defined in IEC 
61131. 

• The 3S_CanOpenManager.LIB which provides the CANopen basic functionalities  
(possibly 3S_CanOpenManagerOptTable.LIB for the C167 controller) 

• One or several of the libraries 3S_CANopenNetVar.LIB, 3S_CANopenDevice.LIB and 
3S_CANopenMaster.LIB (possibly 3S_...OptTable.LIB for the C167 controller) depending 
on the requested functionality  

• The system libraries SysLibSem.LIB and SysLibCallback.LIB 

• To use the prepared network diagnostic, status and EMCY functions, the library 
ifm_CRnnnn_CANopenMaster_Vxxyyzz.LIB must be manually added to the library manager. 
Without this library the network information must be directly read from the nested structures of the 
CoDeSys CANopen libraries. 

The following libraries and software modules must still be integrated: 

• The device library for the corresponding hardware, e.g. ifm_CR0020_Vxxyyzz.LIB. This library 
provides all device-specific functions. 

• EDS files for all slaves to be operated on the network. The EDS files are provided for all CANopen 
slaves by ifm electronic. 

► For the EDS files of other manufacturers' nodes contact the corresponding manufacturer. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

87 

 

 NOTE 
For the ecomatmobile controllers and PDM360 smart the CANopen support by CoDeSys can only be 
activated for the 1st CAN interface. 

If the CAN master has already been added, the controller can no longer be used as a CAN device via 
CoDeSys.  

Implementation of a separate protocol on interface 2 or using the protocol to SAE J1939 or ISO11992 is 
possible at any time. 

For PDM360 and for PDM360 compact both CAN interfaces can be used as CANopen master or CAN 
device. 

For CRnn32 devices you can use all CAN interfaces with all protocols. 
 
 

Tab [CAN parameters] 
The most important parameters for the master can be set in this dialogue window. If necessary, the 
contents of the master EDS file can be viewed via the button [EDS...]. This button is only indicated if 
the EDS file (e.g. CR0020MasterODEntry.EDS) is in the directory ...\CoDeSys 
V2.3\Library\PLCConf. 
During the compilation of the application program the object directory of the master is automatically 
generated from this EDS file. 

 
Baud rate 
Select the baud rate for the master. It must correspond to the transmission speed of the other network 
participants. 



 

88 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Communication Cycle Period/Sync. Window Length 
After expiry of the [Communication Cycle Period] a SYNC message is transmitted by the master.  
The [Sync. Window Length] indicates the time during which synchronous PDOs are transmitted by the 
other network participants and must be received by the master. 
As in most applications no special requirements are made for the SYNC object, the same time can be 
set for [Communication Cycle Period] and [Sync. Window Length]. Please ensure the time is entered 
in [µs] (the value 50 000 corresponds to 50 ms). 
SYNC-Objekt
SYNC object

SYNC-Objekt
SYNC object

SYNC-Objekt
SYNC object

Synchrone PDOs
Synchronous PDOs

Asynchrone PDOs
Asynchronous PDOs

Synchrones Objektfenster
Synchronous object window

Zeit
Time

Communication Cycle Period Sync. Window Lenght  
 

Sync. COB ID 
In this field the identifier for the SYNC message can be set. It is always transmitted after the 
communication cycle period has elapsed. The default value is 128 and should normally not be 
changed. To activate transmission of the SYNC message, the checkbox [activate] must be set. 
 

 NOTE 
The SYNC message is always generated at the start of a program cycle. The inputs are then read, the 
program is processed, the outputs are written to and then all synchronous PDOs are transmitted. 

Please note that the SYNC time becomes longer if the set SNYC time is shorter than the program cycle 
time. 

Example: communication cycle period = 10 ms and program cycle time = 30 ms.  
The SYNC message is only transmitted after 30 ms. 

 

Node ID 
Enter the node number (not the download ID!) of the master in this field. The node number may only 
occur once in the network, otherwise the communication is disturbed. 

Automatic startup 
After successful configuration the network and the connected nodes are set to the state [operational] 
and then started. 
If the checkbox is not activated, the network must be started manually. 

Heartbeat 
If the other participants in the network support heartbeat, the option [support DSP301, V4.01...] can be 
selected. If necessary, the master can generate its own heartbeat signal after the set time has 
elapsed. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

89 

 

Add and configure CANopen slaves 
Next you can add the CAN slaves. To do so, you must call again the dialogue in the controller 
configuration [Insert] > [Append subelement]. A list of the CANopen device descriptions (EDS files) 
stored in the directory PLC_CONF is available. By selecting the corresponding device it is directly 
added to the tree of the controller configuration. 
 

 NOTE 
If a slave is added via the configuration dialogue in CoDeSys, source code is dynamically integrated in 
the application program for every node. At the same time every additionally inserted slave extends the 
cycle time of the application program. This means: In a network with many slaves the master can 
process no further time-critical tasks (e.g. FB OCC_TASK). 

A network with 27 slaves has a basic cycle time of 30 ms. 

Please note that the maximum time for a PLC cycle of approx. 50 ms should not be exceeded 
(watchdog time: 100 ms). 

 

 
 

 

Tab [CAN parameters] 
Node ID 
The node ID is used to clearly identify the CAN module and corresponds to the number on the module 
set between 1 and 127. The ID is entered decimally and is automatically increased by 1 if a new 
module is added. 

Write DCF  
If [Write DCF] is activated, a DCF file is created after adding an EDS file to the set directory for 
compilation files. The name of the DCF file consists of the name of the EDS file and appended node 
ID. 

Create all SDO's 
If this option is activated, SDOs are generated for all communication objects. (Default values are not 
written again!) 



 

90 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Node reset 
The slave is reset ("load") as soon as the configuration is loaded to the controller. 

Optional device 
If the option [optional device] is activated, the master tries only once to read from this node. In case of 
a missing response, the node is ignored and the master goes to the normal operating state. 
If the slave is connected to the network and detected at a later point in time, it is automatically started.  
To do so, you must have selected the option [Automatic startup] in the CAN parameters of the master. 

No initialization 
If this option is activated, the master immediately takes the node into operation without transmitting 
configuration SDOs. (Nevertheless, the SDO data is generated and stored in the controller.) 

Nodeguarding / heartbeat settings 
Depending on the device [nodeguarding] and [life time factor] or [heartbeat] must be set. 
We recommend: It is better to work with the heartbeat function for current devices since then the bus 
load is lower. 

Emergency telegram 
This option is normally selected. The EMCY messages are transferred with the specified identifier. 

Communication cycle 
In special applications a monitoring time for the SYNC messages generated by the master can be set 
here. Please note that this time must be longer than the SYNC time of the master. The optimum value 
must be determined experimentally, if necessary. 
In most cases nodeguarding and heartbeat are sufficient for node monitoring. 
 

 

Tab [Receive PDO-Mapping] and [Send PDO-Mapping] 
With the tabs [Receive PDO-Mapping] and [Send PDO-Mapping] in the configuration dialogue of a 
CAN module the module mapping (assignment between local object directory and PDOs from/to the 
CAN device) described in the EDS file can be changed (if supported by the CAN module). 
All [mappable] objects of the EDS file are available on the left and can be added to or removed from 
the PDOs (Process Data Objects) on the right. The [StandardDataTypes] can be added to generate 
spaces in the PDO.  

Insert 
With the button [Insert] you can generate more PDOs and insert the corresponding objects. The inputs 
and outputs are assigned to the IEC addresses via the inserted PDOs. In the controller configuration 
the settings made can be seen after closing the dialogue. The individual objects can be given symbolic 
names. 

Properties 
The PDO properties defined in the standard can be edited in a dialogue via properties. 

COB-ID Every PDO message requires a clear COB ID (communication object identifier). If an 
option is not supported by the module or the value must not be changed, the field is 
grey and cannot be edited. 

Inhibit Time The inhibit time (100 µs) is the minimum time between two messages of this PDO so 
that the messages which are transferred when the value is changed are not 
transmitted too often. The unit is 100 µs. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

91 

Transmission 
Type 

For transmission type you receive a selection of possible transmission modes for 
this module: 

acyclic – synchronous 
After a change the PDO is transferred with the next SYNC.  

cyclic – synchronous 
The PDO is transferred synchronously. [Number of SYNCs] indicates the number of 
the synchronisation messages between two transmissions of this PDO. 

asynchronous – device profile specific 
The PDO is transmitted on event, i.e. when the value is changed. The device profile 
defines which data can be transferred in this way. 

asynchronous – manufacturer specific 
The PDO is transmitted on event, i.e. when the value is changed. The device 
manufacturer defines which data is transferred in this way. 

(a)synchronous – RTR only 
These services are not implemented. 

Number of SYNCs 
Depending on the transmission type this field can be edited to enter the number of 
synchronisation messages (definition in the CAN parameter dialogue of [Com. Cycle 
Period], [Sync Window Length], [Sync. COB ID]) after which the PDO is to be 
transmitted again. 

Event-Time 
Depending on the transmission type the period in milliseconds [ms] required 
between two transmissions of the PDO is indicated in this field. 

 

 

Tab [Service Data Objects] 
Index, name, value, type and default 
Here all objects of the EDS or DCF file are listed which are in the range from index 200016 to 9FFF16 
and defined as writable. Index, name, value, type and default are indicated for every object. The value 
can be changed. Select the value and press the [space bar]. After the change you can confirm the 
value with the button [Enter] or reject it with [ESC]. 

For the initialisation of the CAN bus the set values are transferred as SDOs (Service Data Object) to 
the CAN module thus having direct influence on the object directory of the CAN slave. Normally they 
are written again at every start of the application program – irrespective of whether they are 
permanently stored in the CAN device. 
 

 

Master at runtime 
Here you find information about the functionality of the CANopen master libraries at runtime.  

The CANopen master library provides the CoDeSys application with implicit services which are 
sufficient for most applications. These services are integrated for users in a transparent manner and 
are available in the application without additional calls. The following description assumes that the 
library ifm_CRnnnn_CANopenMaster_Vxxyyzz.LIB was manually added to the library manager to 
use the network diagnostic, status and EMCY functions.  

Services of the CANopen master library: 

Reset of all configured slaves on the bus at the system start 
To reset the slaves, the NMT command "Reset Remote Node" is used as standard explicitly for every 
slave separately. (NMT stands for Network Management according to CANopen. The individual 
commands are described in the CAN document DSP301.) In order to avoid overload of slaves having 
less powerful CAN controllers it is useful to reset the slaves using the command "All Remote Nodes". 
The service is performed for all configured slaves using the function CANx_MASTER_STATUS 



 

92 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

(→ page 123) with GLOBAL_START=TRUE. If the slaves are to be reset individually, this input must 
be set to FALSE. 

Polling of the slave device type using SDO (polling for object 100016) and comparison with the 
configured slave ID 
Indication of an error status for the slaves from which a wrong device type was received. The request 
is repeated after 0.5 s if no device type was received AND the slave was not identified as optional in 
the configuration AND the timeout has not elapsed. 

Configuration of all correctly detected devices using SDO 
Every SDO is monitored for a response and repeated if the slave does not respond within the 
monitoring time. 

Automatic configuration of slaves using SDOs while the bus is in operation  
Prerequisite: The slave logged in the master via a bootup message. 

Start of all correctly configured slaves after the end of the configuration of the corresponding 
slave  
To start the slaves the NMT command "Start remote node" is normally used. As for the "reset" this 
command can be replaced by "Start All Remote Nodes". The service can be called via the function 
CANx_Master_STATUS with GLOBAL_START=TRUE. 

Cyclical transmission of the SYNC message 
This value can only be set during the configuration. 

Setting of nodeguarding with lifetime monitoring for every slave possible 
The error status can be monitored for max. 8 slaves via the function CANx_MASTER_STATUS with 
ERROR_CONTROL=TRUE.  
We recommend: It is better to work with the heartbeat function for current devices since then the bus 
load is lower. 

Heartbeat from the master to the slaves and monitoring of the heartbeats of the slaves 
The error status can be monitored for max. 8 slaves via the function CANx_MASTER_STATUS with 
ERROR_CONTROL=TRUE. 

Reception of emergency messages for every slave, the emergency messages received last are 
stored separately for every slave 
The error messages can be read via the function CANx_MASTER_STATUS with 
EMERGENCY_OBJECT_SLAVES=TRUE. In addition this function provides the EMCY message 
generated last on the output GET_EMERGENCY. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

93 

 

Start the network 
Here you find information about how to start the CANopen network. 

After downloading the project to the controller or a reset of the application the master starts up the 
CAN network again. This always happens in the same order of actions: 

• All slaves are reset unless they are marked as "No initialization" in the configurator. They are reset 
individually using the NMT command "Reset Node" (8116) with the node ID of the slave. If the flag 
GLOBAL_START was set via the function CANx_MASTER_STATUS (→ page 123), the 
command is used once with the node ID 0 to start up the network. 

• All slaves are configured. To do so, the object 100016 of the slave is polled. 
� If the slave responds within the monitoring time of 0.5 s, the next configuration SDO is 

transmitted. 
� If a slave is marked as "optional" and does not respond to the polling for object 100016 

within the monitoring time, it is marked as not available and no further SDOs are 
transmitted to it. 

� If a slave responds to the polling for object 100016 with a type other than the configured 
one (in the lower 16 bits), it is configured but marked as a wrong type. 

All SDOs are repeated as long as a response of the slave was seen within the monitoring time. Here 
the application can monitor start-up of the individual slaves and possibly react by setting the flag 
SET_TIMEOUT_STATE in the NODE_STATE_SLAVE array of the function 
CANx_MASTER_STATUS. 

• If the master configured a heartbeat time unequal to 0, the heartbeat is generated immediately 
after the start of the master controller. 

• After all slaves have received their configuration SDOs, guarding starts for slaves with configured 
nodeguarding. 

• If the master was configured to [Automatic startup], all slaves are now started individually by the 
master. To do so, the NMT command "Start Remote Node" (116) is used. If the flag 
GLOBAL_START was set via the function CANx_Master_STATUS, the command is used with the 
node ID 0 and so all slaves are started with "Start all Nodes". 

• All configured TX-PDOs are transmitted at least once (for the slaves RX-PDOs). 

• If [Automatic startup] is deactivated, the slaves must be started separately via the flag 
START_NODE in the NODE_STATE_SLAVE array or via the function input GLOBAL_START of 
the function CANx_MASTER_STATUS. 

 



 

94 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

Network states 
Here you read how to interpret the states of the CANopen network and how to react. 

For the start-up (→ page 93) of the CANopen network and during operation the individual functions of 
the library pass different states. 
 

 NOTE 
In the monitor mode (online mode) of CoDeSys the states of the CAN network can be seen in the 
global variable list "CANOpen implicit variables". This requires exact knowledge of CANopen and the 
structure of the CoDeSys CANopen libraries. 

To facilitate access the function CANx_MASTER_STATUS (→ page 123) from the library 
ifm_CRnnnn_CANopenMaster_Vxxyyzz.LIB is available. 

 
 

Boot up of the CANopen master 
During boot-up of the CAN network the master passes different states which can be read via the 
output NODE_STATE of the function CANx_MASTER_STATUS (→ page 123). 

State Description 

0, 1, 2 These states are automatically passed by the master and in the first cycles after a PLC 
start. 

3 State 3 of the master is maintained for some time. In state 3 the master configures its 
slaves. To do so, all SDOs generated by the configurator are transmitted to the slaves 
one after the other. 

5 After transmission of all SDOs to the slaves the master goes to state 5 and remains in this 
state. State 5 is the normal operating state for the master. 

Whenever a slave does not respond to an SDO request (upload or download), the request is repeated. 
The master leaves state 3, as described above, but not before all SDOs have been transmitted 
successfully. So it can be detected whether a slave is missing or whether the master has not correctly 
received all SDOs. It is of no importance for the master whether a slave responds with an 
acknowledgement or an abort. It is only important for the master whether he received a response at 
all. 

An exception is a slave marked as "optional". Optional slaves are asked for their 1000h object only 
once. If they do not respond within 0.5 s, the slave is first ignored by the master and the master goes 
to state 5 without further reaction of this slave. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

95 

 

Boot up of the CANopen slaves 
You can read the states of a slave via the array NODE_STATE_SLAVE of the function 
CANx_MASTER_STATUS (→ page 123). During boot up of the CAN network the slave passes the 
states -1, 1 and 2 automatically. The states have to be interpreted as follows: 

State Description 

-1 The slave is reset by the NMT message "Reset Node" and automatically goes to state 1. 

1 After max. 2 s or immediately on reception of its boot up message the slave goes to state 
2. 

2 After a delay of 0.5 s the slave automatically goes to state 3. This period corresponds to 
the experience that many CANopen devices are not immediately ready to receive their 
configuration SDOs after transmission of their boot up message.  

3 The slave is configured in state 3. The slave remains in state 3 as long as it has received 
all SDOs generated by the configurator. It is not important whether during the slave 
configuration the response to SDO transfers is abort (error) or whether the response to all 
SDO transfers is no error. Only the response as such received by the slave is important – 
not its contents. 

If in the configurator the option "Reset node" has been activated, a new reset of the node 
is carried out after transmitting the object 101116 sub-index 1 which then contains the 
value "load". The slave is then polled again with the upload of the object 100016. 

Slaves with a problem during the configuration phase remain in state 3 or directly go to an 
error state (state > 5) after the configuration phase. 

After passing the configuration phase, the slave can go to the following states: 

State Description 

4 A node always goes to state 4 except for the following cases: it is an "optional" slave and 
it was detected as non available on the bus (polling for object 100016) or the slave is 
present but reacted to the polling for object 100016 with a type in the lower 16 bits other 
than expected by the configurator. 

5 State 5 is the normal operating state of the slave.  
If the master was configured to "Automatic startup", the slave starts in state 4 (i.e. a "start 
node" NMT message is generated) and the slave goes automatically to state 5.  
If the flag GLOBAL_START of the function CANx_MASTER_STATUS was set by the 
application, the master waits until all slaves are in state 4. All slaves are then started with 
the NMT command "Start All Nodes". 

97 A node goes to state 97 if it is optional (optional device in the CAN configuration) and has 
not reacted to the SDO polling for object 100016. 

If the slave is connected to the network and detected at a later point in time, it is 
automatically started. To do so, you must have selected the option "Automatic startup" in 
the CAN parameters of the master. 

98 A node goes to state 98 if the device type (object 100016) does not correspond to the 
configured type. 

If the slave is in state 4 or higher, nodeguard messages are transmitted to the slave if nodeguarding 
was configured. 
 



 

96 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

Nodeguarding/heartbeat error 
State Description 

99 In case of a nodeguarding timeout the variable NODE_STATE in the array 
NODE_STATE_SLAVE of the function CANx_MASTER_STATUS (→ page 123) is set 
to 99. 

As soon as the node reacts again to nodeguard requests and the option [Automatic 
startup] is activated, it is automatically started by the master. Depending on the status 
contained in the response to the nodeguard requests, the node is newly configured or 
only started. 

To start the slave manually it is sufficient to use the method "NodeStart". 

The same applies to heartbeat errors. 

The current CANopen state of a node can be called via the structure element LAST_STATE from the 
array NODE_STATE_SLAVE of the function CANx_MASTER_STATUS. 

State Description 

0 The node is in the boot up state. 

4 The node is in the PREPARED state. 

5 The node is in the OPERATIONAL state. 

127 The node is in the PREOPERATIONAL state. 
 

8.7.3 Start-up of the network without [Automatic startup] 
Sometimes it is necessary that the application determines the instant to start the CANopen slaves. To 
do so, the option [Automatic startup] of the CAN master must be deactivated in the configuration. It is 
then up to the application to start the slaves. 

To start a slave via the application, the structure element START_NODE in the array 
NODE_STATE_SLAVES must be set. 
The array is assigned to the function CANx_MASTER_STATUS via the ADR operator. 
 

 

Starting the network with GLOBAL_START 
In a CAN network with many participants (in most cases more than 8) it often happens that NMT 
messages in quick succession are not detected by all (mostly slow) IO nodes (e.g. CompactModules 
CR2013). The reason for this is that these nodes must listen to all messages with the ID 0. NMT 
messages transmitted at too short intervals overload the receive buffer of such nodes. 

A help for this is to reduce the number of NMT messages in quick succession.  

► To do so, set the input GLOBAL_START of the function CANx_Master_STATUS (→ page 123) to 
TRUE (with [Automatic startup]). 

> The CANopen master library uses the command "Start All Nodes" instead of starting all nodes 
individually using the command "Start Node". 

> GLOBAL_START is executed only once when the network is initialised. 

> If this input is set, the controller also starts nodes with status 98 (see above). However, the PDOs 
for these nodes remain deactivated. 

 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

97 

Starting the network with START_ALL_NODES 
If the network is not automatically started with GLOBAL_START of the function 
CANx_Master_STATUS (→ page 123), it can be started at any time, i.e. every node one after the 
other. If this is not requested, the option is as follows: 

► Set the function input START_ALL_NODES of the function CANx_Master_STATUS to TRUE.  
START_ALL_NODES is typically set by the application program at runtime.  

> If this input is set, nodes with status 98 (see above) are started. However, the PDOs for these 
nodes remain deactivated. 

 

 

Initialisation of the network with RESET_ALL_NODES 
The same reasons which apply to the command START_ALL_NODES also apply to the NMT 
command RESET_ALL_NODES (instead of RESET_NODES for every individual node). 

► To do so, the input RESET_ALL_NODES of the function CANx_MASTER_STATUS (→ page 123) 
must be set to TRUE.  

> This resets all nodes once at the same time.  
 

 

Access to the status of the CANopen master 
You should poll the status of the master so that the application code is not processed before the IO 
network is ready. The following code fragment example shows one option: 
 

Variable declaration 
VAR 
    FB_MasterStatus:= CR0020_MASTER_STATUS; 
    : 
END_VAR 
 

program code 
If   FB_MasterStatus. NODE_STATE = 5 then 
     <application code> 
End_if 
 

By setting the flag TIME_OUT_STATE in the array NODE_STATE_SLAVE of the function 
CANx_Master_STATUS (→ page 123) the application can react and, for example, jump the non 
configurable node.  
 

 

The object directory of the CANopen master 
In some cases it is helpful if the CAN master has its own object directory. This enables, for example, 
the exchange of data of the application with other CAN nodes. 

The object directory of the master is generated using an EDS file named 
CRnnnnMasterODEntry.EDS during compilation and is given default values. This EDS file is stored 
in the directory CoDeSys Vn\Library\PLCconf. The content of the EDS file can be viewed via the 
button [EDS...] in the configuration window [CAN parameters]. 

Even if the object directory is not available, the master can be used without restrictions. 



 

98 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

The object directory is accessed by the application via an array with the following structure: 

 
 

Structure element Description 

dwIdxSubIdxF Structure of the component 16#iiiissff: 
iiii – index (2 bytes, bits 16-31), Idx 
ss – sub-index (1 byte, bits 8-15), SubIdx 
ff – flags (1 byte, bits 0-7), F 

Meaning of the flag bits: 
bit 0: write 
bit 1: content is a pointer to an address 
bit 2: mappable 
bit 3: swap 
bit 4: signed value 
bit 5: floating point 
bit 6: contains more sub-indices 

dwContent contains the contents of the entry 

wLen length of the data 

byAttrib initially intended as access authorisation  
can be freely used by the application of the master 

byAccess in the past access authorisation  
can be freely used by the application of the master 

On the platform CoDeSys has no editor for this object directory. 

The EDS file only determines the objects used to create the object directory. The entries are always 
generated with length 4 and the flags (least significant byte of the component of an object directory 
entry dwIdxSubIdxF) are always given the value 1. This means both bytes have the value 16#41. 

If an object directory is available in the master, the master can act as SDO server in the network. 
Whenever a client accesses an entry of the object directory by writing, this is indicated to the 
application via the flag OD_CHANGED in the function CANx_MASTER_STATUS (→ page 123). After 
evaluation this flag must be reset.  

The application can use the object directory by directly writing to or reading the entries or by pointing 
the entries to IEC variables. This means: when reading/writing to another node these IEC variables 
are directly accessed. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

99 

If index and sub-index of the object directory are known, an entry can be addressed as follows: 

I := GetODMEntryValue(16#iiiiss00, pCanOpenMaster[0].wODMFirstIdx, 
pCanOpenMaster[0].wODMFirstIdx + pCanOpenMaster[0]. wODMCount; 

For "iii" the index must be used and for "ss" the sub-index (as hex values). 

The number of the array entry is available in I. You can now directly access the components of the 
entry. 
It is sufficient to enter address, length and flags so that this entry can be directly transferred to an IEC 
variable: 

ODMEntries[I].dwContent := ADR(<variable name>); 
ODMEntries[I].wLen := sizeof(<variable name>); 
ODMEntries[I]. dwIdxSubIdxF := ODMEntries[I]. dwIdxSubIdxF OR 
OD_ENTRYFLG_WRITE OR OD_ENTRYFLG_ISPOINTER; 

It is sufficient to change the content of "dwContent" to change only the content of the entry. 



 

100 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

 

8.7.4 CAN device 
CAN device is another name for a CANopen slave or CANopen node. 

A CoDeSys programmable controller can also be a CANopen slave in a CAN network.  
 

 

Functionality 
The CAN device library in combination with the CANopen configurator provides the user with the 
following options: 

• In CoDeSys configuration of the properties for nodeguarding/heartbeat, emergency, node ID and 
baud rate at which the device is to operate. 

• Together with the parameter manager in CoDeSys, a default PDO mapping can be created which 
can be changed by the master at runtime. The PDO mapping is changed by the master during the 
configuration phase. By means of mapping IEC variables of the application can be mapped to 
PDOs. This means IEC variables are assigned to the PDOs to be able to easily evaluate them in 
the application program. 

• The CAN device library provides an object directory. The size of this object directory is defined 
while compiling CoDeSys. This directory contains all objects which describe the CAN device and 
in addition the objects defined by the parameter manager. In the parameter manager only the list 
types parameters and variables can be used for the CAN device. 

• The library manages the access to the object directory, i.e. it acts as SDO server on the bus. 

• The library monitors nodeguarding or the heartbeat consumer time (always only of one producer) 
and sets corresponding error flags for the application. 

• An EDS file can be generated which describes the configured properties of the CAN device so that 
the device can be integrated and configured as a slave under a CAN master. 

The CAN device library explicitly does not provide the following functionalities described in CANopen 
(all options of the CANopen protocol which are not indicated here or in the above section are not 
implemented either): 

• Dynamic SDO and PDO identifiers 

• SDO block transfer 

• Automatic generation of emergency messages. Emergency messages must always be generated 
by the application using the function CANx_SLAVE_EMCY_HANDLER (→ page 131) and the 
function CANx_SLAVE_SEND_EMERGENCY (→ page 133). To do so, the library 
ifm_CRnnnn_CANopenSlave_Vxxyyzz.LIB provides these functions. 

• Dynamic changes of the PDO properties are currently only accepted on arrival of a StartNode 
NMT message, not with the mechanisms defined in CANopen. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

101 

 

CAN device configuration 
To use the controller as CANopen slave (device) the CANopen slave must first be added via [Insert] > 
[Append subelement]. For controllers with 2 or more CAN interfaces the CAN interface 1 is 
automatically configured as a slave. All required libraries are automatically added to the library 
manager. 
 

 

Tab [Base settings] 

 
Bus identifier  
is currently not used. 

Name of updatetask 
Name of the task where the CAN device is called. 

Generate EDS file  
If an EDS file is to be generated from the settings to be able to add the CAN device to any master 
configuration, the option [Generate EDS file] must be activated and the name of a file must be 
indicated. As an option a template file can be indicated whose entries are added to the EDS file of the 
CAN device. In case of overlapping the template definitions are not overwritten. 
 

 

Example of an object directory 

The following entries could for example be in the object directory: 
[FileInfo] 
FileName=D:\CoDeSys\lib2\plcconf\MyTest.eds 
FileVersion=1 
FileRevision=1 
Description=EDS for CoDeSys-Project: 
D:\CoDeSys\CANopenTestprojekte\TestHeartbeatODsettings_Device.pro 
CreationTime=13:59 
CreationDate=09-07-2005 
CreatedBy=CoDeSys 
ModificationTime=13:59 
ModificationDate=09-07-2005 
ModifiedBy=CoDeSys 

[DeviceInfo] 
VendorName=3S Smart Software Solutions GmbH 
ProductName=TestHeartbeatODsettings_Device 
ProductNumber=0x33535F44 
ProductVersion=1 
ProductRevision=1 
OrderCode=xxxx.yyyy.zzzz 
LMT_ManufacturerName=3S GmbH 
LMT_ProductName=3S_Dev  
BaudRate_10=1 
BaudRate_20=1 



 

102 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

BaudRate_50=1 
BaudRate_100=1 
BaudRate_125=1 
BaudRate_250=1 
BaudRate_500=1 
BaudRate_800=1 
BaudRate_1000=1 
SimpleBootUpMaster=1 
SimpleBootUpSlave=0 
ExtendedBootUpMaster=1 
ExtendedBootUpSlave=0 

... 

[1018sub0] 
ParameterName=Number of entries 
ObjectType=0x7 
DataType=0x5 
AccessType=ro 
DefaultValue=2 
PDOMapping=0 

[1018sub1] 
ParameterName=VendorID 
ObjectType=0x7 
DataType=0x7 
AccessType=ro 
DefaultValue=0x0 
PDOMapping=0 

[1018sub2] 
ParameterName=Product Code 
ObjectType=0x7 
DataType=0x7 
AccessType=ro 
DefaultValue=0x0 
PDOMapping=0 
 

For the meaning of the individual objects please see the CANopen specification DS301. 

In addition to the prescribed entries, the EDS file contains the definitions for SYNC, guarding, 
emergency and heartbeat. If these objects are not used, the values are set to 0 (preset). But as the 
objects are present in the object directory of the slave at runtime, they are written to in the EDS file. 

The same goes for the entries for the communication and mapping parameters. All 8 possible sub-
indices of the mapping objects 16xx16 or 1Axx16 are present, but possibly not considered in the sub-
index 0. 
NOTE: Bit mapping is not supported by the library! 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

103 

Tab [CAN settings] 

 
Here you can set the node ID and the baud rate.  

Device type 
(this is the default value of the object 100016 entered in the EDS) has 19116 as default value (standard 
IO device) and can be freely changed.  
The index of the CAN controller results from the position of the CAN device in the controller 
configuration. 

The nodeguarding parameters, the heartbeat parameters and the emergency COB ID can also be 
defined in this tab. The CAN device can only be configured for the monitoring of a heartbeat. 
We recommend: It is better to work with the heartbeat function for current devices since then the bus 
load is lower. 
 

 



 

104 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Tab [Default PDO mapping] 

 
In this tab the assignment between local object directory (OD editor) and PDOs transmitted/received 
by the CAN device can be defined. Such an assignment is called "mapping". 

In the object directory entries used (variable OD) the connection to variables of the application is made 
between object index/sub-index. You only have to ensure that the sub-index 0 of an index containing 
more than one sub-index contains the information concerning the number of the sub-indices. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

105 

 

Example list of variables 

The data for the variable PLC_PRG.a is to be received on the first receive PDO (COB ID = 512 + node 
ID) of the CAN device. 

 
 

 Info 
[Variables] and [parameters] can be selected as list type. 

For the exchange of data (e.g. via PDOs or other entries in the object directory) a variable list is 
created. 

The parameter list should be used if you do not want to link object directory entries to application 
variables. For the parameter list only the index 100616 / SubIdx 0 is currently predefined. In this entry 
the value for the "Com. Cycle Period" can be entered by the master. This signals the absence of the 
SYNC message. 

 

So you have to create a variable list in the object directory (parameter manager) and link an index/sub-
index to the variable PLC_PRG.a. 

► To do so, add a line to the variable list (a click on the right mouse button opens the context menu) 
and enter a variable name (any name) as well as the index and sub-index.  

► The only allowed access right for a receive PDO is [write only].  

► Enter "PLC_PRG.a" in the column [variable] or press [F2] and select the variable.  
 

 NOTE 
Data to be read by the CAN master (e.g. inputs, system variables) must have the access right [read 
only]. 

Data to be written by the CAN master (e.g. outputs in the slave) must have the access right [write only]. 

SDO parameters to be written and at the same time to be read from and written to the slave application 
by the CAN master must have the access right [read-write]. 

 

To be able to open the parameter manager the parameter manager must be activated in the target 
settings under [Network functionality]. The areas for index/sub-index already contain sensible values 
and should not be changed. 



 

106 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

 
In the default PDO mapping of the CAN device the index/sub-index entry is then assigned to a receive 
PDO as mapping entry. The PDO properties can be defined via the dialogue known from Add and 
configure CANopen slaves (→ page 89). 

Only objects from the parameter manager with the attributes [read only] or [write only] are marked in 
the possibly generated EDS file as mappable (= can be assigned) and occur in the list of the 
mappable objects. All other objects are not marked as mappable in the EDS file. 
 

 NOTE 
If more than 8 data bytes are mapped to a PDO, the next free identifiers are then automatically used 
until all data bytes can be transferred.  

To obtain a clear structure of the identifiers used you should add the correct number of the receive and 
transmit PDOs and assign them the variable bytes from the list. 

 
 

Changing the standard mapping by the master configuration 
You can change the default PDO mapping (in the CAN device configuration) within certain limits by the 
master. 

The rule applies that the CAN device cannot recreate entries in the object directory which are not yet 
available in the standard mapping (default PDO mapping in the CAN device configuration). For a PDO, 
for example, which contains a mapped object in the default PDO mapping no second object can be 
mapped in the master configuration. 

So the mapping changed by the master configuration can at most contain the PDOs available in the 
standard mapping. Within these PDOs there are 8 mapping entries (sub-indices). 

Possible errors which may occur are not displayed, i.e. the supernumerary PDO definitions / 
supernumerary mapping entries are processed as if not present. 

In the master the PDOs must always be created starting from 140016 (receive PDO communication 
parameter) or 180016 (transmit PDO communication parameter) and follow each other without 
interruption. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

107 

 

Access to the CAN device at runtime 

Setting of the node numbers and the baud rate of a CAN device 
For the CAN device the node number and the baud rate can be set at runtime of the application 
program.  

► For setting the node number the function CANx_SLAVE_NODEID (→ page 130) of the library 
ifm_CRnnnn_CANopenSlave_Vxxyyzz.lib is used.  

► For setting the baud rate the function CAN1_BAUDRATE (→ page 58) or the function CAN1_EXT 
(→ page 63) or the function CANx of the corresponding device library is used for the controllers 
and the PDM360 smart. For PDM360 or PDM360 compact the function 
CANx_SLAVE_BAUDRATE is available via the library 
ifm_CRnnnn_CANopenSlave_Vxxyyzz.lib. 

 

 

Access to the OD entries by the application program 
As standard, there are entries in the object directory which are mapped to variables (parameter 
manager). 

However, there are also automatically generated entries of the CAN device which cannot be mapped 
to the contents of a variable via the parameter manager. Via the function CANx_SLAVE_STATUS 
(→ page 136) these entries are available in the library 
ifm_CRnnnn_CANopenSlave_Vxxyyzz.LIB. 
 

 

Change the PDO properties at runtime 
If the properties of a PDO are to be changed at runtime, this is done by another node via SDO write 
access as described by CANopen.  

As an alternative, it is possible to directly write a new property, e.g. the "event time" of a send PDO 
and then transmit a command "StartNode-NMT" to the node although it has already been started. As a 
result of this the device reinterprets the values in the object directory. 
 

 

Transmit emergency messages via the application program 
To transmit an emergency message via the application program the function 
CANx_SLAVE_EMCY_HANDLER (→ page 131) and the function 
CANx_SLAVE_SEND_EMERGENCY (→ page 133) can be used. The library 
ifm_CRnnnn_CANopenSlave_Vxxyyzz.LIB provides these functions.  
 

 



 

108 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

8.7.5 CAN network variables 

General information 
Network variables 
Network variables are one option to exchange data between two or several controllers. For users the 
mechanism should be easy to use. At present network variables are implemented on the basis of CAN 
and UDP. The variable values are automatically exchanged on the basis of broadcast messages. In 
UDP they are implemented as broadcast messages, in CAN as PDOs. These services are not 
confirmed by the protocol, i.e. it is not checked whether the receiver receives the message. Exchange 
of network variables corresponds to a "1 to n connection" (1 transmitter to n receivers). 

Object directory 
The object directory is another option to exchange variables. This is a 1 to 1 connection using a 
confirmed protocol. The user can check whether the message arrived at the receiver. The exchange is 
not carried out automatically but via the call of functions from the application program. 
→ chapter The object directory of the CANopen master (→ page 97) 
 

 

Configuration of CAN network variables 
To use the network variables with CoDeSys you need the libraries 3s_CanDrv.lib, 
3S_CANopenManager.lib and 3S_CANopenNetVar.lib. You also need the library 
SysLibCallback.lib. 

CoDeSys automatically generates the required initialisation code and the call of the network blocks at 
the start and end of the cycle. 
 

 

Settings in the target settings 

 
► Select the dialogue box [Target settings]. 

► Select the tab [Network functionality]. 

► Activate the check box [Support network variables].  

► Enter the name of the requested network, here CAN, in [Names of supported network interfaces]. 

► To use network variables you must also add a CAN master or CAN slave (device) to the controller 
configuration. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

109 

► Please note the particularities when using network variables for the corresponding device types.  
→ Chapter Particularities for network variables (→ page 112) 

 

 

Settings in the global variable lists 
► Create a new global variable list. In this list the variables to be exchanged with other controllers 

are defined.  

► Open the dialogue with the menu point [Object Properties]. 

> The window [Properties] appears: 

 
If you want to define the network properties: 

► Click the button [Add network].  
If you have configured several network connections, you can also configure here several 
connections per variable list. 



 

110 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

> The window [Properties] extends as follows: 

 
Meaning of the options: 

Network type  
As network type you can enter one of the network names indicated in the target settings. 
If you click on the button [Settings] next to it, you can select the CAN interface:  

 1. CAN interface: value = 0 
 2. CAN interface: value = 1  
 etc. 

Pack variables 
If this option is activated with [v], the variables are combined, if possible, in one transmisson unit. For 
CAN the size of a transmission unit is 8 bytes. If it is not possible to include all variables of the list in 
one transmission unit, several transmission units are formed for this list.  
If the option is not activated, every variable has its own transmission unit. 
If [Transmit on change] is configured, it is checked separately for every transmission unit whether it 
has been changed and must be transmitted. 

List identifier (COB-ID) 
The basic identifier is used as a unique identification to exchange variable lists of different projects. 
Variable lists with identical basic identifier are exchanged. Ensure that the definitions of the variable 
lists with the same basic identifier match in the different projects. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

111 

 

 NOTE 
In CAN networks the basic identifier is directly used as COB-ID of the CAN messages. It is not checked 
whether the identifier is also used in the remaining CAN configuration. 

To ensure a correct exchange of data between two controllers the global variable lists in the two 
projects must match. To ensure this you can use the feature [Link to file]. A project can export the 
variable list file before compilation, the other projects should import this file before compilation. 

In addition to simple data types a variable list can also contain structures and arrays. The elements of 
these combined data types are transmitted separately. 

Strings must not be transmitted via network variables as otherwise a runtime error will occur and the 
watchdog will be activated. 

If a variable list is larger than a PDO of the corresponding network, the data is split up to several PDOs. 
Therefore it cannot be ensured that all data of the variable list is received in one cycle. Parts of the 
variable list can be received in different cycles. This is also possible for variables with structure and 
array types. 

 

Transmit checksum 
This option is not supported. 

Acknowledgement 
This option is not supported. 

Read 
The variable values of one (or several) controllers are read. 

Write 
The variables of this list are transmitted to other controllers. 
 

 NOTE 
You should only select one of these options for every variable list, i.e. either only read or only write.  

If you want to read or write several variables of a project, please use several variable lists (one for 
reading, one for writing).  

In a network the same variable list should only be exchanged between two participants. 
 

Cyclic transmission 
Only valid if [write] is activated. The values are transmitted in the specified [interval] irrespective of 
whether they have changed. 

Transmit on change 
The variable values are only transmitted if one of the values has been changed. With [Minimum gap] 
(value > 0) a minimum time between the message packages can be defined. 

Transmit on event 
If this option is selected, the CAN message is only transmitted if the indicated binary [variable] is set to 
TRUE. This variable cannot be selected from the list of the defined variables via the input help. 
 



 

112 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

Particularities for network variables 
Device Description 

ClassicController: 
CR0020, CR0505 

ExtendedController: 
CR0200 

SafetyController: 
CR7020, CR7021, 
CR7200, CR7201, 
CR7505, CR7506 

Network variables are only supported on interface 1 (enter the value 0). 

CAN master 
Transmit and receive lists are processed directly. 
You only have to make the settings described above. 

CAN device 
Transmit lists are processed directly. 
For receive lists you must also map the identifier area in the object directory 
to receive PDOs. It is sufficient to create only two receive PDOs and to 
assign the first object the first identifier and the second object the last 
identifier. 
If the network variables are only transferred to one identifier, you only have 
to create one receive PDO with this identifier. 

Important! 
Please note that the identifier of the network variables and of the receive 
PDOs must be entered as decimal value. 

ClassicController: 
CR0032 

ExtendedController: 
CR0232 

Network variables are supported on all CAN interfaces. 
(All other informations as above) 

PDM360 smart: CR1070, 
CR1071 

Only one interface is available (enter value = 0). 

CAN master 
Transmit and receive lists are processed directly. 
You only have to make the settings described above. 

CAN device 
Transmit lists are processed directly. 
For receive lists you must additionally map the identifier area in the object 
directory to receive PDOs. It is sufficient to create only two receive PDOs 
and to assign the first object the first identifier and the second object the last 
identifier. 
If the network variables are only transferred to one identifier, you only have 
to create one receive PDO with this identifier. 

Important! 
Please note that the identifier of the network variables and of the receive 
PDOs must be entered as decimal value. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

113 

Device Description 

PDM360: CR1050, 
CR1051, CR1060 

PDM360 compact: 
CR1052, CR1053, 
CR1055, CR1056 

Network variables are supported on interface 1 (value = 0) and 2 (value = 
1). 

CAN master 
Transmit and receive lists are processed directly. 
You only have to make the settings described above. 

CAN device 
Transmit and receive lists are processed directly. 
You only have to make the settings described above. 

Important! 
If [support network variables] is selected in the PDM360 or PDM360 
compact, you must at least create one variable in the global variable list and 
call it once in the application program. Otherwise the following error 
message is generated when compiling the program: 

Error 4601: Network variables 'CAN': No cyclic or freewheeling task for 
network variable exchange found. 

 

8.7.6 Information on the EMCY and error codes 

Structure of an EMCY message 
Under CANopen error states are indicated via a simple standardised mechanism. For a CANopen 
device every occurrence of an error is indicated via a special message which details the error. 

If an error or its cause disappears after a certain time, this event is also indicated via the EMCY 
message. The errors occurred last are stored in the object directory (object 100316) and can be read 
via an SDO access (→ function CANx_SDO_READ, → page 139). In addition, the current error 
situation is reflected in the error register (object 100116).  

A distinction is made between the following errors: 

• Communication error 
� The CAN controller signals CAN errors. 

(The frequent occurrence is an indication of physical problems. These errors can 
considerably affect the transmission behaviour and thus the data rate of a network.) 

� Life guarding or heartbeat error 

• Application error 
� Short circuit or wire break 
� Temperature too high 

 

Structure of an error message 

The structure of an error message (EMCY message) is as follows: 

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 

EMCY error code as 
entered in the object 

100316 

object 
100116 

manufacturer-specific information 

 



 

114 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

 

Identifier 

The identifier for the error message consists of the sum of the following elements: 

EMCY default identifier 128 (8016) 
+ 
node ID 
 

EMCY error code  

It gives detailed information which error occurred. A list of possible error codes has already been 
defined in the communication profile. Error codes which only apply to a certain device class are 
defined in the corresponding device profile of this device class. 
 

Object 100316 (error field) 

The object 100316 represents the error memory of a device. The sub-indices contain the errors 
occurred last which triggered an error message. 

If a new error occurs, its EMCY error code is always stored in the sub-index 116. All other older errors 
are moved back one position in the error memory, i.e. the sub-index is incremented by 1. If all 
supported sub-indices are used, the oldest error is deleted. The sub-index 016 is increased to the 
number of the stored errors. After all errors have been rectified the value "0" is written to the error field 
of the sub-index 116. 

To delete the error memory the value "0" can be written to the sub-index 016. Other values must not be 
entered. 
 

 

Signalling of device errors 
As described, EMCY messages are transmitted if errors occur in a device. In contrast to 
programmable devices error messages are automatically transmitted by decentralised input/output 
modules (e.g. CompactModules CR2033).  
Corresponding error codes → corresponding device manual. 

Programmable devices only generate an EMCY message automatically (e.g. short circuit on an 
output) if the function CANx_MASTER_EMCY_HANDLER (→ page 118) or function 
CANx_SLAVE_EMCY_HANDLER (→ page 131) is integrated in the application program. 

Overview of the automatically transmitted EMCY error codes for all ifm devices programmable with 
CoDeSys → chapter Overview of the CANopen error codes (→ page 115). 

If in addition application-specific errors are to be transmitted by the application program, the function 
CANx_MASTER_SEND_EMERGENCY (→ page 120) or function 
CANx_SLAVE_SEND_EMERGENCY (→ page 133) are used. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

115 

 

Overview of CANopen error codes 
Error Code 
(hex) 

Meaning 

00xx Reset or no error 

10xx Generic error 

20xx Current error 

21xx Current, device input side 

22xx Current inside the device 

23xx Current, device output side 

30xx Voltage 

31xx Mains voltage 

32xx Voltage inside the device 

33xx Output voltage error 

40xx Temperature error 

41xx Ambient temperature error 

42xx Device temperature error 

50xx Device hardware error 

60xx Device software error 

61xx Internal software error 

62xx User software 

63xx Data set error 

70xx Additional modules 

80xx Monitoring 

81xx Communication 

8110 CAN overrun – objects lost 

8120 CAN in error passive mode 

8130 Life guard error or heartbeat error 

8140 Recovered from bus off 

8150 Transmit COB-ID collision 

82xx Protocol error 

8210 PDO not processed due to length error 

8220 PDO length exceeded 

90xx External error 

F0xx Additional functions 

FFxx Device-specific 
 



 

116 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

 

Object 100116 (error register) 

This object reflects the general error state of a CANopen device. The device is to be considered as 
error free if the object 100116 signals no error any more. 

Bit Meaning 

0 Generic error 

1 Current error 

2 Voltage error 

3 Temperature error 

4 Communication error 

5 Device profile specific 

6 Reserved – always 0 

7 Manufacturer specific 
 

Manufacturer specific information 

A device manufacturer can indicate additional error information. The format can be freely selected. 

Example: 

In a device two errors occur and are signalled via the bus: 

 - Short circuit of the outputs:  
 Error code 230016,  
 the value 0316 (0000 00112) is entered in the object 100116  
 (generic error and current error)  

 - CAN overrun:  
 Error code 811016,  
 the value 1316 (0001 00112) is entered in the object 100116  
 (generic error, current error and communication error)  

>> CAN overrun processed:  
 Error code 000016,  
 the value 0316 (0000 00112) is entered in the object 100116  
 (generic error, current error, communication error reset)  
It can be seen only from this information that the communication error is no longer present. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

117 

 

Overview CANopen EMCY codes 
All indications for the 1st CAN interface 

EMCY code 
object 100316 

Object 
100116 

Manufacturer-specific information 

Byte 0 1 2 3 4 5 6 7 

Description 

00h 21h 03h I0     Diagnosis inputs (bits I0...I7) 

00h 31h 05h      Terminal voltage VBBo/VBBs 

00h 61h 11h      Memory error  

00h 80h 11h      CAN1 monitoring SYNC error (only slave) 

00h 81h 11h      CAN1 warning threshold (> 96) 

10h 81h 11h      CAN1 receive buffer overrun 

11h 81h 11h      CAN1 transmit buffer overrun 

30h 81h 11h      CAN1 guard/heartbeat error (only slave) 
 

8.7.7 Library for the CANopen master 
 

The library ifm_CRnnnn_CANopenMaster_Vxxyyzz.LIB provides a number of functions for the 
CANopen master which will be explained below. 
 



 

118 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Function CANx_MASTER_EMCY_HANDLER 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_CRnnnn_CANopenMaster_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360: CR1050, CR1051, CR1060 

• PDM360 compact: CR1052, CR1053, CR1055, CR1056 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CANx_MASTER_EMCY_HANDLER

CLEAR_ERROR_FIELD ERROR_REGISTER
ERROR_FIELD

 
 

 

Description 
Monitoring device-specific error states 

The function CANx_MASTER_EMCY_HANDLER monitors the device-specific error status of the 
master. The function must be called in the following cases: 

• the error status is to be transmitted to the network and  

• the error messages of the application are to be stored in the object directory.  

 

 NOTE 
If application-specific error messages are to be stored in the object directory, the function 
CANx_MASTER_EMCY_HANDLER must be called after (repeatedly) calling the function 
CANx_MASTER_SEND_EMERGENCY (→ page 120). 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

119 

 

Parameters of the function inputs 
Name Data type Description 

CLEAR_ERROR_FIELD BOOL TRUE: deletes the contents of the array ERROR_FIELD 

FALSE: function is not executed 
 

 

Parameters of the function outputs 
Name Data type Description 

ERROR_REGISTER BYTE Shows the content of the object directory index 1001h 
(Error Register). 

ERROR_FIELD ARRAY [0...5] OF 
WORD 

The array [0...5] shows the contents of the object 
directory index 1003h (Error Field). 

ERROR_FIELD[0]: number of stored errors. 

ERROR_FIELD[1...5]: stored errors, the most recent 
error is in index [1]. 

 



 

120 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Function CANx_MASTER_SEND_EMERGENCY 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_CRnnnn_CANopenMaster_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360: CR1050, CR1051, CR1060 

• PDM360 compact: CR1052, CR1053, CR1055, CR1056 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CANx_MASTER_SEND_EMERGENCY

ENABLE
ERROR
ERROR_CODE

ERROR_REGISTER
MANUFACTURER_ERROR_FIELD

 
 

 

Description 
Transmission of application-specific error states. 

The function CANx_MASTER_SEND_EMERGENCY transmits application-specific error states. The 
function is called if the error status is to be transmitted to other devices in the network. 

 

 NOTE 
If application-specific error messages are to be stored in the object directory, the function 
CANx_MASTER_EMCY_HANDLER (→ page 118) must be called after (repeatedly) calling the 
function CANx_MASTER_SEND_EMERGENCY.  

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

121 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

ERROR BOOL FALSE → TRUE (edge): 
transmits the given error code 

TRUE → FALSE (edge) 
AND the fault is no longer indicated: 
The message that there is no error is sent after a 
delay of approx. 1 s 

ERROR_CODE WORD The error code provides detailed information about 
the detected fault. The values should be entered 
according to the CANopen specification.  
→ chapter Overview CANopen error codes 
(→ page 115) 

ERROR_REGISTER BYTE This object reflects the general error state of the 
CANopen network participant. The values should be 
entered according to the CANopen specification.  

MANUFACTURER_ERROR_FIELD ARRAY [0...4] OF 
BYTE 

Here, up to 5 bytes of application-specific error 
information can be entered. The format can be 
freely selected. 

 



 

122 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

Example with function CANx_MASTER_SEND_EMERGENCY 

 
In this example 3 error messages will be generated subsequently: 

1. ApplError1, Code = 16#FF00 in the error register 16#81 

2. ApplError2, Code = 16#FF01 in the error register 16#81 

3. ApplError3, Code = 16#FF02 in the error register 16#81 

The function CAN1_MASTER_EMCY_HANDLER sends the error messages to the error register 
"Object1001h" in the error array "Object1003h". 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

123 

Function CANx_MASTER_STATUS 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_CRnnnn_CANopenMaster_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

CANx_MASTER_STATUS

CANOPEN_LED_STATUS NODE_ID
GLOBAL_START BAUDRATE
CLEAR_RX_OVERFLOW_FLAG  NODE_STATE
CLEAR_RX_BUFFER  SYNC
CLEAR_TX_OVERFLOW_FLAG
CLEAR_TX_BUFFER
CLEAR_OD_CHANGED_FLAG
CLEAR_ERROR_CONTROL
RESET_ALL_NODES
START_ALL_NODES

 RX_OVERFLOW
TX_OVERFLOW
 OD_CHANGED

 ERROR_CONTROL

NODE_STATE_SLAVE
EMERGENCY_OBJECT_SLAVES

GET_EMERGENCY

 
 

 

Description 
Status indication of the device used with CANopen. 

The function shows the status of the device used as CANopen master. Furthermore, the status of the 
network and of the connected slaves can be monitored. 

The function simplifies the use of the CoDeSys CANopen master libraries. We urgently recommend to 
carry out the evaluation of the network status and of the error messages via this function. 
 



 

124 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

Parameters of the function inputs 
Name Data type Description 

CANOPEN_LED_STATUS BOOL (input not available for PDM devices) 

TRUE: the status LED of the controller is switched to 
the mode "CANopen": 
flashing frequency 0.5 Hz = preoperational 
flashing frequency 2.0 Hz = operational 

The other diagnostic LED signals are not changed by 
this operating mode. 

GLOBAL_START BOOL TRUE: all connected network participants (slaves) are 
started simultaneously during network initialisation. 

FALSE: the connected network participants are started 
one after the other. 

Further information → chapter Starting the network with 
GLOBAL_START (→ page 96) 

CLEAR_RX_OVERFLOW_FLAG BOOL FALSE → TRUE (edge):  
Delete error flag "receive buffer overflow" 

FALSE: function is not executed 

CLEAR_RX_BUFFER BOOL FALSE → TRUE (edge):  
Delete data in the receive buffer 

FALSE: function is not executed 

CLEAR_TX_OVERFLOW_FLAG BOOL FALSE → TRUE (edge):  
Delete error flag "transmit buffer overflow" 

FALSE: function is not executed 

CLEAR_TX_BUFFER BOOL FALSE → TRUE (edge):  
Delete data in the transmit buffer 

FALSE: function is not executed 

CLEAR_OD_CHANGED_FLAG BOOL FALSE → TRUE (edge):  
Delete flag "data in the object directory changed" 

FALSE: function is not executed 

CLEAR_ERROR_CONTROL BOOL FALSE → TRUE (edge):  
Delete the guard error list (ERROR_CONTROL) 

FALSE: function is not executed 

RESET_ALL_NODES BOOL FALSE → TRUE (edge):  
Reset all nodes 

FALSE: function is not executed 

START_ALL_NODES BOOL TRUE: All connected network participants (slaves) are 
started simultaneously at runtime of the application 
program. 

FALSE: The connected network participants must be 
started one after the other 

Further information → chapter Starting the network with 
START_ALL_NODES (→ page 97) 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

125 

Name Data type Description 

NODE_STATE_SLAVE ARRAY 
[0...MAX_NODEI
NDEX] STRUCT 
NODE_STATE 

To determine the status of a single network node the 
global array "NodeStateList" can be used. The array 
then contains the following elements: 

• NodeStateList[n].NODE_ID:  
node number of the slave 

• NodeStateList[n].NODE_STATE:  
current status from the master's point of view 

• NodeStateList[n].LAST_STATE:  
the CANopen status of the node 

• NodeStateList[n].RESET_NODE:  
TRUE: reset slave 

• NodeStateList[n].START_NODE:  
TRUE: start slave 

• NodeStateList[n].PREOP_NODE:  
TRUE: set slave to preoperation mode 

• NodeStateList[n].SET_TIMEOUT_STATE:  
TRUE: set timeout for cancelling the configuration 

• NodeStateList[n].SET_NODE_STATE:  
TRUE: set new node status 

Example code → chapter Example with function 
CANx_MASTER_STATUS (→ page 127) 

Further information → chapter Master at runtime 
(→ page 91) 

EMERGENCY_OBJECT_SLAVES ARRAY 
[0...MAX_NODEI
NDEX] STRUCT 
EMERGENCY_M
ESSAGE 

To obtain a list of the most recent occurred error 
messages of all network nodes the global array 
"NodeEmergencyList" can be used. The array then 
contains the following elements: 

• NodeEmergencyList[n].NODE_ID:  
node number of the slave 

• NodeEmergencyList[n].ERROR_CODE:  
error code 

• NodeEmergencyList[n].ERROR_REGISTER:  
error register 

• NodeEmergencyList[n].MANUFACTURER_ERRO
R_FIELD[0..4]:  
manufacturer-specific error field 

Further information → chapter Access to the structures 
at runtime of the application (→ page 128) 

 



 

126 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

Parameters of the function outputs 
Name Data type Description 

NODE_ID BYTE Node ID of the master 

BAUDRATE WORD Baud rate of the master 

NODE_STATE INT Current status of the master 

SYNC BOOL SYNC signal of the master 
This is set in the tab [CAN parameters] (→ page 87) of 
the master depending on the set time [Com. Cycle 
Period]. 

RX_OVERFLOW BOOL Error flag "receive buffer overflow" 

TX_OVERFLOW BOOL Error flag "transmit buffer overflow" 

OD_CHANGED BOOL Flag "object directory master was changed" 

ERROR_CONTROL ARRAY [0...7] OF BYTE The array contains a list (max. 8) of the missing 
network nodes (guard or heartbeat error). 

Further information → chapter Access to the structures 
at runtime (→ page 128) 

GET_EMERGENCY STRUCT 
EMERGENY_MESSAGE 

At the output the data for the structure 
EMERGENCY_MESSAGE are available. 

The most recent error message of a network node is 
always displayed. 

To obtain a list of all occurred errors, the array 
"EMERGENCY_OBJECT_SLAVES" must be 
evaluated. 

 

 

Parameters of internal structures 
Below are the structures of the arrays used in this function. 

Name Data type Description 

CANx_EMERGENY_MESSAGE STRUCT NODE_ID: BYTE 
ERROR_CODE: WORD 
ERROR_REGISTER: BYTE 
MANUFACTURER_ERROR_FIELD: ARRAY[0..4] OF BYTE 
The structure is defined by the global variables of the 
library 
ifm_CRnnnn_CANopenMaster_Vxxyyzz.LIB. 

CANx_NODE_STATE STRUCT NODE_ID: BYTE 
NODE_STATE: BYTE 
LAST_STATE: BYTE 
RESET_NODE: BOOL 
START_NODE: BOOL 
PREOP_NODE: BOOL 
SET_TIMEOUT_STATE: BOOL 
SET_NODE_STATE: BOOL 
The structure is defined by the global variables of the 
library 
ifm_CRnnnn_CANopenMaster_Vxxyyzz.LIB. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

127 

Detailed description of the functionalities of the CANopen master and the mechanisms → chapter 
CANopen master (→ page 85). 

Using the controller CR0020 as an example the following code fragments show the use of the function 
CANx_MASTER_STATUS (→ page 123). 
 

 

Example with function CANx_MASTER_STATUS 

Slave information 

To be able to access the information of the individual CANopen nodes, an array for the corresponding 
structure must be generated. The structures are contained in the library. You can see them under 
"Data types" in the library manager. 

The number of the array elements is determined by the global variable MAX_NODEINDEX which is 
automatically generated by the CANopen stack. It contains the number of the slaves minus 1 indicated 
in the network configurator.  
 

 NOTE 
The numbers of the array elements do not correspond to the node ID. The identifier can be read from 
the corresponding structure under NODE_ID. 

 

 
 

 

Structure node status 

 
 

 



 

128 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Structure Emergency_Message 

 
 

 

Access to the structures at runtime of the application 

At runtime you can access the corresponding array element via the global variables of the library and 
therefore read the status or EMCY messages or reset the node. 

 
If ResetSingleNodeArray[0].RESET_NODE is set to TRUE for a short time in the example given 
above, the first node is reset in the configuration tree.  

Further information concerning the possible error codes → chapter Information on the EMCY and error 
codes (→ page 113). 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

129 

8.7.8 Library for the CANopen slave 
 

The library ifm_CRnnnn_CANopenSlave_Vxxyyzz.LIB provides a number of functions for the 
CANopen slave (= CANopen device = CANopen node) which will be explained below.  
 



 

130 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Function CANx_SLAVE_NODEID 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_CRnnnn_CANopenSlave_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360: CR1050, CR1051, CR1060 

• PDM360 compact: CR1052, CR1053, CR1055, CR1056 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CANx_SLAVE_NODEID

ENABLE
NODEID  

 

 

Description 
The function CANx_SLAVE_NODEID enables the setting of the node ID of a CAN device (slave) at 
runtime of the application program. 

Normally, the function is called once during initialisation of the controller, in the first cycle. Afterwards, 
the input ENABLE is set to FALSE again. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL FALSE → TRUE (edge):  
 Set node ID 

FALSE: function is not executed 

NODEID BYTE Value of the new node number 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

131 

Function CANx_SLAVE_EMCY_HANDLER 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_CRnnnn_CANopenSlave_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360: CR1050, CR1051, CR1060 

• PDM360 compact: CR1052, CR1053, CR1055, CR1056 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CANx_SLAVE_EMCY_HANDLER

CLEAR_ERROR_FIELD ERROR_REGISTER
ERROR_FIELD

 
 

 

Description 
The function CANx_SLAVE_EMCY_HANDLER monitors the device-specific error status (device 
operated as slave).  

The function must be called in the following cases: 

• the error status is to be transmitted to the CAN network and  

• the error messages of the application are to be stored in the object directory. 

 

 NOTE 
If application-specific error messages are to be stored in the object directory, the function 
CANx_SLAVE_EMCY_HANDLER must be called after (repeatedly) calling the function 
CANx_SLAVE_SEND_EMERGENCY (→ page 133). 

 



 

132 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

Parameters of the function inputs 
Name Data type Description 

CLEAR_ERROR_FIELD BOOL FALSE → TRUE (edge):  
 Delete ERROR FIELD  

FALSE: function is not executed 
 

 

Parameters of the function outputs 
Name Data type Description 

ERROR_REGISTER BYTE Shows the contents of the object directory index 1001h 
(Error Register). 

ERROR_FIELD ARRAY [0...5] OF 
WORD 

The array [0...5] shows the contents of the object directory 
index 1003h (Error Field): 

• ERROR_FIELD[0]: Number of stored errors 

• ERROR_FIELD[1...5]: stored errors, the most recent 
error is in index [1]. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

133 

Function CANx_SLAVE_SEND_EMERGENCY 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_CRnnnn_CANopenSlave_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360: CR1050, CR1051, CR1060 

• PDM360 compact: CR1052, CR1053, CR1055, CR1056 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CANx_SLAVE_SEND_EMERGENCY

ENABLE
ERROR
ERROR_CODE

ERROR_REGISTER
MANUFACTURER_ERROR_FIELD

 
 

 

Description 
Using the function CANx_SLAVE_SEND_EMERGENCY application-specific error states are 
transmitted. These are error messages which are to be sent in addition to the device-internal error 
messages (e.g. short circuit on the output). 

The function is called if the error status is to be transmitted to other devices in the network. 

 

 NOTE 
If application-specific error messages are to be stored in the object directory, the function 
CANx_SLAVE_EMCY_HANDLER (→ page 131) must be called after (repeatedly) calling the function 
CANx_SLAVE_SEND_EMERGENCY. 

 



 

134 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

ERROR BOOL FALSE → TRUE (edge): 
transmits the given error code 

TRUE → FALSE (edge) 
AND the fault is no longer indicated: 
The message that there is no error is sent after a 
delay of approx. 1 s 

ERROR_CODE WORD The error code provides detailed information about 
the detected fault. The values should be entered 
according to the CANopen specification.  
→ chapter Overview of the CANopen error codes 
(→ page 115) 

ERROR_REGISTER BYTE This object reflects the general error state of the 
CANopen network participant. The values should be 
entered according to the CANopen specification.  

MANUFACTURER_ERROR_FIELD ARRAY [0...4] OF 
BYTE 

Here, up to 5 bytes of application-specific error 
information can be entered. The format can be 
freely selected. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

135 

 

Example with function CANx_SLAVE_SEND_EMERGENCY 

 
In this example 3 error messages will be generated subsequently: 

1. ApplError1, Code = 16#FF00 in the error register 16#81 

2. ApplError2, Code = 16#FF01 in the error register 16#81 

3. ApplError3, Code = 16#FF02 in the error register 16#81 

The function CAN1_SLAVE_EMCY_HANDLER sends the error messages to the error register 
"Object1001h" in the error array "Object1003h". 
 



 

136 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Function CANx_SLAVE_STATUS 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_CRnnnn_CANopenSlave_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

CANx_SLAVE_STATUS

CANOPEN_LED_STATUS NODE_ID
CLEAR_RX_OVERFLOW_FLAG BAUDRATE
CLEAR_RX_BUFFER  NODE_STATE
CLEAR_TX_OVERFLOW_FLAG  SYNC
CLEAR_TX_BUFFER

CLEAR_RESET_FLAGS
CLEAR_OD_CHANGED_FLAG

 SYNC_ERROR
 GUARD_HEARTBEAT_ERROR

 RX_OVERFLOW
TX_OVERFLOW

RESET_NODE
RESET_COM

 OD_CHANGED
OD_CHANGED_INDEX  

 

 

Description 
The function CANx_SLAVE_STATUS shows the status of the device used as CANopen slave. The 
function simplifies the use of the CoDeSys CAN device libraries. We urgently recommend to carry out 
the evaluation of the network status via this function. 
 

 Info 
For a detailed description of the functions of the CANopen slave and the mechanisms  
→ chapter CANopen device (→ page 100). 

 

At runtime you can then access the individual function outputs of the block to obtain a status overview. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

137 

Example: 

 
 

 

Parameters of the function inputs 
Name Data type Description 

GLOBAL_START BOOL TRUE: all connected network participants (slaves) are 
started simultaneously during network initialisation. 

FALSE: the connected network participants are started 
one after the other. 

Further information → chapter Starting the network with 
GLOBAL_START (→ page 96) 

CLEAR_RX_OVERFLOW_FLAG BOOL FALSE →  TRUE (edge):  
Delete error flag "receive buffer overflow" 

FALSE: function is not executed 

CLEAR_RX_BUFFER BOOL FALSE →  TRUE (edge):  
Delete data in the receive buffer 

FALSE: function is not executed 

CLEAR_TX_OVERFLOW_FLAG BOOL FALSE →  TRUE (edge):  
Delete error flag "transmit buffer overflow" 

FALSE: function is not executed 

CLEAR_TX_BUFFER BOOL FALSE →  TRUE (edge):  
Delete data in the transmit buffer 

FALSE: function is not executed 

CLEAR_RESET_FLAG BOOL FALSE →  TRUE (edge):  
Delete the flags "nodes reset" and "communications 
interface reset". 

FALSE: function is not executed 



 

138 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Name Data type Description 

CLEAR_OD_CHANGED_FLAG BOOL FALSE →  TRUE (edge):  
Delete the flags "data in the object directory changed" 
and "index position" 

FALSE: function is not executed 
 

 

Parameters of the function outputs 
Name Data type Description 

NODE_ID BYTE Node ID of the slave 

BAUDRATE WORD Baud rate of the slave 

NODE_STATE BYTE Current status of the slave 

SYNC BOOL Received SYNC signal of the master 

SYNC_ERROR BOOL No SYNC signal of the master received OR: the set 
SYNC time (ComCyclePeriod in the master) was 
exceeded. 

GUARD_HEARTBEAT_ERROR BOOL No guard or heartbeat signal of the master received. 
OR: the set times were exceeded. 

RX_OVERFLOW BOOL Error flag "receive buffer overflow" 

TX_OVERFLOW BOOL Error flag "transmit buffer overflow" 

RESET_NODE BOOL The CAN stack of the slave was reset by the master. 

This flag can be evaluated by the application and, if 
necessary, be used for further reactions. 

RESET_COM BOOL The communication interface of the CAN stack was 
reset by the master. 

This flag can be evaluated by the application and, if 
necessary, be used for further reactions. 

OD_CHANGED BOOL Flag "object directory master was changed". 

OD_CHANGED_INDEX INT The output shows the changed index of the object 
directory. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

139 

8.7.9 Further ifm libraries for CANopen 
 

Here we present further ifm functions which are sensible additions for CANopen. 
 



 

140 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Function CANx_SDO_READ 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 

ifm_CRnnnn_Vxxyyzz.LIB ifm_CANx_SDO_Vxxyyzz.LIB 

Available for the following devices: 

CabinetController: CR0301, CR0302, CR0303 

ClassicController: CR0020, CR0032, CR0505 

ExtendedController: CR0200, CR0232 

PCB controller: CS0015 

SafetyController: CR7020, CR7021, CR7032, 
CR7200, CR7201, CR7232, CR7505, CR7506 

SmartController: CR2500 

PDM360 smart: CR1070, CR1071 

Available for the following devices: 

PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, CR1055, 
CR1056 

 

Function symbol: 

CANx_SDO_READ

ENABLE RESULT
NODE
IDX

SUBIDX
DATA

LEN

 
 

 

Description 
CANx_SDO_READ reads the SDO (→ page 91) with the indicated indexes from the node. 

By means of these, the entries in the object directory can be read. So it is possible to selectively read 
the node parameters.  

ecomatmobile controller 
PCB controller 
PDM360 smart 

PDM360 compact 
PDM360 dialogue module 

From the device library  
ifm_CRnnnn_Vxxyyzz.LIB 

From the device library  
ifm_CANx_SDO_Vxxyyzz.LIB 

Prerequisite: Node must be in the mode "Pre-
Operational" or "Operational". 

Prerequisite: The node must be in the mode 
"CANopen master" or "CAN device". 

For controllers, only CAN1_SDO_READ is 
available. 

 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

141 

Example: 

 
 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

NODE BYTE Number of the node 

IDX WORD Index in object directory 

SUBIDX BYTE Sub-index referred to the index in the object directory 

DATA DWORD Address of the receive data array  
Permissible length = 0...255  
Transmission with ADR operator 

 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BYTE 0 = function inactive 

1 = execution of the function completed 

2 = function active 

3 = function has not been executed 

LEN WORD Length of the entry in "number of bytes" 

The value for LEN must correspond to the length of the 
receive array. Otherwise, problems with SDO communication 
will occur. 

 



 

142 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library

Function CANx_SDO_WRITE 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 

ifm_CRnnnn_Vxxyyzz.LIB ifm_CANx_SDO_Vxxyyzz.LIB 

Available for the following devices: 

CabinetController: CR0301, CR0302, CR0303 

ClassicController: CR0020, CR0032, CR0505 

ExtendedController: CR0200, CR0232 

PCB controller: CS0015 

SafetyController: CR7020, CR7021, CR7032, 
CR7200, CR7201, CR7232, CR7505, CR7506 

SmartController: CR2500 

PDM360 smart: CR1070, CR1071 

Available for the following devices: 

PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, CR1055, 
CR1056 

 

Function symbol: 

CANx_SDO_WRITE

ENABLE RESULT
NODE
IDX

SUBIDX
LEN
DATA

 
 

 

Description 
CANx_SDO_WRITE writes the SDO (→ page 91) with the specified indexes to the node. 

Using this function, the entries can be written to the object directory. So it is possible to selectively set 
the node parameters.  

ecomatmobile controller 
PCB controller 
PDM360 smart 

PDM360 compact 
PDM360 dialogue module 

From the device library  
ifm_CRnnnn_Vxxyyzz.LIB 

From the device library  
ifm_CANx_SDO_Vxxyyzz.LIB 

Prerequisite: the node must be in the state "Pre-
Operational" or "Operational" and in the mode 
"CANopen master". 

Prerequisite: The node must be in the mode 
"CANopen master" or "CAN device". 

For controllers, there only is CAN1_SDO_WRITE 
available. 

 

 

 NOTE 
The value for LEN must correspond to the length of the transmit array. Otherwise, problems with SDO 
communication will occur.  

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller ifm CANopen library
 

143 

 

Example: 

 
 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

NODE BYTE number of the node 

IDX WORD Index in object directory 

SUBIDX BYTE Sub-index referred to the index in the object directory. 

LEN WORD Length of the entry in "number of bytes" 

The value for LEN must correspond to the length of the 
transmit array. Otherwise, problems with SDO communication 
will occur.  

DATA DWORD Address of the transmit data array  
Permissible length = 0...255 
Transmission with ADR operator 

 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BYTE 0 = Function inactive 

1 = Execution of the function stopped 

2 = Function active 

3 = Function has not been executed 
 



 

144 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Summary CAN / CANopen

8.8 Summary CAN / CANopen 
• The COB ID of the network variables must differ from the CANopen Device ID in the controller 

configuration and from the IDs of the functions CANx_TRANSMIT and CANx_RECEIVE! 

• If more than 8 bytes of network variables are put into one COB ID, CANopen automatically 
expands the data packet to several successive COB IDs. This can lead to conflicts with manually 
defined COB IDs! 

• Network variables cannot transport any string variables. 

• Network variables can be transported... 
- if a variable becomes TRUE (Event), 
- in case of data changes in the network variable or 
- cyclically when the timer has elapsed. 

• The interval time is the period between transmissions if cyclical transmission has been selected. 
The minimum distance is the waiting time between two transmissions, if the variable changes too 
often. 

• To reduce the bus load, split the messages via network variables or CANx_TRANSMIT to several 
plc cycles using several events. 

• Each call of CANx_TRANSMIT or CANx_RECEIVE generates a message packet of 8 bytes. 

• In the controller configuration the values for [Com Cycle Period] and [Sync. Window Length] 
should be identical. These values must be higher than the plc cycle time. 

• If [Com Cycle Period] is selected for a slave, the slave searches for a Sync object of the master 
during exactly this period. This is why the value for [Com Cycle Period] must be higher than the 
[Master Synch Time]. 

• We recommend to select "optional startup" for slaves and "automatic startup" for the network. This 
reduces unnecessary bus load and allows a briefly lost slave to integrate into the network again. 

• Since we have no inhibit timer, we recommend to set analogue inputs to "synchronous 
transmission" to avoid bus overload. 

• Binary inputs, especially the irregularly switching ones, should best be set to "asynchronous 
transmission" using an event timer. 

• To be considered during the monitoring of the slave status: 
- after the start of the slaves it takes a while until the slaves are operational. 
- When the system is switched off, slaves can indicate an incorrect status change due to early 
voltage loss. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939
 

145 

8.9 Use of the CAN interfaces to SAE J1939 
The CAN interfaces in the ecomatmobile controllers can also be used for communication with special 
bus protocols for drive technology and utility vehicles. For these protocols the CAN controller of the 
2nd interface is switched to the "extended mode". This means that the CAN messages are transferred 
with a 29-bit identifier. Due to the longer identifier numerous messages can be directly assigned to the 
identifier. 

For writing the protocol this advantage was used and certain messages were combined in ID groups. 
The ID assignment is specified in the standards SAE J1939 and ISO 11992. The protocol of 
ISO 11992 is based on the protocol of SAE J1939. 

Standard  Application area 

SAE J1939 Drive management  
(is possible with this controller) 

ISO 11992 Truck & Trailer interface 
(requires other hardware because of higher voltage levels) 

The 29-bit identifier consists of two parts:   
 - an 11-bit ID and    
 - an 18-bit ID.  

As for the software protocol the two standards do not differ because ISO 11992 is based on 
SAE J1939. Concerning the hardware interface, however, there is one difference: higher voltage level 
for ISO 11992. Therefore controllers with a modified CAN interface are required for the communication 
of aggregates with the interface ISO 11992. 
 

 NOTE 
To use the functions to SAE J1939 the protocol description of the aggregate manufacturer (e.g. for 
motors, gears) is definitely needed. For the messages implemented in the aggregate control device this 
description must be used because not every manufacturer implements all messages or implementation 
is not useful for all aggregates. 

 

Table: structure of the identifier 

Pr
ior

ity
 

Re
se

rve
d 

Da
ta 

pa
ge

 

PD
U 

for
ma

t 

PD
U 

sp
ec

ific
 

So
ur

ce
 / 

de
sti

na
tio

n 
ad

dr
es

s 

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

The following information and tools should be available to develop programs for functions to 
SAE J1939: 

• List of the data to be used by the aggregates 

• Overview list of the aggregate manufacturer with all relevant data 

• CAN monitor with 29-bit support  

• If required, the standard SAE J1939 
 

Example of a detailed message documentation: 
ETC1: Electronic Transmission Controller #1 (3.3.5) 0CF0020316 



 

146 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939

Transmission repetition rate 10 ms 

Data length: 8 bytes 

PDU format 240 

PDU specific 2 

Default priority 3 

Data page 0 

Source address 3 

Parameter group number 00F00216 

Identifier 0CF0020316 

Data field The meaning of the data bytes 1...8 is not further 
described. It can be seen from the manufacturer's 
documentation. 

As in the example of the manufacturer all relevant data has already been prepared, it can be directly 
transferred to the functions. 

Meaning: 

Designation in the 
manufacturer's documentation 

Function input library function Example value 

Transmission repetition rate RPT T#10ms 

Data length LEN 8 

PDU format PF 240 

PDU specific PS 2 

Default priority PRIO 3 

Data page PG 0 

Source address / destination 
address 

SA / DA 3 

Data field SRC / DST array address 

Depending on the required function the corresponding values are used. For the fields SA / DA or SRC 
/ DST the meaning (but not the value) changes according to the receive or transmit function. 

The individual data bytes must be read from the array and processed according to their meaning. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939
 

147 

 

Example of a short message documentation: 
But even if the aggregate manufacturer only provides a short documentation, the function parameters 
can be derived from the identifier. In addition to the ID, the "transmission repetition rate" and the 
meaning of the data fields are also always needed. 

If the protocol messages are not manufacturer-specific, the standard SAE J1939 or ISO 11992 can 
also serve as information source. 

Structure of the identifier 0CF0020316: 
PRIO, reserv., PG PF + PS SA / DA 

0 C F 0 0 2 0 3 

As these values are hexadecimal numbers of which individual bits are sometimes needed, the 
numbers must be further broken down: 

SA / DA Source / destination address (hexadecimal) Source / destination address (decimal) 

0 3 00 03 0 3 
 

PF PDU format (PF) (hexadecimal) PDU format (PF) (decimal) 

F 0 0F 00 16 0 
 

PS PDU specific (PS) (hexadecimal) PDU specific (PS) (decimal) 

0 2 00 02 0 2 
 

PRIO, reserv., PG PRIO, reserv., PG (binary) 

0 C 0000 1100 

Out of the 8 bits (0C16) only the 5 least significant bits are needed: 
Not required Priority Res. PG 

x x x 02 12 12 02 02 

 0310 010 010 
 

Further typical combinations for "PG, reserv., PG" 

1816: 
Not required Priority Res. PG 

x x x 12 12 02 02 02 

 610 010 010 
 

1C16: 
Not required Priority Res. PG 

x x x 12 12 12 02 02 

 710 010 010 
 



 

148 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939

8.9.1 Function J1939_x 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_J1939_x_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

J1939_x

ENABLE
START
MY_ADRESS

 
 

 

Description 
J1939_x serves as protocol handler for the communication profile SAE J1939. 

To handle the communication, the protocol handler must be called in each program cycle. To do so, 
the input ENABLE is set to TRUE. 

The protocol handler is started if the input START is set to TRUE for one cycle. 

Using MY_ADDRESS, a device address is assigned to the controller. It must differ from the addresses 
of the other J1939 bus participants. It can then be read by other bus participants. 
 

 NOTE 
J1939 communication via the 1st CAN interface: 

► First initialise the interface via the function 
CAN1_EXT (→ page 63)! 

J1939 communication via the 2nd CAN interface: 

► Initialise the interface first with the function 
CAN2 (→ page 69)! 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939
 

149 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

START BOOL TRUE (only for 1  cycle): 
 protocol handler started 

FALSE: during cyclical processing of the program 

MY_ADRESS BYTE Device address of the controller 
 



 

150 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939

8.9.2 Function J1939_x_RECEIVE 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_J1939_x_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

J1939_x_RECEIVE

ENABLE RESULT
CONFIG  DEVICE
PG  LEN
PF
PS
DST
RPT
LIFE

 
 

 

Description 
J1939_x_RECEIVE serves for receiving one individual message or a block of messages. 

To do so, the function must be initialised for one cycle via the input CONFIG. During initialisation, the 
parameters PG, PF, PS, RPT, LIFE and the memory address of the data array DST are assigned. The 
address must be determined via the function ADR. 

The receipt of data must be evaluated via the RESULT byte. If RESULT = 1 the data can be read from 
the memory address assigned via DST and can be further processed. When a new message is 
received, the data in the memory address DST is overwritten. 

The number of received message bytes is indicated via the function output LEN. 

If RESULT = 3, no valid messages have been received in the indicated time window (LIFE * RPT). 

 

 NOTE 
This block must also be used if the messages are requested using the functions J1939_..._REQUEST. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939
 

151 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

CONFIG BOOL TRUE (only for 1 cycle):  
 for the configuration of the data object 

FALSE: during further processing of the program 

PG BYTE Page address (normally = 0) 

PF BYTE PDU Format Byte 

PS BYTE PDU Specific Byte 

DST DWORD Target address of the array in which the received data is 
stored 

RPT TIME Monitoring time  
Within this time window the messages must be received 
repeatedly. Otherwise, an error will be signalled.  
If no monitoring is requested, RPT must be set to T#0s. 

LIFE BYTE Number of permissible faulty monitoring calls 
 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BYTE 0 = Not active 

1 = Data has been received 

3 = Signalling of errors:  
Nothing has been received during the time window 
(LIFE*RPT) 

DEVICE BYTE Device address of the sender 

LEN WORD Number of bytes received 
 



 

152 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939

8.9.3 Function J1939_x_TRANSMIT 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_J1939_x_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

J1939_x_TRANSMIT

ENABLE RESULT
PRIO
PG

PF
PS
SRC

LEN
RPT  

 

 

Description 
J1939_x_TRANSMIT serves for the transmission of messages. 

The function is responsible for transmitting individual messages or blocks of messages. To do so, the 
parameters PG, PF, PS, RPT and the address of the data array SRC are assigned to the function. The 
address must be determined via the function ADR. In addition, the number of data bytes to be 
transmitted and the priority (typically 3, 6 or 7) must be assigned. 

Given that the transmission of data is processed via several control cycles, the process must be 
evaluated via the RESULT byte. All data has been transmitted if RESULT = 1. 

 

 Info 
If more than 8 bytes are to be sent, a "multi package transfer" is carried out. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939
 

153 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

PRIO BYTE Message priority (0...7) 

PG BYTE Page address (normally = 0) 

PF BYTE PDU Format Byte 

PS BYTE PDU Specific Byte 

SRC DWORD Memory address of the data array whose content is to be 
transmitted 

LEN WORD Number of bytes to be transmitted 

RPT TIME Repeat time during which the data messages are transmitted 
cyclically 

 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BYTE 0 = Not active 

1 = Data transmission completed 

2 = Function active (data transmission) 

3 = Error, data cannot be sent 
 



 

154 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939

8.9.4 Function J1939_x_RESPONSE 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_J1939_x_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

J1939_x_RESPONSE

ENABLE RESULT
CONFIG
PG

PF
PS
SRC

LEN  
 

 

Description 
J1939_x_RESPONSE handles the automatic response to a request message. 

This function is responsible for the automatic sending of messages to "Global Requests" and "Specific 
Requests". To do so, the function must be initialised for one cycle via the input CONFIG. 

The parameters PG, PF, PS, RPT and the address of the data array SRC are assigned to the function. 
The address must be determined via the function ADR. In addition, the number of data bytes to be 
transmitted is assigned. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939
 

155 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

CONFIG BOOL TRUE (only for 1 cycle):  
 for the configuration of the data object 

FALSE: during further processing of the program 

PG BYTE Page address (normally = 0) 

PF BYTE PDU Format Byte 

PS BYTE PDU Specific Byte 

SRC DWORD Memory address of the data array whose content is to be 
transmitted 

LEN WORD Number of bytes to be transmitted 
 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BYTE 0 = Not active 

1 = Data transmission completed 

2 = Function active (data transmission) 

3 = Error, data cannot be sent 
 



 

156 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939

8.9.5 Function J1939_x_SPECIFIC_REQUEST 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_J1939_x_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

J1939_x_SPECIFIC_REQUEST

ENABLE RESULT
PRIO  LEN
DA

DST

PG

PF
PS

 
 

 

Description 
J1939_x_SPECIFIC_REQUEST handles the request and receipt of data from a specific network 
participant. 

The function is responsible for the automatic requesting of individual messages from a specific J1939 
network participant. To do so, the logical device address DA, the parameters PG, PF, PS and the 
address of the array DST in which the received data is stored are assigned to the function. The 
address must be determined via the function ADR. In addition, the priority (typically 3, 6 or 7) must be 
assigned. 

Given that the request of data can be handled via several control cycles, this process must be 
evaluated via the RESULT byte. All data has been received if RESULT = 1. 

The output LEN indicates how many data bytes have been received. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939
 

157 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

PRIO BYTE Priority (0...7) 

DA BYTE Logical address (target address) of the called device 

PG BYTE Page address (normally = 0) 

PF BYTE PDU Format Byte 

PS BYTE PDU Specific Byte 

DST DWORD Target address of the array in which the received data is 
stored 

 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BYTE 0 = Not active 

1 = Data transmission completed 

2 = Function active (data transmission) 

3 = Error, data cannot be sent 

LEN WORD Number of data bytes received 
 



 

158 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939

8.9.6 Function J1939_x_GLOBAL_REQUEST 
x = number 1...n of the CAN interface (depending on the device, → data sheet) 

Contained in the library: 
ifm_J1939_x_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

J1939_x_GLOBAL_REQUEST

ENABLE RESULT
PRIO  SA
PG  LEN
PF
PS
DST  

 

 

Description 
J1939_x_GLOBAL_REQUEST handles global requesting and receipt of data from the network 
participants. 

The function is responsible for the automatic requesting of individual messages from all (global) active 
J1939 network participants. To do so, the logical device address DA, the parameters PG, PF, PS and 
the address of the array DST in which the received data is stored are assigned to the function. The 
address must be determined via the function ADR. In addition, the priority (typically 3, 6 or 7) must be 
assigned. 

Given that the request of data can be handled via several control cycles, this process must be 
evaluated via the RESULT byte. All data has been received if RESULT = 1. 

The output LEN indicates how many data bytes have been received. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

CAN in the ecomatmobile controller Use of the CAN interfaces to SAE J1939
 

159 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

PRIO BYTE Priority (0...7) 

PG BYTE Page address (normally = 0) 

PF BYTE PDU Format Byte 

PS BYTE PDU Specific Byte 

DST DWORD Target address of the array in which the received data is 
stored 

 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BYTE 0 = Not active 

1 = Data transmission completed 

2 = Function active (data transmission) 

3 = Error, data cannot be sent 

SA BYTE Logical device address (sender address) of the called device 

LEN WORD Number of data bytes received 
 

 



 

160 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Use of the CAN interfaces to SAE J1939

9 PWM in the ecomatmobile controller 
 
PWM signal processing .......................................................................................................... 161 
Current control with PWM....................................................................................................... 172 
Hydraulic control in PWM ....................................................................................................... 178 

 

In this chapter you will find out more about the pulse width modulation in the controller. 

PWM is available in the following controllers: 

 Number of available 
PWM outputs 

of which current-
controlled PWM 

outputs 

PWM frequency 
[Hz] 

ClassicController: CR0032 16 16 2...2000 

ClassicController: CR0020, 
CR0505 

12 / 8 8 / 8 25...250 

ExtendedController: CR0232 32 32 2...2000 

ExtendedController: CR0200 24 16 25...250 

SmartController: CR2500 4 4 25...250 

SafetyController: CR7020, 
CR7021, CR7200, CR7201, 
CR7505, CR7506 

12 / 8 / 24 8 / 8 / 16 25...250 

CabinetController: CR0301, 
CR0302, CR0303 

4 / 8 / 8 0 / 0 / 0 25...250 

PCB controller: CS0015 8 0 25...250 

PDM360 smart: CR1070, 
CR1071 

4 0 25...250 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing
 

161 

 

9.1 PWM signal processing 
The abbreviation PWM stands for pulse width modulation. It is mainly used to trigger proportional 
valves (PWM valves) for mobile and robust controller applications. Also, with an additional component 
(accessory) for a PWM output the pulse-width modulated output signal can be converted into an 
analogue output voltage. 

UB

15% Ein
ON

85% Aus
OFF

UB

70% Ein
ON

30% Aus
OFF  

Figure: PWM principle 

The PWM output signal is a pulsed signal between GND and supply voltage. Within a defined period 
(PWM frequency) the mark-to-space ratio is then varied. Depending on the mark-to-space ratio, the 
connected load determines the corresponding RMS current. 

The PWM function of the ecomatmobile controller is a hardware function provided by the processor. 
To use the integrated PWM outputs of the controller, they must be initialised in the application program 
and parameterised corresponding to the requested output signal. 
 

 

9.1.1 PWM functions and their parameters (general) 

PWM / PWM1000 
Depending on the application and the requested resolution, the function PWM or PWM1000 can be 
selected for the application programming. High accuracy and thus resolution is required when using 
the control functions. This is why the more technical PWM function is used in this case. 

If the implementation is to be kept simple and if there are no high requirements on the accuracy, the 
function PWM1000 (→ page 169) can be used. For this function the PWM frequency can be directly 
entered in [Hz] and the mark-to-space ratio in steps of 1 ‰. 
 

 

PWM frequency 
Depending on the valve type, a corresponding PWM frequency is required. For the PWM function the 
PWM frequency is transmitted via the reload value (function PWM, → page 165) or directly as a 
numerical value in [Hz] (function PWM1000, → page 169). Depending on the controller, the PWM 
outputs differ in their operating principle but the effect is the same. 



 

162 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing

The PWM frequency is implemented by means of an internally running counter, derived from the CPU 
pulse. This counter is started with the initialisation of the function PWM. Depending on the PWM 
output group (0...3 and / or 4...7 or 4...11), it counts from FFFF16 backwards or from 000016 forwards. If 
a transmitted comparison value (VALUE) is reached, the output is set. In case of an overflow of the 
counter (change of the counter reading from 000016 to FFFF16 or from FFFF16 to 000016), the output is 
reset and the operation restarts. 

If this internal counter shall not operate between 000016 and FFFF16, another preset value (RELOAD) 
can be transmitted for the internal counter. In doing so, the PWM frequency increases. The 
comparison value must be within the now specified range. 
 

 

PWM channels 0...3 
These 4 PWM channels allow the most flexibility for the parameter setting. The PWM channels 0...3 
are available in all ecomatmobile controller versions; depending on the type they feature a current 
control or not. 

For each channel an own PWM frequency (RELOAD value) can be set. There is a free choice 
between the function PWM (→ page 165) and the function PWM1000 (→ page 169). 
 

 

Calculation of the RELOAD value 

0000 FFFF

100% 0%

Reload

Wert / Value

 
Figure: RELOAD value for the PWM channels 0...3 

The RELOAD value of the internal PWM counter is calculated on the basis of the parameter DIV64 
and the CPU frequency as follows: 

 ClassicController 
ExtendedController 
SafetyController 
CabinetController (CR0303) 

SmartController 
CabinetController (CR0301/CR0302) 
PCB controller 

DIV64 = 0 RELOAD = 20 MHz / fPWM RELOAD = 10 MHz / fPWM 

DIV64 = 1 RELOAD = 312.5 kHz / fPWM RELOAD = 156.25 kHz / fPWM 

Depending on whether a high or a low PWM frequency is required, the input DIV64 must be set to 
FALSE (0) or TRUE (1). In case of frequencies below 305 Hz respectively 152 Hz (according to the 
controller), DIV64 must be set to "1" to ensure that the RELOAD value is not greater than FFFF16. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing
 

163 

 

Calculation examples RELOAD value 
ClassicController 
ExtendedController 
SafetyController 
CabinetController (CR0303) 

 SmartController 
CabinetController (CR0301/CR0302) 
PCB controller 

The PWM frequency shall be 400 Hz. 
 

 20 MHz 

_________ = 50 00010 = C35016 = RELOAD 

 400 Hz 

Thus the permissible range of the PWM value 
is the range from 000016 to C35016. 

The comparison value at which the output 
switches must then be between 000016 and 
C35016. 

 The PWM frequency shall be 200 Hz. 
 

 10 MHz 

_________ = 50 00010 = C35016 = RELOAD 

 200 Hz 

Thus the permissible range of the PWM value 
is the range from 000016 to C35016. 

The comparison value at which the output 
switches must then be between 000016 und 
C35016. 

 

This results in the following mark-to-space ratios: 

Mark-to-space ratio Switch-on time Value for mark-to-space ratio 

Minimum 0 % C35016 

Maximum 100 % 000016 

Between minimum and maximum triggering 50 000 intermediate values (PWM values) are possible. 
 

 

PWM channels 4...7 / 8...11 
These 4/8 PWM channels can only be set to one common PWM frequency. For programming, the 
functions PWM and PWM1000 must not be mixed. 

0000 FFFF

100% 0%

Reload

Wert / Value

 
Figure: RELOAD value for PWM channels 4...7 / 8...11 

The RELOAD value of the internal PWM counter is calculated (for all ecomatmobile controllers) on 
the basis of the parameters DIV64 and the CPU frequency as follows:  

DIV64 = 0 RELOAD = 10 00016 – ( 2.5 MHz / fPWM ) 

DIV64 = 1 RELOAD = 10 00016 – ( 312.5 kHz / fPWM ) 

Depending on whether a high or a low PWM frequency is required, the input DIV64 must be set to 
FALSE (0) or TRUE  (1). In case of PWM frequencies below 39 Hz, DIV64 must be set to "1" to ensure 
that the RELOAD value is not smaller than 000016. 



 

164 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing

 

Example: 

The PWM frequency shall be 200 Hz. 
 

 2.5 MHz 

_________ = 12 50010 = 30D416 

 200 Hz 

RELOAD value = 10 00016 – 30D416 = CF2C16 

Thus the permissible range of the PWM value is the range from CF2C16 to FFFF16 

The comparison value at which the output switches must then be between CF2C16 and FFFF16. 
 

 NOTE 
The PWM frequency is the same for all PWM outputs (4...7 or 4...11). 

The functions PWM and PWM1000 must not be mixed. 
 

This results in the following mark-to-space ratios: 

Mark-to-space ratio Switch-on time Value for mark-to-space ratio 

Minimum 0 % FFFF16 

Maximum 100 % CF2C16 

Between minimum and maximum triggering 12 500 intermediate values (PWM values) are possible. 
 

 NOTE 
for ClassicController and ExtendedController applies: 

If the PWM outputs 4... 7 are used (regardless of whether current-controlled or via one of the PWM 
functions) the same frequency and the corresponding reload value have to be set for the outputs 8...11. 
This means that the same functions have to be used for these outputs. 

 
 

PWM dither 
For certain hydraulic valve types a so-called dither frequency must additionally be superimposed on 
the PWM frequency. If valves were triggered over a longer period by a constant PWM value, they 
could block due to the high system temperatures. 

To prevent this, the PWM value is increased or reduced on the basis of the dither frequency by a 
defined value (DITHER_VALUE). As a consequence a vibration with the dither frequency and the 
amplitude DITHER_VALUE is superimposed on the constant PWM value. The dither frequency is 
indicated as the ratio (divider, DITHER_DIVIDER * 2) of the PWM frequency. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing
 

165 

 

Ramp function 
In order to prevent abrupt changes from one PWM value to the next, e.g. from 15 % ON to 70 % ON 
(→ figure in PWM signal processing, → page 161), it is possible to delay the increase by using the 
function PT1. The ramp function used for PWM is based on the CoDeSys library UTIL.LIB. This 
allows a smooth start e.g. for hydraulic systems. 
 

 NOTE 
When installing the ecomatmobile CD "Software, Tools and Documentation", projects with examples 
have been stored in the program directory of your PC:  
…\ifm electronic\CoDeSys V…\Projects\DEMO_PLC_CDV… (for controllers) or 
…\ifm electronic\CoDeSys V…\Projects\DEMO_PDM_CDV… (for PDMs). 

There you also find projects with examples regarding this subject. It is strongly recommended to follow 
the shown procedure. 
→ chapter ifm demo programs (→ page 25) 

 

 NOTE 
The PWM function of the controller is a hardware function provided by the processor. The PWM 
function remains set until a hardware reset (switching on and off the supply voltage) has been carried 
out at the controller. 

 



 

166 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing

9.1.2 Function PWM 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

PWM

INIT
RELOAD
DIV64

CHANNEL
VALUE
CHANGE
DITHER_VALUE
DITHER_DIVIDER  

 

 

Description 
PWM is used for initialisation and parameter setting of the PWM outputs. 

The function PWM has a more technical background. Due to their structure, PWM values can be very 
finely graded. So, this function is suitable for use in controllers. 

The function PWM is called once for each channel during initialisation of the application program. 
When doing so, input INIT must be set to TRUE. During initialisation, the parameter RELOAD is also 
assigned. 

 

 NOTE 
The value RELOAD must be identical for the channels 4...7 (for the ClassicController or 
ExtendedController: 4...11).  

For these channels, the function PWM and function PWM1000 (→ page 169) must not be mixed. 

The PWM frequency (and so the RELOAD value) is internally limited to 5 kHz. 

 

Depending on whether a high or a low PWM frequency is required, the input DIV64 must be set to 
FALSE (0) or TRUE (1). 

During cyclical processing of the program INIT is set to FALSE. The function is called and the new 
PWM value is assigned. The value is adopted if the input CHANGE = TRUE. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing
 

167 

Using the function OUTPUT_CURRENT (→ page 176) a current measurement for the initialised PWM 
channel can be implemented. 

PWM_Dither is called once for each channel during initialisation of the application program. When 
doing so, input INIT must be set to TRUE. During initialisation, the DIVIDER for the determination of 
the dither frequency and the VALUE are assigned. 

 

 Info 
The parameters DITHER_FREQUENCY and DITHER_VALUE can be individually set for each channel.

 
 

Parameters of the function inputs 
Name Data type Description 

INIT BOOL TRUE (in the 1st cycle):  
 function PWM is initialised 

FALSE: during cyclical processing of the program 

RELOAD WORD Value for the determination of the PWM frequency  
(→ chapter Calculation of the RELOAD value, → page 162) 

DIV64 BOOL CPU cycle / 64 

CHANNEL BYTE Current PWM channel / output 

VALUE WORD Current PWM value 

CHANGE BOOL TRUE: new PWM value is adopted 

FALSE: the changed PWM value has no influence on the 
output 

DITHER_VALUE WORD Amplitude of the dither value  
(→ chapter PWM dither, → page 164) 

DITHER_DIVIDER WORD Dither frequency = PWM frequency / DIVIDER * 2 
 



 

168 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing

9.1.3 Function PWM100 
IMPORTANT: New ecomatmobile controllers only support the function PWM1000 (→ page 169). 

Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7200, CR7505 

• SmartController: CR2500 
 

Function symbol: 

PWM100

INIT
FREQUENCY
CHANNEL

VALUE
CHANGE
DITHER_VALUE
DITHER_FREQUENCY  

 

 

Description 
PWM100 handles the initialisation and parameter setting of the PWM outputs. 

The function enables a simple application of the PWM function in the ecomatmobile controller. The 
PWM frequency can be directly indicated in [Hz] and the mark-to-space ratio in steps of 1 %. This 
function is not suited for use in controllers, due to the relatively coarse grading. 

The function is called once for each channel in the initialisation of the application program. For this, the 
input INIT must be set to TRUE. During initialisation, the parameter FREQUENCY is also assigned. 

 

 NOTE 
The value FREQUENCY must be identical for the channels 4...7 (for the ClassicController or 
ExtendedController: 4...11). 

For these channels, the function PWM (→ page 165) and function PWM100 must not be mixed. 

The PWM frequency is limited to 5 kHz internally. 

 

During cyclical processing of the program INIT is set to FALSE. The function is called and the new 
PWM value is assigned. The value is adopted if the input CHANGE = TRUE. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing
 

169 

A current measurement for the initialised PWM channel can be implemented: 

• via the function OUTPUT_CURRENT (→ page 176) 

• or for example using the ifm unit EC2049 (series element for current measurement). 

DITHER is called once for each channel during initialisation of the application program. When doing 
so, input INIT must be set to TRUE. During initialisation, the value FREQUENCY for determining the 
dither frequency and the dither value (VALUE) are transmitted. 

 

 Info 
The parameters DITHER_FREQUENCY and DITHER_VALUE can be individually set for each channel.

 
 

Parameters of the function inputs 
Name Data type Description 

INIT BOOL TRUE (in the 1st cycle):  
 PWM100 is initialised 

FALSE: during cyclical processing of the program 

FREQUENCY WORD PWM frequency in [Hz] 

CHANNEL BYTE Current PWM channel / output 

VALUE BYTE Current PWM value 

CHANGE BOOL TRUE: new PWM value is adopted 

FALSE: the changed PWM value has no influence on the 
output 

DITHER_VALUE BYTE Amplitude of the dither value in [%] 

DITHER_FREQUENCY WORD Dither frequency in [Hz] 
 



 

170 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing

9.1.4 Function PWM1000 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

PWM1000

INIT
FREQUENCY
CHANNEL

VALUE
CHANGE
DITHER_VALUE
DITHER_FREQUENCY  

 

 

Description 
PWM1000 handles the initialisation and parameter setting of the PWM outputs. 

The function enables a simple use of the PWM function in the ecomatmobile controller. The PWM 
frequency can be directly indicated in [Hz] and the mark-to-space ratio in steps of 1 ‰. 

The function is called once for each channel during initialisation of the application program. When 
doing so, input INIT must be set to TRUE. During initialisation, the parameter FREQUENCY is also 
assigned. 

 

 NOTE 
The value FREQUENCY must be identical for the channels 4...7 (for the ClassicController or 
ExtendedController: 4...11). 

For these channels, the function PWM (→ page 165) and function PWM1000 must not be mixed.  

The PWM frequency is limited to 5 kHz internally. 

 

During cyclical processing of the program INIT is set to FALSE. The function is called and the new 
PWM value is assigned. The value is adopted if the input CHANGE = TRUE. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller PWM signal processing
 

171 

A current measurement for the initialised PWM channel can be implemented: 

• via the function OUTPUT_CURRENT (→ page 176) 

• or for example using the ifm unit EC2049 (series element for current measurement). 

DITHER is called once for each channel during initialisation of the application program. When doing 
so, input INIT must be set to TRUE. During initialisation, the value FREQUENCY for determining the 
dither frequency and the dither value (VALUE) are transmitted. 

 

 Info 
The parameters DITHER_FREQUENCY and DITHER_VALUE can be individually set for each channel.

 
 

Parameters of the function inputs 
Name Data type Description 

INIT BOOL TRUE (in the 1st cycle):  
 PWM1000 is initialised 

FALSE: during cyclical processing of the program 

FREQUENCY WORD PWM frequency in [Hz] 

CHANNEL BYTE Current PWM channel / output 

VALUE BYTE Current PWM value 

CHANGE BOOL TRUE: new PWM value is adopted 

FALSE: the changed PWM value has no influence on the 
output 

DITHER_VALUE BYTE Amplitude of the dither value in [%] 

DITHER_FREQUENCY WORD Dither frequency in [Hz] 
 



 

172 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Current control with PWM

9.2 Current control with PWM 
 

This device of the ecomatmobile controller family can measure the actually flowing current on certain 
outputs and use the signal for further processing. For this purpose ifm electronic provides the user 
with some functions. 
 

 

9.2.1 Current measurement with PWM channels 
Current measurement of the coil current can be carried out via the current measurement channels 
integrated in the ecomatmobile controller. This allows for example that the current can be re-adjusted 
if the coil heats up. Thus the hydraulic conditions in the system remain the same. 
 

NOTICE 
Overload protection with ClassicConroller and ExtendedController: 

In principle, the current-controlled outputs are protected against short circuit. In the event of overload, in 
which the currents are limited by cable lengths and cross sections to for example between 8 A and 
20 A, the measuring resistors (shunts) are thermally overloaded. 

► Since the maximum permissible current cannot always be preset, the operating mode 
OUT_OVERLOAD_PROTECTION should always be selected for the outputs in the application 
program. With currents > 4.1 A the respective output is switched off automatically. 

> If the output is no longer overloaded, the output is automatically switched on again. 

The function OUT_OVERLOAD_PROTECTION is not active in the PWM mode (without current 
control)! 

 

 NOTE 
The following applies to ClassicController and ExtendedController: 

The current-control function OCC_TASK (→ page 174) and function OUTPUT_CURRENT_CONTROL 
(→ page 172) are based on the function PWM (→ page 165). If the current control functions are used, 
only the PWM function may be used for channels 8...11. The RELOAD value corresponding to the 
frequency must be calculated. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Current control with PWM
 

173 

9.2.2 Function OUTPUT_CURRENT_CONTROL 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

OUTPUT_CURRENT_CONTROL

ENABLE PWM_RATIO
INIT
OUTPUT_CHANNEL

ACTUAL_CURRENT

PWM_FREQUENCY
DITHER_FREQUENCY
DITHER_VALUE
MODE
MANUAL

DESIRED_CURRENT

 
 

 

Description 
OUTPUT_CURRENT_CONTROL operates as current controller for the PWM outputs. 

The controller is designed as an adaptive controller so that it is self-optimising. If this self-optimising 
performance is not desired, a value > 0 can be transmitted via the input MANUAL; the self-optimising 
performance is then deactivated. The numerical value represents a compensation value, which has an 
influence on the integral and differential components of the controller. To determine the best settings 
of the controller in the MANUAL mode, the value 50 is suitable. Depending on the requested controller 
characteristics the value can then be incremented step-by-step (controller becomes more sensitive / 
faster) or decremented (controller becomes less sensitive / slower). 

If the function input MANUAL is set to 0, the controller is always self-optimising. The performance of 
the controlled system is permanently monitored and the updated compensation values are 
automatically and permanently stored in each cycle. Changes in the controlled system are immediately 
recognised and corrected. 
 

 NOTE 
To obtain a stable output value the function OUTPUT_CURRENT_CONTROL should be called 
cyclically at regular intervals.  
If a precise cycle time (5 ms) is required: use function OCC_TASK (→ page 174). 

OUTPUT_CURRENT_CONTROL is based on the function PWM (→ page 165). 

If OUTPUT_CURRENT_CONTROL is used for the outputs 4...7, only the PWM function may be used 
there if the PWM outputs 8...11 are used simultaneously. 



 

174 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Current control with PWM
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

INIT BOOL TRUE (only in the 1st cycle):  
 function initialised 

FALSE: during processing of the program 

OUTPUT_CHANNEL BYTE PWM output channel (0...x: values depend on the device) 

ACTUAL_CURRENT WORD Actual current of the PWM output in [mA]; the function 
OUTPUT_CURRENT (→ page 176) must be called. The 
output value of OUTPUT_CURRENT is supplied to the input of 
ACTUAL CURRENT. 

DESIRED_CURRENT WORD Desired current value in [mA] 

PWM_FREQUENCY WORD Permissible PWM frequency for the load connected to the 
output 

DITHER_FREQUENCY WORD Dither frequency in [Hz] 

DITHER_VALUE BYTE Amplitude of the dither value in [%] 

MODE BYTE Controller characteristics: 

0 = very slow increase, no overshoot 

1 = slow increase, no overshoot 

2 = minimum overshoot 

3 = moderate overshoot permissible 

MANUAL BYTE If value > 0, the self-optimising performance of the controller is 
overwritten (typ. value: 50)  

 

 

Parameters of the function outputs 
Name Data type Description 

PWM_RATIO BYTE For monitoring purposes: display PWM pulse ratio 0...100% 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Current control with PWM
 

175 

9.2.3 Function OCC_TASK 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices (NOT for SafetyController): 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7200, CR7505 
 

Function symbol: 

OCC_TASK

ENABLE PWM_RATIO
INIT
OUTPUT_CHANNEL

DESIRED_CURRENT
PWM_FREQUENCY
DITHER_FREQUENCY
DITHER_VALUE
MODE
MANUAL  

 

 

Description 
OCC_TASK operates as current controller for the PWM outputs. 

The controller is designed as an adaptive controller so that it is self-optimising. If the self-optimising 
performance is not desired, a value > 0 can be transmitted via the input MANUAL (the self-optimising 
performance is deactivated). The numerical value represents a compensation value, which has an 
influence on the integral and differential components of the controller. To determine the best settings 
of the controller in the MANUAL mode, the value 50 is suitable. Depending on the requested controller 
characteristics the value can then be incremented step-by-step (controller becomes more sensitive / 
faster) or decremented (controller becomes less sensitive / slower). 

If the function input MANUAL is set to 0, the controller is always self-optimising. The performance of 
the controlled system is permanently monitored and the updated compensation values are 
automatically and permanently stored in each cycle. Changes in the controlled system are immediately 
recognised and corrected. 

 

 NOTE 
OCC_TASK operates with a fixed cycle time of 5 ms. No actual values need to be entered because 
these are detected internally by the function. 

OCC_TASK is based on the function PWM (→ page 165). 

If function OUTPUT_CURRENT_CONTROL (→ page 172) is used for the outputs 4...7, only the PWM 
function may be used there if the PWM outputs 8...11 are used simultaneously. 

 



 

176 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Current control with PWM
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

INIT BOOL TRUE (in the 1st cycle):  
 function initialised 

FALSE: during processing of the program 

OUTPUT_CHANNEL BYTE PWM output channel (0...x: values depend on the device) 

DESIRED_CURRENT WORD Desired current value in [mA] 

PWM_FREQUENCY WORD Permissible PWM frequency for the load connected to the 
output 

DITHER_FREQUENCY WORD Dither frequency in [Hz] 

DITHER_VALUE BYTE Amplitude of the dither value in [%] 

MODE BYTE Controller characteristics: 

0 = very slow increase, no overshoot 

1 = slow increase, no overshoot 

2 = minimum overshoot 

3 = moderate overshoot permissible 

MANUAL BYTE If value > 0, the self-optimising performance of the controller is 
overwritten (typ. value: 50). 

 

 

Parameters of the function outputs 
Name Data type Description 

PWM_RATIO BYTE For monitoring purposes: display PWM pulse ratio 0...100 % 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Current control with PWM
 

177 

9.2.4 Function OUTPUT_CURRENT 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

OUTPUT_CURRENT

ENABLE ACTUAL_CURRENT
OUTPUT_CHANNEL
DITHER_RELATED  

 

 

Description 
OUTPUT_CURRENT handles the current measurement in conjunction with an active PWM channel. 

The function provides the current output current if the outputs are used as PWM outputs. The current 
measurement is carried out in the device, i.e. no external measuring resistors are required. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed. 

FALSE: function is not executed 

OUTPUT_CHANNEL BYTE PWM output channel (0...x: values depend on the device) 
 

 

Parameters of the function outputs 
Name Data type Description 

ACTUAL_CURRENT WORD Output current in [mA]. 
 



 

178 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM

9.3 Hydraulic control in PWM 
 

ifm electronic offers the user special functions to control hydraulic systems as a special field of 
current regulation with PWM. 
 

 

9.3.1 The purpose of this library? – An introduction 
Thanks to the functions of this library you can fulfil the following tasks: 
 

 

Standardise the output signals of a joystick 
It is not always intended that the whole movement area of the joy stick influences the movement of the 
machine. 

Often the area around the neutral 
position of the joy stick is to be spared 
because the joy stick does not reliably 
supply 0 V in this neutral position. 

Here in this figure the area between 
XL- and XL+ is to be spared. 

 
The functions of this library enable 
you to adapt the characteristic curve 
of your joy stick according to your 
requirements – on request even freely 
configurable: 

 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

179 

 

Control hydraulic valves with current-controlled outputs 
As a rule hydraulic valves do not have a completely linear characteristic: 

Typical characteristic curve of a 
hydraulic valve: 

The oil flow starts at approx. 20 % of 
the coil current. The initial oil flow is 
not linear. 

This has to be taken into account for 
the calculation of the preset values for 
the coil current. The functions of this 
library support you here. 

 

 

9.3.2 What does a PWM output do? 
PWM stands for "pulse width modulation" which means the following principle: 

In general, digital outputs provide a fixed output voltage as soon as they are switched on. The value of 
the output voltage cannot be changed here. The PWM outputs, however, split the voltage into a quick 
sequence of many square-wave pulse trains. The pulse duration [switched on] / pulse duration 
[switched off] ratio determines the effective value of the requested output voltage. This is referred to as 
the switch-on time in [%]. 
 

 Info 
In the following sketches the current profiles are shown as a stylised straight line. In reality the current 
flows to an e-function. 

 

 
Figure: The profile of the PWM voltage U and the coil current I at 10 % switch-on time: 
The effective coil current Ieff is also 10 % 

 
Figure: The profile of the PWM voltage U and the coil current I at 50 % switch-on time:  
The effective coil current Ieff is also 50 % 



 

180 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM

 
Figure: The profile of the PWM voltage U and the coil current I at 100 % switch-on time:  
The effective coil current Ieff is also 100 % 
 

 

9.3.3 What is the dither? 
If a proportional hydraulic valve is controlled, its piston does not move right away and at first not 
proportional to the coil current. Due to this "slip stick effect" – a kind of "break-away torque" – the valve 
needs a slightly higher current at first to generate the power it needs to move the piston from its off 
position. The same also happens for each other change in the position of the valve piston. This effect 
is reflected in a jerking movement, especially at very low manipulating speeds. 

Technology solves this problem by having the valve piston move slightly back and forth (dither). The 
piston is continuously vibrating and cannot "stick". Also a small change in position is now performed 
without any delay, a "running start" so to speak. 

Advantage: The hydraulic cylinder controlled in that way can be moved more sensitively. 

Disadvantage: The valve becomes measurably hotter with dither than without because the valve coil is 
now working continuously. 

That means that the "golden means" has to be found. 
 

 

When is a dither useful? 
When the PWM output provides a pulse frequency that is small enough (standard value: up to 250 Hz) 
so that the valve piston continuously moves at a minimum stroke, an additional dither is not required 
(→ next figure): 

 
Figure: Balanced PWM signal; no dither required. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

181 

At a higher PWM frequency (standard value 250 Hz up to 1 kHz) the remaining movement of the valve 
piston is so short or so slow that this effectively results in a standstill so that the valve piston can again 
get stuck in its current position (and will do so!) (→ next figures): 

 
Figure: A high frequency of the PWM signal results in an almost direct current in the coil. The valve piston does not move 
enough any longer. With each signal change the valve piston has to overcome the break-away torque again. 

 
Figure: Too low frequencies of the PWM signal only allow rare, jerking movements of the valve piston. Each pulse moves the 
valve piston again from its off position; every time the valve piston has to overcome the break-away torque again. 

 

 NOTE 
With a switch-on time below 10 % and above 90 % the dither does not have any measurable effect any 
longer. In such cases it makes sense and it is necessary to superimpose the PWM signal with a dither 
signal. 

 
 

Dither frequency and amplitude 
The mark/space ratio (the switch-on time) of the PWM output signal is switched with the dither 
frequency. The dither amplitude determines the difference of the switch-on times in the two dither half-
waves. 
 

 NOTE 
The dither frequency must be an integer part of the PWM frequency. Otherwise the hydraulic system 
would not work evenly but it would oscillate. 

 



 

182 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

Example Dither 
The dither frequency is 1/8 of the PWM frequency. 
The dither amplitude is 10 %. 

With the switch-on time of 50 % in the figure, the actual switch-on time for 4 pulses is 60 % and for the 
next 4 pulses it is 40 % which means an average of 50 % switch-on time. The resulting effective coil 
current will be 50 % of the maximum coil current. 

 
The result is that the valve piston always oscillates around its off position to be ready to take a new 
position with the next signal change without having to overcome the break-away torque before.  
 

9.3.4 Functions of the library 
"ifm_HYDRAULIC_16bitOS05_Vxxyyzz.Lib" 

 

The library ifm_HYDRAULIC_16bitOS05_Vxxyyzz.Lib contains the following functions: 

• Function CONTROL_OCC (→ page 183) *) 
This function uses the function OUTPUT_CURRENT_CONTROL (→ page 172) and the function 
OUTPUT_CURRENT (→ page 176) from the library ifm_CRnnnn_Vxxyyzz.Lib. 

• Function JOYSTICK_0 (→ page 186) 

• Function JOYSTICK_1 (→ page 190) 

• Function JOYSTICK_2 (→ page 194) 

• Function NORM_HYDRAULIC (→ page 196) 

* OCC stands for Output Current Control. 
 

The following functions are needed from the library UTIL.Lib (in the CoDeSys®package): 

• Function RAMP_INT 

• Function CHARCURVE 

These functions are automatically activated by the functions of 
ifm_HYDRAULIC_16bitOS05_Vxxyyzz.Lib and configured. 
 

The following packages are needed from the library ifm_CRnnnn_Vxxyyzz.Lib: 

• Function OUTPUT_CURRENT (→ page 176) 

• Function OUTPUT_CURRENT_CONTROL (→ page 172) 

• Function OCC_TASK (→ page 174) 

These functions (→ chapter PWM signal processing (→ page 161)) are automatically activated and 
configured by the functions of ifm _HYDRAULIC_16bitOS05_Vxxyyzz.Lib. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

183 

9.3.5 Function CONTROL_OCC 
Contained in the library: 
ifm_HYDRAULIC_16bitOS05_Vxxyyzz.Lib 

Available for the following devices: 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

CONTROL_OCC

ENABLE DESIRED_CURRENT
INIT ACTUAL_CURRENT

 BREAKR_RAMP
 SHORTF_RAMP

TIMEBASE

XH
XL
MAX_CURRENT
MIN_CURRENT
TOLERANCE
CHANNEL
PWM_FREQUENCY
DITHER_FREQUENCY
DITHER_VALUE
MODE
MANUAL

X

 
 

 

Description 
CONTROL_OCC scales the input value X to a specified current range. 

Each instance of the function is called once in each PLC cycle. The function uses the function 
OUTPUT_CURRENT_CONTROL (→ page 172) and function OUTPUT_CURRENT (→ page 176) 
from the library ifm_CRnnnn_Vxxyyzz.Lib. The controller is designed as an adaptive controller so 
that it is self-optimising. 

If this self-optimising performance is not desired, a value > 0 can be transferred via the input 
MANUAL: → the self-optimising performance is deactivated. 

The numerical value in MANUAL represents a compensation value, which has an influence on the 
integral and differential components of the controller. To determine the best settings of the controller in 
the MANUAL mode, the value 50 is suitable. 

Increase the value MANUAL: → controller becomes more sensitive / faster 
Decrease the value MANUAL: → controller becomes less sensitive / slower 



 

184 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM

If the function input MANUAL is set to "0", the controller is always self-optimising. The performance of 
the controlled system is permanently monitored and the updated compensation values are 
automatically and permanently stored in each cycle. Changes in the controlled system are immediately 
recognised and corrected. 
 

 Info 
Input X of the function CONTROL_OCC should be supplied by the output of the JOYSTICK functions. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed. 

FALSE: function is not executed. 

INIT BOOL TRUE: function is initialised, 1st cycle. 

FALSE: during processing of the program. 

R_RAMP INT Rising edge of the ramp 
in [increments/PLC cycle] or [increments/TIMEBASE]. 
0 = without ramp 

F_RAMP INT Falling edge of the ramp in 
in [increments/PLC cycle] or [increments/TIMEBASE]. 
0 = without ramp 

TIMEBASE TIME Reference for rising / falling edge of the ramp: 

t#0s = rising / falling edge in [increments/PLC cycle] 
else = rising / falling edge in [increments/TIMEBASE] 

X WORD Input value in [increments]. 
Standardised by function NORM_HYDRAULIC. 

XH WORD Max. input value in [increments]. 

XL WORD Min. input value in [increments]. 

MAX_CURRENT WORD Max. valve current in [mA]. 

MIN_CURRENT WORD Min. valve current in [mA]. 

TOLERANCE BYTE Tolerance for min. valve current in [mA]. 
When the tolerance is exceeded, jump to MIN_CURRENT is 
effected. 

CHANNEL BYTE 0...x     PWM output channel (values depend on the device). 

PWM_FREQUENCY WORD PWM frequency for the connected valve in [Hz]. 

DITHER_FREQUENCY WORD Dither frequency in [Hz]. 

DITHER_VALUE BYTE Amplitude of the dither value in [%] of MAX_CURRENT. 

MODE BYTE Controller characteristics: 

0 = very slow increase, no overshoot 

1 = slow increase, no overshoot 

2 = minimum overshoot 

3 = moderate overshoot permissible 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

185 

Name Data type Description 

MANUAL BYTE Value = 0: the controller operates in a self-optimising way. 

Value > 0: the self-optimising performance of the controller is 
overwritten (typical: 50). 

 

 

Parameters of the function outputs 
Name Data type Description 

DESIRED_CURRENT WORD Desired current value in [mA] for OCC 
(for monitoring purposes) 

ACTUAL_CURRENT WORD Actual current on the PWM output in [mA]  
(for monitoring purposes) 

BREAK BOOL Error: wire to the valve interrupted 

SHORT BOOL Error: short-circuit in the wire to the valve 
 



 

186 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM

9.3.6 Function JOYSTICK_0 
Contained in the library: 
ifm_HYDRAULIC_16bitOS05_Vxxyyzz.Lib 

Available for the following devices: 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

JOYSTICK_0

X OUT1
XH_POS  OUT2

ERR1
ERR2

XL_POS  OUT3
XH_NEG  WRONG_MODE
XL_NEG
MODE

 
 

 

Description 
JOYSTICK_0 scales signals from a joystick to clearly defined characteristic curves, standardised 
to 0...1000. 

For this function the characteristic curve values are specified (→ figures): 

• Rising edge of the ramp = 5 increments/PLC cycle 

• Falling edge of the ramp = no edge 

 

The parameters XL_POS (XL+), 
XH_POS (XH+), XL_NEG (XL-) and 
XH_NEG (XH-) are used to evaluate 
the joystick movements only in the 
requested area. 

The values for the positive and 
negative area may be different. 

The values for XL_NEG and XH_NEG 
are negative here. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

187 

Mode 0:  
characteristic curve linear for the 
range XL to XH 

 
Mode 1:  
Characteristic curve linear with dead 
band 

Values fixed to: 

Dead band:  
0…10% of 1000 increments 

 
Mode 2:  
2-step linear characteristic curve with 
dead band 

Values fixed to: 

Dead band:  
0…10% of 1000 increments 

Step:  
X = 50 % of 1000 increments  
Y = 20 % of 1000 increments 

 
Characteristic curve mode 3:  
Curve rising (line is fixed) 

 
 



 

188 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

Parameters of the function inputs 
Name Data type Description 

X INT Preset value input in [increments]. 

XH_POS INT Max. preset value positive direction in [increments] 
(negative values also permissible). 

XL_POS INT Min. preset value positive direction in [increments]  
(negative values also permissible). 

XH_NEG INT Max. preset value negative direction in [increments]  
(negative values also permissible). 

XL_NEG INT Min. preset value negative direction in [increments]  
(negative values also permissible). 

MODE BYTE Mode selection characteristic curve: 

0 = linear 
 (0|0 – 1000|1000) 

1 = linear with dead band  
 (0|0 – 100|0 – 1000|1000) 

2 = 2-step linear with dead band  
 (0|0 – 100|0 – 500|200 – 1000|1000) 

3 = curve rising 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

189 

 

Parameters of the function outputs 
Name Data type Description 

OUT1 WORD Standardised output value  
pairs of values  0 to 10 [increments] 
e.g. for valve left 

OUT2 WORD Standardised output value  
pairs of values  0 to 10 [increments] 
e.g. for valve right 

OUT3 INT Standardised output value  
pairs of values  0 to 10 [increments] 
e.g. for valve on output module 
(e.g. CR2011 or CR2031) 

WRONG_MODE BOOL Error: invalid mode 

ERR1 BYTE Error code for rising edge: 

0 = no error 

1 = error in array: wrong sequence 

2 = initial value IN not contained in value range of array 

4 = invalid number N for array 

ERR2 BYTE Error code for falling edge: 

0 = no error 

1 = error in array: wrong sequence 

2 = initial value IN not contained in value range of array 

4 = invalid number N for array 
 



 

190 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM

9.3.7 Function JOYSTICK_1 
Contained in the library: 
ifm_HYDRAULIC_16bitOS05_Vxxyyzz.Lib 

Available for the following devices: 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

JOYSTICK_1

X OUT1
XH_POS  OUT2

ERR1
 ERR2

XL_POS  OUT3
XH_NEG  WRONG_MODE
XL_NEG
R_RAMP
F_RAMP
TIMEBASE

MODE
DEAD_BAND
CHANGE_POINT_X
CHANGE_POINT_Y

 
 

 

Description 
JOYSTICK_1 scales signals from a joystick to configurable characteristic curves, standardised to 
0...1000. 

For this function the characteristic curve values can be configured (→ figures): 

Mode 0:  
Linear characteristic curve 

100 % = 1000 increments 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

191 

Mode 1:  
Characteristic curve linear with dead 
band 

Value for the dead band (DB) can be 
set in % of 1000 increments 

100 % = 1000 increments 
DB = Dead_Band 

 
Mode 2:  
2-step linear characteristic curve with 
dead band 

Values can be configured to: 

Dead band: 
0…DB in % of 1000 increments 

Step: 
X = CPX in % of 1000 increments 
Y= CPY in % of 1000 increments 

100 % = 1000 increments 
DB = Dead_Band 
CPX = Change_Point_X 
CPY = Change_Point_Y 

 

Characteristic curve mode 3:  
Curve rising (line is fixed) 

 
 



 

192 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

Parameters of the function inputs 
Name Data type Description 

X INT Preset value input in [increments]. 

XH_POS INT Max. preset value positive direction in [increments] 
(negative values also permissible). 

XL_POS INT Min. preset value positive direction in [increments]  
(negative values also permissible). 

XH_NEG INT Max. preset value negative direction in [increments]  
(negative values also permissible). 

XL_NEG INT Min. preset value negative direction in [increments]  
(negative values also permissible). 

R_RAMP INT Rising edge of the ramp 
in [increments/PLC cycle] or [increments/TIMEBASE]. 
0 = without ramp 

F_RAMP INT Falling edge of the ramp in 
in [increments/PLC cycle] or [increments/TIMEBASE]. 
0 = without ramp 

TIMEBASE TIME Reference for rising / falling edge of the ramp: 

t#0s = rising / falling edge in [increments/PLC cycle] 
else = rising / falling edge in [increments/TIMEBASE] 

MODE BYTE Mode selection characteristic curve: 

0 = linear  
 (0|0 – 1000|1000) 

1 = linear with dead band (DB) 
 (0|0 – DB…|0 – 1000|1000) 

2 = 2-step linear with dead band (DB) 
 (0|0 – DB|0 – CPX|CPY – 1000|1000) 

3 = curve rising 

DEAD_BAND BYTE Adjustable dead band (DB) in [% of 1000 increments]. 

CHANGE_POINT_X BYTE For mode 2: ramp step, value for X in [% of 1000 increments]. 

CHANGE_POINT_Y BYTE For mode 2: ramp step, value for Y in [% of 1000 increments]. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

193 

 

Parameters of the function outputs 
Name Data type Description 

OUT1 WORD Standardised output value  
pairs of values  0 to 10 [increments] 
e.g. for valve left 

OUT2 WORD Standardised output value  
pairs of values  0 to 10 [increments] 
e.g. for valve right 

OUT3 INT Standardised output value  
pairs of values  0 to 10 [increments] 
e.g. for valve on output module 
(e.g. CR2011 or CR2031) 

WRONG_MODE BOOL Error: invalid mode 

ERR1 BYTE Error code for rising edge: 

0 = no error 

1 = error in array: wrong sequence 

2 = initial value IN not contained in value range of array 

4 = invalid number N for array 

ERR2 BYTE Error code for falling edge: 

0 = no error 

1 = error in array: wrong sequence 

2 = initial value IN not contained in value range of array 

4 = invalid number N for array 
 



 

194 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM

9.3.8 Function JOYSTICK_2 
Contained in the library: 
ifm_HYDRAULIC_16bitOS05_Vxxyyzz.Lib 

Available for the following devices: 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

JOYSTICK_2

X OUT1
XH_POS  OUT2
XL_POS  OUT3
XH_NEG  ERR1
XL_NEG
R_RAMP

F_RAMP
TIMEBASE

 ERR1

VARIABLE_GAIN
N_POINT

 
 

 

Description 
JOYSTICK_2 scales the signals from a joystick to a configurable characteristic curve. Free selection of 
the standardisation. 

For this function, the characteristic curve is freely configurable (→ figure): 

Characteristic curve freely 
configurable 

 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

195 

 

Parameters of the function inputs 
Name Data type Description 

X INT Preset value input in [increments]. 

XH_POS INT Max. preset value positive direction in [increments] 
(negative values also permissible). 

XL_POS INT Min. preset value positive direction in [increments]  
(negative values also permissible). 

XH_NEG INT Max. preset value negative direction in [increments]  
(negative values also permissible). 

XL_NEG INT Min. preset value negative direction in [increments]  
(negative values also permissible). 

R_RAMP INT Rising edge of the ramp 
in [increments/PLC cycle] or [increments/TIMEBASE]. 
0 = without ramp 

F_RAMP INT Falling edge of the ramp in 
in [increments/PLC cycle] or [increments/TIMEBASE]. 
0 = without ramp 

TIMEBASE TIME Reference for rising and falling edge of the ramp: 

t#0s = rising / falling edge in [increments/PLC cycle] 
else = rising / falling edge in [increments/TIMEBASE] 

VARIABLE_GAIN ARRAY [0..10] 
OF POINT 

Pairs of values describing the curve 

The first pairs of values indicated in N_POINT are used. 
N = 2…11 

Example: 9 pairs of values declared as variable VALUES: 

VALUES: ARRAY[0..10] OF POINT := 
(X:=0,Y:=0),(X:=200,Y:=0), (X:=300,Y:=50), (X:=400,Y:=100), 
(X:=700,Y:=500), (X:=1000,Y:=900), (X:=1100,Y:=950), 
(X:=1200,Y:=1000), (X:=1400,Y:=1050); 

There may be blanks between the values. 

N_POINT BYTE Number of points (pairs of values in VARIABLE_GAIN) by 
which the curve characteristic is defined. N = 2…11 

 



 

196 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

Parameters of the function outputs 
Name Data type Description 

OUT1 WORD Standardised output value  
pairs of values  0 to 10 [increments] 
e.g. for valve left 

OUT2 WORD Standardised output value  
pairs of values  0 to 10 [increments] 
e.g. for valve right 

OUT3 INT Standardised output value  
pairs of values  0 to 10 [increments] 
e.g. for valve on output module 
(e.g. CR2011 or CR2031) 

ERR1 BYTE Error code for rising edge: 

0 = no error 

1 = error in array: wrong sequence 

2 = initial value IN not contained in value range of array 

4 = invalid number N for array 

ERR2 BYTE Error code for falling edge: 

0 = no error 

1 = error in array: wrong sequence 

2 = initial value IN not contained in value range of array 

4 = invalid number N for array 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

197 

9.3.9 Function NORM_HYDRAULIC 
Contained in the library: 

ifm_HYDRAULIC_16bitOS04_Vxxyyzz.LIB 
ifm_HYDRAULIC_16bitOS05_Vxxyyzz.LIB 

ifm_HYDRAULIC_32bit_Vxxyyzz.LIB 

Available for the following devices: 

ClassicController: CR0020, CR0505 

ExtendedController: CR0200 

SafetyController: CR7020, CR7021, CR7200, 
CR7201, CR7505, CR7506 

SmartController: CR2500 

Available for the following devices: 

ClassicController: CR0032 

ExtendedController: CR0232 

 

Function symbol: 

NORM_HYDRAULIC

X Y
XH
XL

YH
YL

X_OUT_OF_RANGE

 
 

 

Description 
NORM_HYDRAULIC standardises input values with fixed limits to values with new limits. 

Please note: This function corresponds to the 3S function NORM_DINT from the CoDeSys library 
UTIL.Lib. 

The function standardises a value of type DINT within the limits of XH and XL to an output value within 
the limits of YH and YL. 

Due to rounding errors deviations from the standardised value of 1 may occur. If the limits (XH/XL or 
YH/YL) are indicated in inversed form, standardisation is also inverted. 

If X outside the limits XL…XH, the error message X_OUT_OF_RANGE = TRUE. 

 

Typical characteristic curve of a 
hydraulic valve: 

The oil flow will not start before 20% of 
the coil current has been reached. 

At first the oil flow is not linear. 

 



 

198 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM

Characteristics of the function 

 

 

Parameters of the function inputs 
Name Data type Description 

X DINT Desired value input 

XH DINT Max. input value [increments] 

XL DINT Min. input value [increments] 

YH DINT Max. output value [increments], e.g.: 
valve current [mA] / flow [l/min] 

YL DINT Min. output value [increments], e.g.: 
valve current [mA] / flow [l/min] 

 

 

Parameters of the function outputs 
Name Data type Description 

Y DINT Standardised output value 

X_OUT_OF_RANGE BOOL Error: X is beyond the limits XH and XL 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

PWM in the ecomatmobile controller Hydraulic control in PWM
 

199 

 

Examples NORM_HYDRAULIC 
Parameter Case 1 Case 2 Case 3 

Upper limit value input XH 100 100 2000 

Lower limit value input XL 0 0 0 

Upper limit value output YH 2000 0 100 

Lower limit value output YL 0 2000 0 

Non standardised value X 20 20 20 

Standardised value Y 400 1600 1 

Case 1: 
Input with relatively coarse resolution. 
Output with high resolution. 
1 X increment results in 20 Y increments. 

Case 2: 
Input with relatively coarse resolution. 
Output with high resolution. 
1 X increment results in 20 Y increments. 
Output signal is inverted as compared to the input signal. 

Case 3: 
Input with high resolution. 
Output with relatively coarse resolution. 
20 X increments result in 1 Y increment. 
 

 



 

200 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement

10 More functions in the ecomatmobile 
controller 

 
Counter functions for frequency and period measurement .................................................... 200 
Software reset......................................................................................................................... 215 
Saving, reading and converting data in the memory .............................................................. 216 
Data access and data check .................................................................................................. 223 
Processing interrupts .............................................................................................................. 232 
Use of the serial interface....................................................................................................... 239 
Reading the system time ........................................................................................................ 246 
Processing analogue input values.......................................................................................... 248 
Adapting analogue values ...................................................................................................... 253 

 

In this chapter you will find more functions that you can use in the ecomatmobile controller. 
 

10.1 Counter functions for frequency and period 
measurement 

 

Depending on the controller up to 16 fast inputs are supported which can process input frequencies of 
up to 30 kHz. Further to the pure frequency measurement at the inputs FRQ, the inputs ENC can be 
also used to evaluate incremental encoders (counter function) with a maximum frequency of 10 kHz. 
The inputs CYL are used for period measurement of slow signals. 

Input Frequency [kHz] Description 

FRQ 0 / ENC 0 30 / 10 frequency measurement / encoder 1, channel A 

FRQ 1 / ENC 0 30 / 10 frequency measurement / encoder 1, channel B 

FRQ 2 / ENC 1 30 / 10 frequency measurement / encoder 2, channel A 

FRQ 3 / ENC 1 30 / 10 frequency measurement / encoder 2, channel B 

CYL 0 / ENC 2 10 period measurement / encoder 3, channel A 

CYL 1 / ENC 2 10 period measurement / encoder 3, channel B 

CYL 2 / ENC 3 10 period measurement / encoder 4, channel A 

CYL 3 / ENC 3 10 period measurement / encoder 4, channel B 

The following functions are available for easy evaluation: 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement
 

201 

 

10.1.1 Applications 
It must be taken into account that the different measuring methods can cause errors in the frequency 
detection. 

The function FREQUENCY (→ page 201) is suitable for frequencies between 100 Hz and 30 kHz; the 
error decreases at high frequencies. 

The function PERIOD (→ page 203) carries out a period measurement. It is thus suitable for 
frequencies lower than 1000 Hz. In principle it can also measure higher frequencies, but this has a 
significant impact on the cycle time. This must be taken into account when setting up the application 
software. 
 

 

10.1.2 Use as digital inputs 
If the fast inputs (FRQx / CYLx) are used as "normal" digital inputs, the increased sensitivity to 
interfering pulses must be taken into account (e.g. contact bouncing for mechanical contacts). The 
standard digital input has an input frequency of 50 Hz. If necessary, the input signal must be 
debounced by means of the software. 
 



 

202 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement

10.1.3 Function FREQUENCY 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 
(For safety signals use function SAFE_FREQUENCY_OK together with function PERIOD, 
→ page 203!) 

• SmartController: CR2500 

• PDM360 smart: CR1071 
 

Function symbol: 

FREQUENCY

INIT F
CHANNEL
TIMEBASE  

 

 

Description 
FREQUENCY measures the signal frequency at the indicated channel. Maximum input frequency 
→ data sheet. 

This function measures the frequency of the signal at the selected CHANNEL. To do so, the positive 
edge is evaluated. Depending on the TIMEBASE, frequency measurements can be carried out in a 
wide value range. High frequencies require a short time base, low frequencies a correspondingly 
longer time base. The frequency is provided directly in [Hz]. 

 

 NOTE 
For the function FREQUENCY only the inputs FRQ0...FRQ3 can be used. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement
 

203 

 

Parameters of the function inputs 
Name Data type Description 

INIT BOOL TRUE (only 1 cycle):  
 function initialised. 

FALSE: during cyclical processing of the program. 

CHANNEL BYTE Number of the input (0...x value depending on the device). 

TIMEBASE TIME Time base. 
 

 NOTE 
The function may provide wrong values before initialisation. Do not evaluate the output before the 
function has been initialised. 

 

 

Parameters of the function outputs 
Name Data type Description 

F REAL frequency in [Hz]. 
 



 

204 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement

10.1.4 Function PERIOD 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 
(For safety signals use function SAFE_FREQUENCY_OK together with function FREQUENCY, 
→ page 201!) 

• SmartController: CR2500 

• PDM360 smart: CR1071 
 

Function symbol: 

PERIOD

INIT C
CHANNEL  F
PERIODS  ET  

 

 

Description 
PERIOD measures the frequency and the cycle period (cycle time) in [µs] at the indicated channel. 
Maximum input frequency → data sheet. 

This function measures the frequency and the cycle time of the signal at the selected CHANNEL. To 
calculate, all positive edges are evaluated and the average value is determined by means of the 
number of indicated PERIODS. 

In case of low frequencies there will be inaccuracies when using the function FREQUENCY. To avoid 
this, the function PERIOD can be used. The cycle time is directly indicated in [µs].  

The maximum measuring range is approx. 71 min. 

 

 NOTE 
For the function PERIOD only the inputs CYL0...CYL3 can be used. 

Frequencies < 0.5 Hz are no longer clearly indicated! 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement
 

205 

 

Parameters of the function inputs 
Name Data type Description 

INIT BOOL TRUE (only 1 cycle):  
 function initialised 

FALSE: during cyclical processing of the program 

CHANNEL BYTE Number of the input (0...x value depending on the device) 

PERIODS BYTE Number of periods to be compared 
 

 NOTE 
The function may provide wrong values before initialisation. Do not evaluate the output before the 
function has been initialised. 

We urgently recommend to initialise all required instances of this function at the same time. Otherwise, 
wrong values may be provided. 

 

 

Parameters of the function outputs 
Name Data type Description 

C DWORD Cycle time of the detected periods in [μs]. 

F REAL Frequency of the detected periods in [Hz]. 

ET TIME Time elapsed since the beginning of the period measurement 
(can be used for very slow signals). 

 



 

206 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement

10.1.5 Function PERIOD_RATIO 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1071 
 

Function symbol: 

PERIOD_RATIO

INIT C
CHANNEL  F
PERIODS  ET

 RATIO1000  
 

 

Description 
PERIOD_RATIO measures the frequency and the cycle period (cycle time) in [µs] during the indicated 
periods at the indicated channel. In addition, the mark-to-space ratio is indicated in per mill. Maximum 
input frequency → data sheet. 

This function measures the frequency and the cycle time of the signal at the selected CHANNEL. To 
calculate, all positive edges are evaluated and the average value is determined by means of the 
number of indicated PERIODS. In addition, the mark-to-space ratio is indicated in [‰].  

For example: In case of a signal ratio of 25 ms high level and 75 ms low level the value RATIO1000 is 
provided as 250 ‰. 

In case of low frequencies there will be inaccuracies when using the function FREQUENCY. To avoid 
this, the function PERIOD_RATIO can be used. The cycle time is directly indicated in [µs]. 

The maximum measuring range is approx. 71 min. 

 

 NOTE 
For the function PERIOD_RATIO only the inputs CYL0...CYL3 can be used. 

The output RATIO1000 provides the value 0 for a mark-to-space ratio of 100 % (input signal 
permanently at supply voltage). 

Frequencies < 0.05 Hz are no longer clearly indicated! 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement
 

207 

 

Parameters of the function inputs 
Name Data type Description 

INIT BOOL TRUE (only 1 cycle):  
 function initialised 

FALSE: during cyclical processing of the program 

CHANNEL BYTE Number of the input (0...x value depending on the device) 

PERIODS BYTE Number of periods to be compared 
 

 NOTE 
The function may provide wrong values before initialisation. Do not evaluate the output before the 
function has been initialised. 

We urgently recommend to initialise all required instances of this function at the same time. Otherwise, 
wrong values may be provided. 

 

 

Parameters of the function outputs 
Name Data type Description 

C DWORD Cycle time of the detected periods in [μs]. 

F REAL Frequency of the detected periods in [Hz]. 

ET TIME Time elapsed since the beginning of the last change in state of 
the input signal (can be used for very slow signals). 

RATIO1000 WORD mark-to-space ratio in [‰]. 
 



 

208 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement

10.1.6 Function PHASE 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1071 
 

Function symbol: 

PHASE

INIT C
CHANNEL P

 ET  
 

 

Description 
PHASE reads a pair of channels with fast inputs and compares the phase position of the signals. 
Maximum input frequency → data sheet. 

This function compares a pair of channels with fast inputs so that the phase position of two signals 
towards each other can be evaluated. An evaluation of the cycle period is possible even in the range 
of seconds. 

 

 NOTE 
For frequencies lower than 15 Hz a cycle period or phase shift of 0 is indicated. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement
 

209 

 

Parameters of the function inputs 
Name Data type Description 

INIT BOOL TRUE (only 1 cycle):  
 function is initialised 

FALSE: during processing of the program 

CHANNEL BYTE Channel pair 0 or 1 
 

 NOTE 
The function may provide wrong values before initialisation. Do not evaluate the output before the 
function has been initialised. 

We urgently recommend to program an own instance of this function for each channel to be evaluated. 
Otherwise, wrong values may be provided. 

 

 

Parameters of the function outputs 
Name Data type Description 

C DWORD Cycle period in [μs]. 

P INT Angle of the phase shift (0...360 °). 

ET TIME Time elapsed since the beginning of the period measurement 
(can be used for very slow signals). 

 



 

210 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement

10.1.7 Function INC_ENCODER 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

INC_ENCODER

INIT COUNTER
CHANNEL UP
PRESET_VALUE DOWN
PRESET
RESOLUTION

 
 

 

Description 
INC_ENCODER handles up/down counter functions for the evaluation of encoders. 

The function is designed as up/down counter. Two frequency inputs form the input pair which is 
evaluated by means of the function. The following table shows the permissible limit frequencies and 
the max. number of incremental encoders that can be connected: 

Device Limit frequency max. number of encoders

ClassicController: CR0020, CR0505 10 kHz 4 

ClassicController: CR0032 30 kHz 8 

ExtendedController: CR0200 10 kHz 8 

ExtendedController: CR0232 30 kHz 16 

SmartController: CR2500 10 kHz 2 

SafetyController: CR7020, CR7505 10 kHz 4 

ExtendedSafetyController: CR7200 10 kHz 8 

SafetyController: CR7021, CR7506 10 kHz 4 

ExtendedSafetyController: CR7201 10 kHz 8 

CabinetController: CR0301, CR0302, CR0303 10 kHz 2 

PCB controller: CS0015 0.5 kHz 2 

PDM360 smart: CR1071 1 kHz 2 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement
 

211 

 NOTE 
Depending on the further load on the unit the limit frequency might fall when "many" encoders are 
evaluated. 

If the load is too high the cycle time can get unacceptably long (→ system resources, → page 42). 
 

Via PRESET_VALUE the counter can be set to a preset value. The value is adopted if PRESET is set 
to TRUE. Afterwards, PRESET must be set to FALSE again for the counter to become active again. 

The current counter value is available at the output COUNTER. The outputs UP and DOWN indicate 
the current counting direction of the counter. The outputs are TRUE if the counter has counted in the 
corresponding direction in the preceding program cycle. If the counter stops, the direction output in the 
following program cycle is also reset. 

On input RESOLUTION the resolution of the encoder can be evaluated in multiples: 
1 = normal resolution (identical with the resolution of the encoder), 
2 = double evaluation of the resolution, 
4 = 4-fold evaluation of the resolution. 
All other values on this input mean normal resolution. 

RESOLUTION = 1 

In the case of normal resolution only the falling 
edge of the B-signal is evaluated. 

RESOLUTION = 2 

In the case of double resolution the falling and the 
rising edges of the B-signal are evaluated. 

A

B

+1 +1 +1

A

B

+1+1 +1 +1 +1+1 +1

+1+1 +1 +1 +1+1 +1

+1+1 +1 +1 +1+1 +1

A

B

1 3 1 3 1 3 1

2 4 2 4 2 4 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2

1 1 1 1 1 1 1

1 1 1 1 1 1 1

v v v

v v v vv v v

v v v vv v v

v v v vv v v
 

RESOLUTION = 4 

In the case of 4-fold resolution the falling and the 
rising edges of the A-signal and the B-signal are 
evaluated. 

 



 

212 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement
 

Parameters of the function inputs 
Name Data type Description 

INIT BOOL TRUE (only 1 cycle):  
 function initialised. 

FALSE: during cyclical processing of the program. 

CHANNEL BYTE Number of the input pair (0...3). 

PRESET_VALUE DINT Preset value of the counter. 

PRESET BOOL TRUE: preset value is adopted. 

FALSE: counter active. 

RESOLUTION BYTE Factor of the encoder resolution (1, 2, 4): 

1 = normal resolution 
2 = double resolution 
4 = 4-fold resolution 

All other values count as "1". 
 

 

Parameters of the function outputs 
Name Data type Description 

COUNTER DINT Current counter value. 

UP BOOL TRUE: counter counts upwards. 

FALSE: counter stands still. 

DOWN BOOL TRUE: counter counts downwards. 

FALSE: counter stands still. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement
 

213 

10.1.8 Function FAST_COUNT 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1071 
 

Function symbol: 

FAST_COUNT

ENABLE CV
INIT
CHANNEL

MODE_UP_DOWN
LOAD
PV  

 

 

Description 
FAST_COUNT operates as counter block for fast input pulses. 

This function detects fast pulses at the FRQ input channels 0...3. With the FRQ input channel 0 
FAST_COUNT operates like the block CTU. Maximum input frequency → data sheet. 

 

 NOTE 
For the ecomatmobile controllers channel 0 can only be used as up counter. The channels 1...3 can 
be used as up and down counters. 

 



 

214 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Counter functions for frequency and period measurement
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed, starting from the start value. 

FALSE: function is not executed. 

INIT BOOL TRUE (only 1 cycle):  
 function initialised. 

FALSE: during cyclical processing of the program. 

CHANNEL BYTE number of the input (0...3). 

MODE_UP_DOWN BOOL TRUE: counter counts downwards. 

FALSE: counter counts upwards. 

LOAD BOOL TRUE: start value PV being loaded. 

FALSE: start value "0" being loaded. 

PV WORD Start value (preset value). 
 

 NOTE 
After setting the parameter ENABLE the counter counts as from the indicated start value. 

The counter does NOT continue from the value which was valid at the last deactivation of ENABLE. 
 

 

Parameters of the function outputs 
Name Data type Description 

CV WORD output value of the counter. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Software reset
 

215 

10.2 Software reset 
 

Using this function the control can be restarted via an order in the application program. 

 

10.2.1 Function SOFTRESET 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

SOFTRESET

ENABLE
 

 

 

Description 
SOFTRESET leads to a complete reboot of the controller. 

The function can for example be used in conjunction with CANopen if a node reset is to be carried out. 
The behaviour of the controller after a SOFTRESET corresponds to that after switching the supply 
voltage off and on. 
 

 NOTE 
In case of active communication, the long reset period must be taken into account because otherwise 
guarding errors will be signalled. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE:  function is executed 

FALSE: function is not executed 
 



 

216 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Saving, reading and converting data in the memory

10.3 Saving, reading and converting data in the 
memory 

 

10.3.1 Automatic data backup 
 

The Ecomatmobil controllers allow to save data (BOOL, BYTE, WORD, DWORD) non-volatilely (= 
saved in case of voltage failure) in the memory. If the supply voltage drops, the backup operation is 
automatically started. Therefore it is necessary that the data is filed as RETAIN variables. 

The advantage of the automatic backup is that also in case of a sudden voltage drop or an interruption 
of the supply voltage, the storage operation is triggered and thus the current values of the data are 
saved (e.g. counter values). 

If the supply voltage returns, the saved data is read from the memory via the operating system and 
written back in the flag area. 
 

10.3.2 Manual data storage 
 

Besides the possibility to store the data automatically, user data can be stored manually, via function 
calls, in integrated memories from where they can also be read. 

Depending on the controller the following memories are available: 

• EEPROM memory: 
Only for SmartController, CabinetController CR0301 / CR0302, PCB controller. 
Slow writing and reading. 
Limited writing and reading frequency. 
Any memory area can be selected. 
Storing data with the function E2WRITE (→ page 220). 
Reading data with the function E2READ (→ page 221). 

• FRAM memory 
Only for ClassicController, ExtendedController, SafetyController, CabinetController CR0303, 
PDM360 smart. 
Fast writing and reading. 
Unlimited writing and reading frequency. 
Any memory area can be selected. 
Storing data with the function FRAMWRITE. 
Reading data with the function FRAMREAD. 

• Flash memory 
For all above mentioned controllers. 
Fast writing and reading. 
Limited writing and reading frequency. 
Really useful only for storing large data quantities. 
Before anew writing, the memory contents must be deleted.  
Storing data with the function FLASHWRITE (→ page 217). 
Reading data with the function FLASHREAD  (→ page 219). 

 

 Info 
By means of the storage partitioning (→ data sheet or operating instructions) the programmer can find 
out which memory area is available. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Saving, reading and converting data in the memory
 

217 

10.3.3 Function MEMCPY 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

MEMCPY

DST
SRC
LEN  

 

 

Description 
MEMCPY enables writing and reading different types of data directly in the memory. 

The function writes the contents of the address of SRC to the address DST. In doing so, as many 
bytes as indicated under LEN are transmitted. So it is also possible to transmit exactly one byte of a 
word file. 

 

 NOTE 
The address must be determined by means of the function ADR and assigned to MEMCPY. 

 
 

Parameters of the function inputs 
Name Data type Description 

DST DWORD Address of the target variables 

SRC DWORD Address of the source variables 

LEN WORD Number of data bytes 
 



 

218 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Saving, reading and converting data in the memory

10.3.4 Function FLASHWRITE 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

FLASHWRITE

ENABLE
DST
LEN

SRC  
 

 

Description 
 

 WARNING 
Danger due to uncontrollable process operations! 

The status of the inputs/outputs is "frozen" during execution of FLASHWRITE. 

► Do not execute this function when the machine is running! 

 

FLASHWRITE enables writing of different data types directly into the flash memory. 

The function writes the contents of the address SRC (must be determined by means of the function 
ADR) into the flash memory. In doing so, as many bytes as indicated under LEN are transmitted. 

An erasing operation must be carried out before the memory is written again. This is done by writing 
any content to the address "0". 

 

 Info 
Using this function, large data volumes are to be stored during set-up, to which there is only read 
access in the process. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Saving, reading and converting data in the memory
 

219 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

DST INT Relative start address in the memory.  
Memory access only word-by-word;  
permissible values: 0, 2, 4, 6, 8, ... 

LEN INT Number of data bytes (max. 65 536 bytes) 

SRC DWORD Address of the source variables 
 



 

220 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Saving, reading and converting data in the memory

10.3.5 Function FLASHREAD 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

FLASHREAD

ENABLE
SRC
LEN

DST  
 

 

Description 
FLASHREAD enables reading of different types of data directly from the flash memory. 

The function reads the contents as from the address of SRC from the flash memory. In doing so, as 
many bytes as indicated under LEN are transmitted. 

 

 NOTE 
The address for DST must be determined using the function ADR and assigned to FLASHREAD. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

SRC INT Relative start address in the memory 

LEN INT Number of data bytes (max. 65 536 bytes) 

DST DWORD Address of the target variables 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Saving, reading and converting data in the memory
 

221 

10.3.6 Function E2WRITE 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302 

• PCB controller: CS0015 

• SmartController: CR2500 
 

Function symbol: 

E2WRITE

ENABLE RESULT
DST
LEN

SRC  
 

 

Description 
E2WRITE enables writing of different data types directly to the serial EEPROM. 

The function writes the contents as from the address of SRC to the serial EEPROM. The execution of 
the function takes some time, therefore it must be monitored via the function output RESULT. If 
RESULT =1 , the input ENABLE must be set to FALSE again. 
 

 NOTE 
The address for SRC must be determined using the function ADR and assigned to E2WRITE. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

DST INT Start address in the memory 
(0...2FF16 and 34016 up to EEPROM size) 

LEN INT Number of data bytes to be transmitted 

SRC DINT Address of the source variables 
 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BYTE 0 = Function inactive 

1 = Function stopped 

2 = Function active 



 

222 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Saving, reading and converting data in the memory

10.3.7 Function E2READ 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302 

• PCB controller: CS0015 

• SmartController: CR2500 
 

Function symbol: 

E2READ

ENABLE RESULT
SRC
LEN

DST  
 

 

Description 
E2READ enables reading of different data from the serial EEPROM. 

The function reads the contents as from the address of SRC from the serial EEPROM. Given that the 
processing of the function takes some time it must be monitored via the function output RESULT. If 
RESULT =1 , the input ENABLE must be set to FALSE again. 
 

 NOTE 
The address for DST must be determined using the function ADR and assigned to E2READ. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

SRC INT Start address in the memory 
(0...2FF16 and 40016 up to EEPROM size) 

LEN INT Number of data bytes to be transmitted 

DST DINT Address of the target variables 
 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BYTE 0 = Function inactive 

1 = Function stopped 

2 = Function active 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Data access and data check
 

223 

10.4 Data access and data check 
 

The functions described in this chapter control the data access and enable a data check. 
 

10.4.1 Function SET_DEBUG 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

SET_DEBUG

ENABLE
DEBUG  

 

 

Description 
SET_DEBUG handles the DEBUG mode without active test input (→ chapter TEST mode, 
→ page 38). 

If the input DEBUG of the function is set to TRUE, the programming system or the downloader, for 
example, can communicate with the controller and execute system commands (e.g. for service 
functions via the GSM modem CANremote). 
 

 NOTE 
In this operating mode a software download is not possible because the test input is not connected to 
supply voltage. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

DEBUG BOOL TRUE: debugging via the interfaces possible 

FALSE: debugging via the interfaces not possible 
 



 

224 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Data access and data check

10.4.2 Function SET_IDENTITY 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

SET_IDENTITY

ID  
 

 

Description 
SET_IDENTITY sets an application-specific program identification. 

Using this function, a program identification can be created by the application program. This 
identification (i.e. the software version) can be read via the software tool DOWNLOADER.EXE in order 
to identify the loaded program. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Data access and data check
 

225 

The following figure shows the correlations of the different identifications as indicated by the different 
software tools. (Example: ClassicController CR0020): 

 

Boot loader 

 

Identity 

BOOTLD_H 020923 

 

Extended identity 

CR0020 00.00.01 

 

 

 

 

Î 

Operating system 

 

Identity 

CR0020 

V2.0.0 041004 

 

Hardware version 

CR0020 00.00.01 

 

Software version 

Nozzle in front 

 

 

 

 

 

 

Application/Machine 

 

 

 

 

 

 

 

SET_IDENTITY 

Nozzle in front 

Ð  Ð   

 

Downloader reads: 

 

BOOTLD_H 020923 

CR0020 00.00.01 

  

Downloader reads: 

 

CR0020 

V2.0.0 041004 

ifm electronic gmbh 

Nozzle in front 

 

  

     

   

CANopen tool reads: 

 

Hardware version  

OBV 1009 

CR0020 00.00.01 

 

  

 
 

Parameters of the function inputs 
Name Data type Description 

ID STRING(80) Any string with a maximum length of 80 characters 
 



 

226 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Data access and data check

10.4.3 Function GET_IDENTITY 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• ClassicController: CR0032 

• ExtendedController: CR0232 
 

Function symbol: 

GET_IDENTITY

ENABLE DEVICENAME
 FIRMWARE

 RELEASE
APPLICATION  

 

 

Description 
GET_IDENTITY reads the application-specific program identification stored in the controller. 

With this function the stored program identification can be read by the application program. The 
following information is available: 

• Hardware name and version 
e.g.: "CR0032 00.00.01" 

• Name of the runtime system 
e.g.: "CR0032" 

• Version and build of the runtime system 
e.g.: "V00.00.01 071128" 

• Name of the application 
e.g.: "Crane1704" 

The name of the application can be changed with the function SET_IDENTITY (→ page 223). 
 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Data access and data check
 

227 

 

Parameters of the function outputs 
Name Data type Description 

DEVICENAME STRING(31) Hardware name and version 
as string of max. 31 characters 
e.g.: "CR0032 00.00.01" 

FIRMWARE STRING(31) Name of the runtime system 
as string of max. 31 characters 
e.g.: "CR0032" 

RELEASE STRING(31) Version and build of the runtime system 
as string of max. 31 characters 
e.g.: "V00.00.01 071128" 

APPLICATION STRING(79) Name of the application 
as string of max. 79 characters 
e.g.: "Crane1704" 

 



 

228 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Data access and data check

10.4.4 Function SET_PASSWORD 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

SET_PASSWORD

ENABLE
PASSWORD

 
 

 

Description 
SET_PASSWORD sets a user password for the program and memory upload with the 
DOWNLOADER. 

If the password is activated, reading of the application program or the data memory with the software 
tool DOWNLOADER is only possible if the correct password has been entered. 

If an empty string (default condition) is assigned to the input PASSWORD, an upload of the application 
software or of the data memory is possible at any time. 
 

ATTENTION 
Please note for CR2500, CR0301, CR0302 and CS0015: 

The EEPROM memory module may be destroyed by the permanent use of this function! 

► Only carry out the function once during initialisation in the first program cycle!  
Afterwards block the function again (ENABLE = "FALSE")! 

 

 NOTE 
The password is reset when loading a new application program. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Data access and data check
 

229 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE (only 1 cycle): 
 ID set 

FALSE: function is not executed 

PASSWORD STRING Password (maximum string length 16) 
 



 

230 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Data access and data check

10.4.5 Function CHECK_DATA 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

CHECK_DATA

STARTADR RESULT
LENGTH
UPDATE

CHECKSUM

 
 

 

Description 
CHECK_DATA stores the data in the application data memory via a CRC code. 

The function serves for monitoring a range of the data memory (possible WORD addresses as from 
%MW0) for unintended changes to data in safety-critical applications. To do so, the function 
determines a CRC checksum of the indicated data range. 

If the input UPDATE = FALSE and data in the memory are changed inadvertently, RESULT = FALSE. 
The result can then be used for further actions (e.g. deactivation of the outputs). 

Data changes in the memory (e.g. by the application program or ecomatmobile device) are only 
permitted if the output UPDATE is set to TRUE. The value of the checksum is then recalculated. The 
output RESULT is permanently TRUE again. 

The start address (type WORD e.g. %MW0) must be assigned to the function via the address operator 
ADR. In addition, the number of data bytes LENGTH (length as from the STARTDR) must be 
indicated. 

 

 NOTE 
This function is a safety function. However, the controller does not automatically become a safety 
controller by using this function. Only a tested and approved controller with a special operating system 
can be used as safety controller. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Data access and data check
 

231 

 

Parameters of the function inputs 
Name Data type Description 

STARTADR DINT Start address of the monitored data memory  
(WORD address as from %MW0) 

LENGTH WORD Length of the monitored data memory in [byte] 

UPDATE BOOL TRUE: changes to data permissible 

FALSE: changes to data not permitted 
 

 

Parameters of the function outputs 
Name Data type Description 

RESULT BOOL TRUE: CRC checksum ok 

FALSE: CRC checksum faulty 
 (data modified) 

 

 

Example for CHECK_DATA 
In the following example the program determines the checksum and stores it in the RAM via pointer pt: 

 
NOTE: The method shown here is not suited for the flash memory. 
 



 

232 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing interrupts

10.5 Processing interrupts 
 

The PLC cyclically processes the stored application program in its full length. The cycle time can vary 
due to program branchings which depend e.g. on external events (= conditional jumps). This can have 
negative effects on certain functions. 

By means of systematic interrupts of the cyclic program it is possible to call time-critical processes 
independently of the cycle in fixed time periods or in case of certain events.  

Since interrupt functions are principally not permitted for SafetyControllers, they are thus not available. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing interrupts
 

233 

10.5.1 Function SET_INTERRUPT_XMS 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SmartController: CR2500 

• PDM360 smart: CR1071 
 

Function symbol: 

SET_INTERRUPT_XMS

ENABLE
REPEATTIME
READ_INPUTS

WRITE_OUTPUTS
ANALOG_INPUTS

 
 

 

Description 
SET_INTERRUPT_XMS handles the execution of a program part at an interval of x ms. 

In the conventional PLC the cycle time is decisive for real-time monitoring. So, the PLC is at a 
disadvantage as compared to customer-specific controllers. Even a "real-time operating system" does 
not change this fact when the whole application program runs in one single block which cannot be 
changed. 

A possible solution would be to keep the cycle time as short as possible. This often leads to splitting 
the application up to several control cycles. This, however, makes programming complex and difficult. 

Another possibility is to call a certain program part at fixed intervals (every x ms) independently of the 
control cycle. 

The time-critical part of the application is integrated by the user in a block of the type PROGRAM 
(PRG). This block is declared as the interrupt routine by calling the function SET_INTERRUPT_XMS 
once (during initialisation). As a consequence, this program block is always processed after the 
REPEATTIME has elapsed (every x ms). If inputs and outputs are used in this program part, they are 
also read and written in the defined cycle. Reading and writing can be stopped via the function inputs 
READ_INPUTS, WRITE_OUTPUTS and ANALOG_INPUTS. 

So, in the program block all time-critical events can be processed by linking inputs or global variables 
and writing outputs. So, timers can be monitored more precisely than in a "normal cycle". 



 

234 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing interrupts

 

 NOTE 
To avoid that the program block called by interrupt is additionally called cyclically, it should be skipped 
in the cycle (with the exception of the initialisation call). 

Several timer interrupt blocks can be active. The time requirement of the interrupt functions must be 
calculated so that all called functions can be executed. This in particular applies to calculations, floating 
point arithmetic or controller functions. 

Please note: In case of a high CAN bus activity the set REPEATTIME may fluctuate. 
 

 NOTE 
The uniqueness of the inputs and outputs in the cycle is affected by the interrupt routine. Therefore only 
part of the inputs and outputs is serviced. If initialised in the interrupt program, the following inputs and 
outputs will be read or written. 

Inputs, digital: 

%IX0.0...%IX0.7 (CRnn32) 

%IX0.12...%IX0.15, %IX1.4...%IX1.8 (all other ClassicController, ExtendedController, SafetyController) 

%IX0.0, %IX0.8 (SmartController) 

IN08...IN11 (CabinetController) 

IN0...IN3 (PCB controller) 

Inputs, analogue: 

%IX0.0...%IX0.7 (CRnn32) 

All channels (selection bit-coded) (all other controller) 

Outputs, digital: 

%QX0.0...%QX0.7 (ClassicController, ExtendedController, SafetyController) 

%QX0.0, %QX0.8 (SmartController) 

OUT00...OUT03 (CabinetController) 

OUT0...OUT7 (PCB controller) 

Global variants, too, are no longer unique if they are accessed simultaneously in the cycle and by the 
interrupt routine. This problem applies in particular to larger data types (e.g. DINT). 

All other inputs and outputs are processed once in the cycle, as usual. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing interrupts
 

235 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE (only 1 cycle): 
  changes to data allowed 

FALSE: changes to data not allowed 
 (during processing of the program) 

REPEATTIME TIME Time window during which the interrupt is triggered. 

READ_INPUTS BOOL TRUE:  inputs integrated into the routine are read (if 
necessary, set inputs to IN_FAST). 

FALSE: inputs integrated into the routine are not read. 

WRITE_OUTPUTS BOOL TRUE:  outputs integrated into the routine are written to. 

FALSE: outputs integrated into the routine are not written to. 

ANALOG_INPUTS BOOL TRUE:  Analogue inputs integrated into the routine are read 
and the raw value of the voltage is transferred to the system 
flags ANALOG_IRQxx. 

FALSE: Analogue inputs integrated into the routine are not 
read. 

 



 

236 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing interrupts

10.5.2 Function SET_INTERRUPT_I 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SmartController: CR2500 

• PDM360 smart: CR1071 
 

Function symbol: 

SET_INTERRUPT_I

ENABLE
CHANNEL
MODE

READ_INPUTS
WRITE_OUTPUTS
ANALOG_INPUTS  (only for devices with analogue channels) 

SET_INTERRUPT_I

ENABLE
CHANNEL
MODE

READ_INPUTS
WRITE_OUTPUTS  (for devices without analogue channels) 

 

 

Description 
SET_INTERRUPT_I handles the execution of a program part by an interrupt request via an input 
channel. 

In the conventional PLC the cycle time is decisive for real-time monitoring. So the PLC is at a 
disadvantage as compared to customer-specific controllers. Even a "real-time operating system" does 
not change this fact when the whole application program runs in one single block which cannot be 
changed. 

A possible solution would be to keep the cycle time as short as possible. This often leads to splitting 
the application up to several control cycles. This, however, makes programming complex and difficult. 

Another possibility is to call a certain program part only upon request by an input pulse independently 
of the control cycle. 

The time-critical part of the application is integrated by the user in a block of the type PROGRAM 
(PRG). This block is declared as the interrupt routine by calling the function SET_INTERRUPT_I once 
(during initialisation). As a consequence, this program block will always be executed if an edge is 
detected on the input CHANNEL. If inputs and outputs are used in this program part, these are also 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing interrupts
 

237 

read and written in the interrupt routine, triggered by the input edge. Reading and writing can be 
stopped via the function inputs READ_INPUTS, WRITE_OUTPUTS and ANALOG_INPUTS. 

So in the program block all time-critical events can be processed by linking inputs or global variables 
and writing outputs. So functions can only be executed if actually called by an input signal. 
 

 NOTE 
The program block should be skipped in the cycle (except for the initialisation call) so that it is not 
cyclically called, too. 

The input (CHANNEL) monitored for triggering the interrupt cannot be initialised and further processed 
in the interrupt routine. 

The inputs must be in the operating mode IN_FAST, otherwise the interrupts cannot be read. 
 

 NOTE 
The uniqueness of the inputs and outputs in the cycle is affected by the interrupt routine. Therefore only 
part of the inputs and outputs is serviced. If initialised in the interrupt program, the following inputs and 
outputs will be read or written. 

Inputs, digital: 

%IX0.0...%IX0.7 (CRnn32) 

%IX0.12...%IX0.15, %IX1.4...%IX1.8 (all other ClassicController, ExtendedController, SafetyController) 

%IX0.0, %IX0.8 (SmartController) 

IN08...IN11 (CabinetController) 

IN0...IN3 (PCB controller) 

Inputs, analogue: 

%IX0.0...%IX0.7 (CRnn32) 

All channels (selection bit-coded) (all other controller) 

Outputs, digital: 

%QX0.0...%QX0.7 (ClassicController, ExtendedController, SafetyController) 

%QX0.0, %QX0.8 (SmartController) 

OUT00...OUT03 (CabinetController) 

OUT0...OUT7 (PCB controller) 

Global variants, too, are no longer unique if they are accessed simultaneously in the cycle and by the 
interrupt routine. This problem applies in particular to larger data types (e.g. DINT). 

All other inputs and outputs are processed once in the cycle, as usual. 
 



 

238 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing interrupts
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE (only for 1 cycle): 
  changes to data permissible 

FALSE: changes to data not permitted  
 (during processing of the program) 

CHANNEL BYTE interrupt input 

Classic/ExtendedController: 
 0 = %IX1.4 
 1 = %IX1.5 
 2 = %IX1.6 
 3 = %IX1.7 

SmartController: 
 0 = %IX0.0 
 1 = %IX0.8 

CabinetController: 
 0 = IN08 (etc.) 
 3 = IN11 

CS0015: 
 0 = IN0 (etc.) 
 3 = IN3 

MODE BYTE Type of edge at the input CHANNEL which triggers the 
interrupt 

1 = rising edge 

2 = falling edge 

3 = rising and falling edge 

READ_INPUTS BOOL TRUE: inputs integrated into the routine are read (if 
necessary, set inputs to IN_FAST) 

FALSE: inputs integrated into the routine are not read 

WRITE_OUTPUTS BOOL TRUE: outputs integrated into the routine are written 

FALSE: outputs integrated into the routine are not written 

ANALOG_INPUTS BYTE (only for devices with analogue channels) 

Selection of the inputs bit-coded: 

010 = no input selected 

110 = 1st analogue input selected (0000 00012) 

210 = 2nd analogue input selected (0000 00102) 

... 

12810 = 8th analogue input selected (1000 00002) 

A combination of the inputs is possible via an OR operation of 
the values. 
Example: Select 1st and 3rd analogue input:  
(0000 00012) OR (0000 01002) = (0000 01012) = 510  

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Use of the serial interface
 

239 

10.6 Use of the serial interface 
 

 NOTE 
In principle, the serial interface is not available for the user because it is used for program download 
and debugging. 

The interface can be freely used if the user sets the system flag bit SERIAL_MODE to TRUE. Then 
however, program download and debugging are only possible via the CAN interface. 
For CRnn32: Debugging of the application software is then only possible via all 4 CAN interfaces or via 
USB. 

 

The serial interface can be used in the application program by means of the following functions. 
 



 

240 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Use of the serial interface

10.6.1 Function SERIAL_SETUP 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

SERIAL_SETUP

ENABLE
BAUDRATE
DATABITS

PARITY
STOPBITS  

 

 

Description 
SERIAL_SETUP initialises the serial RS232 interface. 

SERIAL_SETUP sets the serial interface to the indicated parameters. Using the function input 
ENABLE, the function is activated for one cycle. 

The SERIAL functions form the basis for the creation of an application-specific protocol for the serial 
interface. 

 

 NOTE 
In principle, the serial interface is not available for the user, because it is used for program download 
and debugging. 

The interface can be freely used if the user sets the system flag bit SERIAL_MODE to TRUE. Then 
however, program download and debugging are only possible via the CAN interface. 
For CRnn32: Debugging of the application software is then only possible via all 4 CAN interfaces or via 
USB. 

 

ATTENTION 
The driver module of the serial interface can be damaged!  

Disconnecting the serial interface while live can cause undefined states which damage the driver 
module. 

► Do not disconnect the serial interface while live.  



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Use of the serial interface
 

241 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE (only 1 cycle):  
 interface is initialised 

FALSE: running operation 

BAUDRATE BYTE Baud rate  
(permissible values = 9 600, 19 200, 28 800, (57 600)) 
preset value → data sheet 

DATABITS BYTE Data bits  
(permissible values: 7 or 8)  
preset value = 8 

PARITY BYTE Parity  
(permissible values: 0=none, 1=even, 2=uneven)  
preset value = 0 

STOPBITS BYTE Stop bits  
(permissible values: 1 or 2)  
preset value = 1 

 



 

242 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Use of the serial interface

10.6.2 Function SERIAL_TX 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

SERIAL_TX

ENABLE
DATA  

 

 

Description 
SERIAL_TX transmits one data byte via the serial RS232 interface. 

Using the function input ENABLE the transmission can be enabled or blocked. 

The SERIAL functions form the basis for the creation of an application-specific protocol for the serial 
interface. 

 

 NOTE 
In principle, the serial interface is not available for the user, because it is used for program download 
and debugging. 

The interface can be freely used if the user sets the system flag bit SERIAL_MODE to TRUE. Then 
however, program download and debugging are only possible via the CAN interface. 
For CRnn32: Debugging of the application software is then only possible via all 4 CAN interfaces or via 
USB. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: transmission enabled 

FALSE: transmission blocked 

DATA BYTE Byte to be transmitted 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Use of the serial interface
 

243 

10.6.3 Function SERIAL_RX 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

SERIAL_RX

CLEAR RX
AVAILABLE

 OVERFLOW  
 

 

Description 
SERIAL_RX reads a received data byte from the serial receive buffer at each call. 

Then, the value of AVAILABLE is decremented by 1. 

If more than 1000 data bytes are received, the buffer overflows and data is lost. This is indicated by 
the bit OVERFLOW. 

The SERIAL functions form the basis for the creation of an application-specific protocol for the serial 
interface. 

 

 NOTE 
In principle, the serial interface is not available for the user, because it is used for program download 
and debugging. 

The interface can be freely used if the user sets the system flag bit SERIAL_MODE to TRUE. Then 
however, program download and debugging are only possible via the CAN interface. 
For CRnn32: Debugging of the application software is then only possible via all 4 CAN interfaces or via 
USB. 

 
 

Parameters of the function inputs 
Name Data type Description 

CLEAR BOOL TRUE: receive buffer is deleted 

FALSE: default condition 
 

 



 

244 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Use of the serial interface

Parameters of the function outputs 
Name Data type Description 

RX BYTE Byte data received from the receive buffer 

AVAILABLE WORD Number of data bytes received 

0 = no valid data available 

OVERFLOW BOOL Overflow of the data buffer, loss of data! 
 

Example: 
3 bytes are received: 

1st call of SERIAL_RX 
 1 valid value at output RX  
 → AVAILABLE = 3 

2nd call of SERIAL_RX 
 1 valid value at output RX  
 → AVAILABLE = 2 

3rd call of SERIAL_RX 
 1 valid value at output RX  
 → AVAILABLE = 1 

4th call of SERIAL_RX 
 invalid value at the output RX  
 → AVAILABLE = 0 

If AVAILABLE = 0, the function can be skipped during processing of the program. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Use of the serial interface
 

245 

10.6.4 Function SERIAL_PENDING 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

SERIAL_PENDING

NUMBER  
 

 

Description 
SERIAL_PENDING determines the number of data bytes stored in the serial receive buffer. 

In contrast to the function SERIAL_RX (→ page 242) the contents of the buffer remain unchanged 
after calling this function.  

The SERIAL functions form the basis for the creation of an application-specific protocol for the serial 
interface. 

 

 NOTE 
In principle, the serial interface is not available for the user, because it is used for program download 
and debugging. 

The interface can be freely used if the user sets the system flag bit SERIAL_MODE to TRUE. Then 
however, program download and debugging are only possible via the CAN interface. 
For CRnn32: Debugging of the application software is then only possible via all 4 CAN interfaces or via 
USB. 

 
 

Parameters of the function outputs 
Name Data type Description 

NUMBER WORD Number of data bytes received 
 



 

246 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Reading the system time

10.7 Reading the system time 
 

The following functions offered by ifm electronic allow you to read the continually running system 
time of the controller and to evaluate it in the application program. 

 

10.7.1 Function TIMER_READ 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

TIMER_READ

T
 

 

 

Description 
TIMER_READ reads the current system time. 

When the supply voltage is applied, the controller generates a clock pulse which is counted upwards in 
a register. This register can be read using the function call and can for example be used for time 
measurement. 
 

 NOTE 
The system timer goes up to FFFF FFFF16 at the maximum (corresponds to about 49.7 days) and then 
starts again from 0. 

 
 

Parameters of the function outputs 
Name Data type Description 

T TIME Current system time (resolution [ms]) 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Reading the system time
 

247 

10.7.2 Function TIMER_READ_US 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 

• PDM360 smart: CR1070, CR1071 
 

Function symbol: 

TIMER_READ_US

TIME_US
 

 

 

Description 
TIMER_READ_US reads the current system time in [µs]. 

When the supply voltage is applied, the controller generates a clock pulse which is counted upwards in 
a register. This register can be read by means of the function call and can for example be used for 
time measurement. 
 

 Info 
The system timer runs up to the counter value 4 294 967 295 µs at the maximum and then starts again 
from  0. 

4 294 967 295 µs = 71 582.8 min = 1 193 h = 49.7 d 

 
 

Parameters of the function outputs 
Name Data type Description 

TIME_US DWORD Current system time (resolution [μs]) 
 



 

248 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing analogue input values

10.8 Processing analogue input values 
 

In this chapter we show you functions which allow you to read and process the values of analogue 
voltages or currents at the controller input. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing analogue input values
 

249 

10.8.1 Function INPUT_ANALOG 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7200, CR7505 
(For safety signals use function SAFE_ANALOG_OK in addition!) 

• SmartController: CR2500 
 

Function symbol: 

INPUT_ANALOG

ENABLE
MODE
CHANNEL

OUT

 
 

 

Description 
INPUT_ANALOG enables current and voltage measurements at the analogue channels. 

The function provides the current analogue value at the selected analogue channel. The measurement 
and the output value result from the operating mode specified via MODE (digital input, 0...20 mA, 
0...10 V, 0...30 V). For parameter setting of the operating mode, the indicated global system variables 
should be used. The analogue values are provided as standardised values. 
 

 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE:  function is executed 

FALSE: function is not executed 

MODE BYTE IN_DIGITAL_H 

IN_CURRENT 

IN_VOLTAGE10 

IN_VOLTAGE30 

IN_VOLTAGE32 

IN_RATIO 

digital input 

current input 0...20 000 μA 

voltage input 0...10 000 mV 

voltage input 0...30 000 mV 

voltage input 0...32 000 mV 

ratiometric analogue input 

INPUT_CHANNEL BYTE Input channel 
 



 

250 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing analogue input values
 

Parameters of the function outputs 
Name Data type Description 

OUT WORD Output value 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing analogue input values
 

251 

10.8.2 Function INPUT_VOLTAGE 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7200, CR7505 

• SmartController: CR2500 
 

Function symbol: 

INPUT_VOLTAGE

ENABLE ACTUAL_VOLTAGE
MODE_10V_32V
INPUT_CHANNEL  

 

 

Description 
INPUT_VOLTAGE processes analogue voltages measured on the analogue channels. 

The function returns the current input voltage in [mV] on the selected analogue channel. The 
measurement refers to the voltage range defined via MODE_10V_32V (10 000 mV or 32 000 mV). 
 

 Info 
INPUT_VOLTAGE is a compatibility function for older programs. In new programs, the more powerful 
function INPUT_ANALOG (→ page 248) should be used. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE:  function is executed 

FALSE: function is not executed 

MODE_10V_32V BOOL TRUE:  voltage range 0...32 V 

FALSE: voltage range 0...10 V 

INPUT_CHANNEL BYTE Input channel 
 

 

Parameters of the function outputs 
Name Data type Description 

ACTUAL_VOLTAGE WORD output voltage in [mV] 
 



 

252 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Processing analogue input values

10.8.3 Function INPUT_CURRENT 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• SafetyController: CR7020, CR7200, CR7505 

• SmartController: CR2500 
 

Function symbol: 

INPUT_CURRENT

ENABLE ACTUAL_CURRENT
INPUT_CHANNEL  

 

 

Description 
INPUT_CURRENT processes analogue currents measured at the analogue channels. 

The function returns the actual input current in [µA] at the analogue current inputs. 
 

 Info 
INPUT_CURRENT is a compatibility function for older programs. In new programs, the more powerful 
function INPUT_ANALOG (→ page 248) should be used. 

 
 

Parameters of the function inputs 
Name Data type Description 

ENABLE BOOL TRUE: function is executed 

FALSE: function is not executed 

INPUT_CHANNEL BYTE Analogue current inputs 4...7 
 

 

Parameters of the function outputs 
Name Data type Description 

ACTUAL_CURRENT WORD Input current in [µA] 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Adapting analogue values
 

253 

10.9 Adapting analogue values 
 

If the values of analogue inputs or the results of analogue functions must be adapted, the following 
functions will help you. 
 



 

254 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Adapting analogue values

10.9.1 Function NORM 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

NORM

X Y
XH
XL

YH
YL  

 

 

Description 
NORM normalises a value within defined limits to a value with new limits. 

The function normalises a value of type WORD within the limits of XH and XL to an output value within 
the limits of YH and YL. This function is for example used for generating PWM values from analogue 
input values. 
 

 NOTE 
The value for X must be in the defined input range between XL and XH (there is no internal plausibility 
check of the value). 

Due to rounding errors the normalised value can deviate by 1. 

If the limits (XH/XL or YH/YL) are defined in an inverted manner, normalisation is also done in an 
inverted manner. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

More functions in the ecomatmobile controller Adapting analogue values
 

255 

 

Parameters of the function inputs 
Name Data type Description 

X WORD current input value 

XH WORD upper limit of input value range 

XL WORD lower limit of input value range 

YH WORD upper limit of output value range 

YL WORD lower limit of output value range 
 

 

Parameters of the function outputs 
Name Data type Description 

Y WORD normalised value 
 

 

Example 1 
lower limit value input 

upper limit value input 

lower limit value output 

upper limit value output 

0 

100 

0 

2000 

XL 

XH 

YL 

YH 

then the function converts the input signal for example as follows: 

from X = 50 0 100 75 

to Y = 1000 0 2000 1500 
 

 

Example 2 
lower limit value input 

upper limit value input 

lower limit value output 

upper limit value output 

2000 

0 

0 

100 

XL 

XH 

YL 

YH 

then the function converts the input signal for example as follows: 

from X = 1000 0 2000 1500 

to Y = 50 100 0 25 
 

 



 

256 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller General

11 Controller functions in the ecomatmobile 
controller 

 
General ................................................................................................................................... 256 
Setting rule for a controller ..................................................................................................... 258 
Functions for controllers ......................................................................................................... 259 

 

 

11.1 General 
Controlling is a process during which the unit to be controlled (control variable x) is continuously 
detected and compared with the reference variable w. Depending on the result of this comparison, the 
control variable is influenced for adaptation to the reference variable. 

Regeleinrichtung
Controller

Regelstrecke
Controlled system

Störgröße d
Disturbance variable d

Regelkreis / Control circuit

Regelgröße x
Controlled variable x

Führungsgröße w
Reference variable w

Stellgröße y
Manipulated variable y

 
Figure: Principle of controlling 

The selection of a suitable control device and its optimum setting require exact indication of the 
steady-state behaviour and the dynamic behaviour of the controlled system. In most cases these 
characteristic values can only be determined by experiments and can hardly be influenced. 

Three types of controlled systems can be distinguished:  
 

 

11.1.1 Self-regulating process 
For a self-regulating process the control variable x goes towards a new final value after a certain 
manipulated variable (steady state). The decisive factor for these controlled systems is the 
amplification (steady-state transfer factor KS). The smaller the amplification, the better the system can 
be controlled. These controlled systems are referred to as P systems (P = proportional). 

 
Figure: P controller = self-regulating process 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller General
 

257 

 

11.1.2 Controlled system without inherent regulation 
Controlled systems with an amplifying factor towards infinity are referred to as controlled systems 
without inherent regulation. This is usually due to an integrating performance. The consequence is that 
the control variable increases constantly after the manipulated variable has been changed or by the 
influence of an interfering factor. Due to this behaviour it never reaches a final value. These controlled 
systems are referred to as I systems (I = integral). 

 
Figure: I controller = controlled system without inherent regulation 
 

 

11.1.3 Controlled system with delay 
Most controlled systems correspond to series systems of P systems (systems with compensation) and 
one or several T1 systems (systems with inertia). A controlled system of the 1st order is for example 
made up of the series connection of a throttle point and a subsequent memory. 

 
Figure: PT system = controlled system with delay 

For controlled systems with dead time the control variable does not react to a change of the control 
variable before the dead time Tt has elapsed. The dead time Tt or the sum of Tt + Tu relates to the 
controllability of the system. The controllability of a system is the better, the greater the ratio Tg/Tu. 

The controllers which are integrated in the library are a summary of the preceding basic functions. It 
depends on the respective controlled system which functions are used and how they are combined. 
 



 

258 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Setting rule for a controller
 

11.2 Setting rule for a controller 
For controlled systems, whose time constants are unknown the setting procedure to Ziegler and 
Nickols in a closed control loop is of advantage. 
 

 

11.2.1 Setting control 
 At the beginning the controlling system is operated as a purely P-controlling system. In this respect 
the derivative time TV is set to 0 and the reset time TN to a very high value (ideally to ∞) for a slow 
system. For a fast controlled system a small TN should be selected. 

Afterwards the gain KP is increased until the control deviation and the adjustment deviation perform 
steady oscillation at a constant amplitude at KP = KPcritical. Then the stability limit has been reached. 

Then the time period Tcritical of the steady oscillation has to be determined. 

Add a differential component only if necessary. 

TV should be approx. 2...10 times smaller than TN 

KP should be equal to KD. 

Idealised setting of the controlled system: 

Control unit KP = KD TN TV 

P 2.0 * KPcritical –– –– 

PI 2.2 * KPcritical 0.83 * Tcritical –– 

PID 1.7 * KPcritical 0.50 * Tcritical 0.125 * Tcritical 
 

 NOTE 
For this setting process it has to be noted that the controlled system is not harmed by the oscillation 
generated. For sensitive controlled systems KP must only be increased to a value at which no 
oscillation occurs. 

 
 

11.2.2 Damping of overshoot 
To dampen overshoot the function PT1 (→ page 261) (low pass) can be used. In this respect the 
preset value XS is damped by the PT1 link before it is supplied to the controller function.  

The setting variable T1 should be approx. 4...5 times greater than TN (of the PID or GLR controller). 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers
 

259 

11.3 Functions for controllers 
 

The section below describes in detail the functions that are provided for set-up by software controllers 
in the ecomatmobile controller. The functions can also be used as basis for the development of your 
own control functions. 
 



 

260 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers

11.3.1 Function DELAY 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

DELAY

X Y
T  

 

 

Description 
DELAY delays the output of the input value by the time T (dead-time element). 

The function is used to delay an input value by the time T. 

T
t

1

y

tt = 0  
Figure: Time characteristics of DELAY 

 

 NOTE 
To ensure that the function works correctly, it must be called in each cycle. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers
 

261 

 

Parameters of the function inputs 
Name Data type Description 

X WORD Input value 

T TIME Time delay (dead time) 
 

 

Parameters of the function outputs 
Name Data type Description 

Y WORD Input value, delayed by the time T 
 



 

262 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers

11.3.2 Function PT1 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

PT1

X Y
T1  

 

 

Description 
PT1 handles a controlled system with a first-order time delay.  

This function is a proportional controlled system with a time delay. It is for example used for generating 
ramps when using the PWM functions. 

The output variable Y of the low-pass filter has the following time characteristics (unit step): 

y

t

T
t

t = 0  
Figure: Time characteristics of PT1 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers
 

263 

 

Parameters of the function inputs 
Name Data type Description 

X INT Input value 

T1 TIME Delay time (time constant) 
 

 

Parameters of the function outputs 
Name Data type Description 

Y INT Output variable 
 



 

264 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers

11.3.3 Function PID1 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

PID1

X Y
XS
XMAX

KP
KI
KD  

 

 

Description 
PID1 handles a PID controller. 

The change of the manipulated variable of a PID controller has a proportional, integral and differential 
component. The manipulated variable changes first by an amount which depends on the rate of 
change of the input value (D component). After the end of the derivative action time the manipulated 
variable returns to the value corresponding to the proportional range and changes in accordance with 
the reset time. 

 

 NOTE 
The manipulated variable Y is already standardised to the PWM function (RELOAD value = 65,535). 
Note the reverse logic:  
65,535 = minimum value 
0 = maximum value. 

Note that the input values KI and KD depend on the cycle time. To obtain stable, repeatable control 
characteristics, the function should be called in a time-controlled manner. 

 

If X > XS, the manipulated variable is increased. 
If X < XS, the manipulated variable is reduced. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers
 

265 

The manipulated variable Y has the following time characteristics: 

y

t~TV TN

KI * Xd

KP * Xd

KD

 
Figure: Typical step response of a PID controller 

 
 

Parameters of the function inputs 
Name Data type Description 

X WORD Actual value 

XS WORD Desired value 

XMAX WORD Maximum value of the target value 

KP BYTE Constant of the proportional component 

KI BYTE Integral value 

KD BYTE Proportional component of the differential component 
 

 

Parameters of the function outputs 
Name Data type Description 

Y WORD Manipulated variable 
 

 

Recommended setting 
KP = 50 
KI = 30 
KD = 5 

With the values indicated above the controller operates very quickly and in a stable way. The controller 
does not fluctuate with this setting. 

► To optimise the controller, the values can be gradually changed afterwards. 
 



 

266 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers

11.3.4 Function PID2 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0032, CR0505 

• ExtendedController: CR0200, CR0232 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7032, CR7200, CR7201, CR7232, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

PID2

X Y
XS
XMAX

KP
KI
TN
KD
TV
RESET  

 

 

Description 
PID2 handles a PID controller with self optimisation. 

The change of the manipulated variable of a PID controller has a proportional, integral and differential 
component. The manipulated variable changes first by an amount which depends on the rate of 
change of the input value (D component). After the end of the derivative action time TV the 
manipulated variable returns to the value corresponding to the proportional component and changes in 
accordance with the reset time TN. 

The values entered at the function inputs KP and KD are internally divided by 10. So, a finer grading 
can be obtained (e.g.: KP = 17, which corresponds to 1.7). 

 

 NOTE 
The manipulated variable Y is already standardised to the PWM function (RELOAD value = 65,535). 
Note the reverse logic:  
65,535 = minimum value 
0 = maximum value. 

Note that the input value KD depends on the cycle time. To obtain stable, repeatable control 
characteristics, the function should be called in a time-controlled manner. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers
 

267 

If X > XS, the manipulated variable is increased. 
If X < XS, the manipulated variable is reduced. 

A reference variable is internally added to the manipulated variable. 
Y = Y + 65,536 – (XS / XMAX * 65,536). 

The manipulated variable Y has the following time characteristics. 

y

t~TV TN

KI * Xd

KP * Xd

KD

 
Figure: Typical step response of a PID controller 
 

 

Parameters of the function inputs 
Name Data type Description 

X WORD Actual value 

XS WORD Desired value 

XMAX WORD Maximum value of the desired value 

KP BYTE Constant of the Proportional component (/10) 

TN TIME Reset time (Integral component) 

KD BYTE Proportional component of the Differential component (/10) 

TV TIME Derivative action time (Differential component) 

SO BOOL Self-optimisation 

RESET BOOL Reset the function 
 

 

Parameters of the function outputs 
Name Data type Description 

Y WORD Manipulated variable 
 



 

268 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers
 

Recommended setting 
► Select TN according to the time characteristics of the system: 

fast system = small TN 
slow system = large TN 

► Slowly increment KP gradually, up to a value at which still definitely no fluctuation will occur. 

► Readjust TN if necessary. 

► Add differential component only if necessary:  
Select a TV value approx. 2...10 times smaller than TN.  
Select a KD value more or less similar to KP. 

Note that the maximum control deviation is + 127. For good control characteristics this range should 
not be exceeded, but it should be exploited to the best possible extent. 
 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers
 

269 

11.3.5 Function GLR 
Contained in the library: 
ifm_CRnnnn_Vxxyyzz.LIB 

Available for the following devices: 

• CabinetController: CR0301, CR0302, CR0303 

• ClassicController: CR0020, CR0505 

• ExtendedController: CR0200 

• PCB controller: CS0015 

• SafetyController: CR7020, CR7021, CR7200, CR7201, CR7505, CR7506 

• SmartController: CR2500 
 

Function symbol: 

GLR

X1
X2
XS

XMAX
KP
TN
KD
TV

Y1
Y2

 
 

 

Description 
GLR handles a synchro controller. 

The synchro controller is a controller with PID characteristics. 

The values entered at the function inputs KP and KD are internally divided by 10. So, a finer grading 
can be obtained (e.g.: KP = 17, which corresponds to 1.7). 

The manipulated variable referred to the greater actual value is increased accordingly.  
The manipulated variable referred to the smaller actual value corresponds to the reference variable. 
Reference variable = 65 536 – (XS / XMAX * 65 536). 
 

 NOTE 
The manipulated variables Y1 and Y2 are already standardised to the PWM function (RELOAD value 
= 65 535). Note the reverse logic:  
65 535 = minimum value 
0 = maximum value. 

Note that the input value KD depends on the cycle time. To obtain stable, repeatable control 
characteristics, the function should be called in a time-controlled manner. 

 
 



 

270 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Controller functions in the ecomatmobile controller Functions for controllers

Parameters of the function inputs 
Name Data type Description 

X1 WORD actual value channel 1 

X2 WORD actual value channel 2 

XS WORD desired value = reference variable 

XMAX WORD maximum value of the desired value 

KP BYTE constant of the proportional component (/10) 

TN TIME reset time (integral component) 

KD BYTE proportional component of the differential component (/10) 

TV TIME derivative action time (differential component) 
 

 

Parameters of the function outputs 
Name Data type Description 

Y1 WORD manipulated variable channel 1 

Y2 WORD manipulated variable channel 2 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Annex Functions for controllers
 

271 

12 Annex 
 
Address assignment and I/O operating modes ...................................................................... 272 
System flags ........................................................................................................................... 274 
Overview of the files and libraries used.................................................................................. 275 

 

Additionally to the indications in the data sheets you find summary tables in the annex. 
 



 

272 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Annex Address assignment and I/O operating modes

12.1 Address assignment and I/O operating modes 
 

→ also data sheet 
 

 

12.1.1 Addresses / variables of the I/Os 
Port IEC address I/O variable Remark 

 %QB4 I0_MODE configuration byte for %IX0.0 

 flag bit*) ERROR_I0 DIAGNOSIS bit for %IX0.0 

 %Q5 I1_MODE configuration byte for %IX0.8 

 flag bit*) ERROR_I1 DIAGNOSIS bit for %IX0.8 

 %QB4 I2_MODE configuration byte for %IX1.0 

 flag bit*) ERROR_I2 DIAGNOSIS bit for %IX1.0 

 %QB4 I3_MODE configuration byte for %IX1.8 

 flag bit*) ERROR_I3 DIAGNOSIS bit for %IX1.8 
    

 %QB0 Q1Q2 output byte 0 (%QX0.00...%QX0.07) 

 flag byte*) ERROR_SHORT_Q1Q2 error byte ports 1+2 short circuit (%QX0.00...%QX0.07) 

 flag byte*) ERROR_BREAK_Q1Q2 error byte ports 1+2 interruption (%QX0.00...%QX0.07) 

*) IEC addresses can vary according to the control configuration. 
 

 

12.1.2 Address assignment inputs / outputs 
IEC address Name IO 

variable 
Configuration with 

variable 
Default 
value 

Possible configuration 

%IX0.0 / %IW2 I0 / 
ANALOG0 

I0_MODE 0  L digital / CYL0 / FRQ0 

%IX0.8 / %IW3 I1 / 
ANALOG1 

I1_MODE 0 L digital / CYL1 / FRQ1 

%IX1.0 / %IW4 I2 / 
ANALOG2 

I2_MODE 0 only L digital 

%IX1.8 / %IW5 I3 / 
ANALOG3 

I3_MODE 0 only L digital 

%IW6 ANALOG4 I4_MODE 3 analogue U/I 

%IW7 ANALOG5 I5_MODE 3 analogue U/I 

%IW8 ANALOG6 I6_MODE 3 analogue U/I 

%IW9 ANALOG7 I7_MODE 3 analogue U/I 
     

%QX0.0 Q0 - - H digital / PWM / PWMI 

%QX0.8 Q1 - - H digital / PWM / PWMI 

%QX1.0 Q2 - - H digital / PWM / PWMI 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Annex Address assignment and I/O operating modes
 

273 

IEC address Name IO 
variable 

Configuration with 
variable 

Default 
value 

Possible configuration 

%QX1.8 Q3 - - H digital / PWM / PWMI 

PWM description → chapter PWM signal processing (→ page 161) 

PWMI description → chapter Current control with PWM (→ page 172) 

FRQ/CYL description → chapter Counter functions for frequency and period measurement 
(→ page 200) 
 

 

12.1.3 Possible operating modes inputs / outputs 
Inputs Operating mode Config. 

value 
Outputs Operating mode Config. value 

I0…I3 IN_DIGITAL 0 (default)    

 IN_DIAGNOSIC 4    

I0…I1 IN_DIGITAL_FAST 5    
      

I4…I7 IN_CURRENT 1    

 IN_VOLTAGE10 2    

 IN_VOLTAGE30 3 (default)    
 



 

274 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Annex System flags

12.2 System flags 
 

(→  chapter Error codes and diagnostic information, → page 39) 

System flag Type Function 

CANx_BAUDRATE WORD CAN interface x: Currently set baud rate 

CANx_BUSOFF BOOL CAN interface x: Interface is not on the bus 

CANx_LASTERROR ¹) BYTE CAN interface x: Error number of the last CAN 
transmission: 

0= no error 
≠0 → CAN specification → LEC 

CANx_WARNING BOOL CAN interface x: Warning threshold reached (> 96) 

DOWNLOADID WORD Currently set download identifier 

ERROR BOOL Set ERROR bit 

ERROR_BREAK_Qx BYTE Wire break error on output group x 

ERROR_IO BOOL I/O error (group bit) 

ERROR_Ix BYTE Peripheral error on input group x 

ERROR_MEMORY BOOL Memory error 

ERROR_POWER BOOL Undervoltage/overvoltage error 

ERROR_SHORT_Qx BYTE Short circuit error on output group x 

ERROR_VBBR BOOL Supply voltage error VBBR 

LED_MODE WORD Flashing frequency from the data structure 
"LED_MODES" 

SERIAL_MODE BOOL Switch-on of serial communication 

SERIALBAUDRATE WORD Baud rate of the RS-232 interface 

SUPPLY_VOLTAGE WORD Supply voltage 

TEST BOOL Enabling the programming mode 

CANx stands for the number of the CAN interface (CAN 1...x, depending on the device). 

Ix/Qx stands for the input/output group (word 0...x, depending on the device). 

¹) Access to this flags requires detailed knowledge of the CAN controller and is normally not required. 
 

 NOTE 
Only symbol names should be used for the programming since the corresponding flag addresses can 
change in case of an extension of the PLC configuration. 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Annex Overview of the files and libraries used
 

275 

12.3 Overview of the files and libraries used 
 

(as on 2 Feb. 2009) 

Depending on the unit and the desired function, different libraries and files are used. Some are 
automatically loaded, others must be inserted or loaded by the programmer. 

Installation of the files and libraries in the device: 

Factory setting: the device contains only the boot loader. 

► Load the operating system (*.H86) 

► Create the project (*.PRO) in the PC: enter the target (*.TRG) 

► (Additionally for targets before V05:) define the PLC configuration (*.CFG) 

> CoDeSys® integrates the files belonging to the target into the project: 
*.TRG, *.CFG, *.CHM, *.INI, *.LIB 

► If required, add further libraries to the project (*.LIB). 

Certain libraries automatically integrate further libraries into the project. 
Some functions in ifm libraries (ifm_*.LIB) e.g. are based on functions in CoDeSys® libraries 
(3S_*.LIB). 
 

 

12.3.1 General overview 
File name Description and memory location *) 

ifm_CRnnnn_Vxxyyzz.CFG ¹)
ifm_CRnnnn_Vxx.CFG ²) 

PLC configuration 
per device only 1 device-specific file 
inlcudes: IEC and symbolic addresses of the inputs and outputs, the flag 
bytes as well as the memory allocation 
…\CoDeSys V*\Targets\ifm\ifm_CRnnnncfg\Vxxyyzz 

CAA-*.CHM Online help 
per device only 1 device-specific file 
inlcudes: online help for this device 
…\CoDeSys V*\Targets\ifm\Help\… (language) 

ifm_CRnnnn_Vxxyyzz.H86 Operating system / runtime system 
(must be loaded into the controller / monitor when used for the first time) 
per device only 1 device-specific file 
…\CoDeSys V*\Targets\ifm\Library\ifm_CRnnnn 

ifm_Browser_CRnnnn.INI CoDeSys browser commands 
(CoDeSys® needs the file for starting the project) 
per device only 1 device-specific file 
inlcudes: commands for the browser in CoDeSys® 
…\CoDeSys V*\Targets\ifm 

ifm_Errors_CRnnnn.INI CoDeSys error file 
(CoDeSys® needs the file for starting the project) 
per device only 1 device-specific file 
inlcudes: device-specific error messages from CoDeSys®  
…\CoDeSys V*\Targets\ifm 

ifm_CRnnnn_Vxx.TRG Target file 
per device only 1 device-specific file 
inlcudes: hardware description for CoDeSys®, e.g.: memory, file locations  
…\CoDeSys V*\Targets\ifm 



 

276 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Annex Overview of the files and libraries used

File name Description and memory location *) 

ifm_*_Vxxyyzz.LIB General libraries 
per device several files are possible 
…\CoDeSys V*\Targets\ifm\Library 

ifm_CRnnnn_Vxxyyzz.LIB Device-specific library 
per device only 1 device-specific file 
inlcudes: functions of this device 
…\CoDeSys V*\Targets\ifm\Library\ifm_CRnnnn 

ifm_CRnnnn_*_Vxxyyzz.LIB Device-specific libraries 
per device several files are possible 
→ following tables 
…\CoDeSys V*\Targets\ifm\Library\ifm_CRnnnn 

Legend: 

* any signs 

CRnnnn article number of the controller / monitor 

V* CoDeSys® version 

Vxx version number of the ifm software 

yy release number of the ifm software 

zz patch number of the ifm software 

¹) valid for CRnn32 target version up to V01, all other devices up to V04 
²) valid for CRnn32  target version from V02 onwards, all other devices from V05 onwards: 

*) memory location of the files:  
System drive (C: / D:) \ program folder\ ifm electronic 
 

 NOTE: 
The software versions suitable for the selected target must always be used: 

• of the operating system (CRnnnn_Vxxyyyzz.H86), 

• of the PLC configuration (CRnnnn_Vxx.CFG), 

• of the device library (CRnnnn_Vxxyyyzz.LIB), 

• and the further files (→ chapter Overview of the files and libraries used, → page 275) 

CRnnnn device article number 
Vxx: 00...99 target version number 
yy: 00...99 release number 
zz: 00...99  patch number 

The basic file name (e.g. "CR0032") and the software version number "xx" (e.g. "02") must always have 
the same value! Otherwise the controller goes to the STOP mode. 

The values for "yy" (release number) and "zz" (patch number) do not have to match. 
 

Also note: the following files must also be loaded: 

• The for the project required internal libraries (designed in IEC1131), 

• the configuration files (*.CFG) 

• and the target files (*.TRG). 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Annex Overview of the files and libraries used
 

277 

12.3.2 What are the individual files and libraries used for? 
The following overview shows which files/libraries can and may be used with which unit. It may be 
possible that files/libraries which are not indicated in this list can only be used under certain conditions 
or the functionality has not yet been tested. 
 

 

Files for the operating system / runtime system 
File name Function  Available for: 

ifm_CRnnnn_Vxxyyzz.H86 operating system / runtime system all ecomatmobile controllers 

all PDM360 monitors 

ifm_Browser_CRnnnn.INI CoDeSys browser commands all ecomatmobile controllers 

all PDM360 monitors 

ifm_Errors_CRnnnn.INI CoDeSys error file all ecomatmobile controllers 

all PDM360 monitors 
 

 

Target file 
File name Function  Available for: 

ifm_CRnnnn_Vxx.TRG Target file all ecomatmobile controllers 

all PDM360 monitors 
 

 

PLC configuration file 
File name Function  Available for: 

ifm_CRnnnn_Vxxyyzz.CFG PLC configuration all ecomatmobile controllers 

all PDM360 monitors 
 

 

ifm device libraries 
File name Function  Available for: 

ifm_CRnnnn_Vxxyyzz.LIB device-specific library all ecomatmobile controllers 

all PDM360 monitors 

ifm_CR0200_MSTR_Vxxyyzz.LIB library without extended functions ExtendedController: CR0200 

ifm_CR0200_SMALL_Vxxyyzz.LIB library without extended functions, 
reduced functions 

ExtendedController: CR0200 

 



 

278 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Annex Overview of the files and libraries used
 

ifm CANopen libraries master / slave 
These libraries are based on the CoDeSys® libraries (3S CANopen functions) and make them 
available to the user in a simple way. 

File name Function  Available for: 

ifm_CRnnnn_CANopenMaster_Vxxyyz
z.LIB 

CANopen master emergency and status 
handler 

all ecomatmobile controllers 

all PDM360 monitors 

ifm_CRnnnn_CANopenSlave_Vxxyyzz
.LIB 

CANopen slave emergency  and status 
handler 

all ecomatmobile controllers 

all PDM360 monitors 

ifm_CANx_SDO_Vxxyyzz.LIB CANopen SDO read and SDO write PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

 

 

CoDeSys® CANopen libraries 
File name Function  Available for: 

3S_CanDrvOptTable.LIB ¹) 
3S_CanDrvOptTableEx.LIB ²) 

all ecomatmobile controllers 

PDM360 smart: CR1070, CR1071 

3S_CanDrv.LIB 

CANopen driver 

PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

3S_CANopenDeviceOptTable.LIB ¹) 
3S_CANopenDeviceOptTableEx.LIB ²) 

all ecomatmobile controllers 

PDM360 smart: CR1070, CR1071 

3S_CANopenDevice.LIB 

CANopen slave driver 

PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

3S_CANopenManagerOptTable.LIB ¹) 
3S_CANopenManagerOptTableEx.LIB ²) 

all ecomatmobile controllers 

PDM360 smart: CR1070, CR1071 

3S_CANopenManager.LIB 

CANopen network manager 

PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

3S_CANopenMasterOptTable.LIB ¹) 
3S_CANopenMasterOptTableEx.LIB ²) 

all ecomatmobile controllers 

PDM360 smart: CR1070, CR1071 

3S_CANopenMaster.LIB 

CANopen master 

PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

3S_CANopenNetVarOptTable.LIB ¹) 
3S_CANopenNetVarOptTableEx.LIB ²) 

all ecomatmobile controllers 

PDM360 smart: CR1070, CR1071 

3S_CANopenNetVar.LIB 

Driver for network variables 

PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Annex Overview of the files and libraries used
 

279 

¹) valid for CRnn32 target version up to V01, all other devices up to V04 
²) valid for CRnn32 target version from V02 onwards, all other devices from V05 onwards: 
 

 

Specific ifm libraries 
File name Function  Available for: 

ifm_J1939_Vxxyyzz.LIB J1939 communication functions up to target V04: 

CabinetController: CR0303 

ClassicController: CR0020, CR0505 

ExtendedController: CR0200 

SafetyController: CR7020, CR7200, 
CR7505 

SmartController: CR2500 

ifm_J1939_x_Vxxyyzz.LIB J1939 communication functions from target V05: 

CabinetController: CR0303 

ClassicController: CR0020, CR0505 

ExtendedController: CR0200 

SafetyController: CR7020, CR7021, 
CR7200, CR7201, CR7505, CR7506 

SmartController: CR2500 

PDM360 smart: CR1070, CR1071 

ifm_CRnnnn_J1939_Vxxyyzz.LIB J1939 communication functions ClassicController: CR0032 

ExtendedController: CR0232 

ifm_PDM_J1939_Vxxyyzz.LIB J1939 communication functions PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

ifm_CANx_LAYER2_Vxxyyzz.LIB CAN functions on the basis of layer 2: 
CAN transmit, CAN receive 

PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

ifm_CAN1E_ Vxxyyzz.LIB changes the CAN bus from 11 bits to 29 
bits 

up to target V04: 

PDM360 smart: CR1070, CR1071 

ifm_CAN1_EXT_ Vxxyyzz.LIB changes the CAN bus from 11 bits to 29 
bits 

from target V05: 

CabinetController: CR0301, CR0302, 
CR0303 

ClassicController: CR0020, CR0505 

ExtendedController: CR0200 

PCB controller: CS0015 

SafetyController: CR7020, CR7021, 
CR7200, CR7201, CR7505, CR7506 

SmartController: CR2500 

PDM360 smart: CR1070, CR1071 



 

280 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Annex Overview of the files and libraries used

File name Function  Available for: 

CR2013AnalogConverter.LIB analogue value conversion for I/O module 
CR2013 

all ecomatmobile controllers 

all PDM360 monitors 

ifm_Hydraulic_16bitOS04_Vxxyyzz.LI
B 

hydraulic functions for R360 controllers up to target V04: 

ClassicController: CR0020, CR0505 

ExtendedController: CR0200 

SafetyController: CR7020, CR7200, 
CR7505 

SmartController: CR2500 

ifm_Hydraulic_16bitOS05_Vxxyyzz.LI
B 

hydraulic functions for R360 controllers from target V05: 

ClassicController: CR0020, CR0505 

ExtendedController: CR0200 

SafetyController: CR7020, CR7021, 
CR7200, CR7201, CR7505, CR7506 

SmartController: CR2500 

ifm_Hydraulic_32bit_Vxxyyzz.LIB hydraulic functions for R360 controllers ClassicController: CR0032 

ExtendedController: CR0232 

ifm_SafetyIO_Vxxyyzz.LIB safety functions all ecomatmobile SafetyControllers 

ifm_PDM_Util_Vxxyyzz.LIB help functions PDM PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

ifm_PDMsmart_Util_Vxxyyzz.LIB help functions PDM PDM360 smart: CR1070, CR1071 

ifm_PDM_Input_Vxxyyzz.LIB alternative input functions PDM all PDM360 monitors 

ifm_PDM_Init_Vxxyyzz.LIB initialisation function PDM360 smart PDM360 smart: CR1070, CR1071 

ifm_PDM_File_Vxxyyzz.LIB file functions PDM360 PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

Instrumente_x.LIB predefined display instruments all PDM360 monitors 

Symbols_x.LIB predefined symbols PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

Segment_x.LIB predefined 7-segment displays PDM360: CR1050, CR1051, CR1060 

PDM360 compact: CR1052, CR1053, 
CR1055, CR1056 

Further libraries on request. 
 

 



 

281 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  

13 Glossary of 
Terms 

A 

Address 
This is the "name" of the bus participant. All 
participants need a unique address so that the 
signals can be exchanged without problem. 
 

 

Application software 
Software specific to the application, 
implemented by the machine manufacturer, 
generally containing logic sequences, limits 
and expressions that control the appropriate 
inputs, outputs, calculations and decisions 

Necessary to meet the specific (→SRP/CS) 
requirements. 
→ Programming language, safety-related 
 

 

Architecture 
Specific configuration of hardware and 
software elements in a system. 
 

 

B 

Baud 
Baud, abbrev.: Bd = unit for the data 
transmission speed. Do not confuse baud with 
"bits per second" (bps, bits/s). Baud indicates 
the number of changes of state (steps, cycles) 
per second over a transmission length. But it is 
not defined how many bits per step are 
transmitted. The name baud can be traced 
back to the French inventor J. M. Baudot 
whose code was used for telex machines. 

1 MBd = 1024 x 1024 Bd = 1 048 576 Bd 
 

 

Bus 
Serial data transmission of several participants 
on the same cable. 
 

 

C 

CAN 
CAN = Controller Area Network 

CAN is a priority controlled fieldbus system for 
larger data volumes. It is available in different 
variants, e.g. "CANopen" or "CAN in 
Automation" (CiA). 
 

 

Category (CAT) 
Classification of the safety-related parts of a 
control system in respect of their resistance to 
faults and their subsequent behaviour in the 
fault condition. This safety is achieved by the 
structural arrangement of the parts, fault 
detection and/or by their reliability. 
(→ EN 954). 
 

 

CCF 
Common Cause Failure 
Failures of different items, resulting from a 
common event, where these failures are not 
consequences of each other. 
 

 

CiA 
CiA = CAN in Automation e.V. 

User and manufacturer organisation in 
Germany / Erlangen. Definition and control 
body for CAN and CAN-based network 
protocols. 

Homepage → http://www.can-cia.org 
 

 

CiA DS 304 
DS = Draft Standard 

CAN device profile CANopen safety for safety-
related communication. 
 

 

CiA DS 401 
DS = Draft Standard 

CAN device profile for digital and analogue I/O 
modules 
 

 



 

282 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  

CiA DS 402 
DS = Draft Standard 

CAN device profile for drives 
 

 

CiA DS 403 
DS = Draft Standard 

CAN device profile for HMI 
 

 

CiA DS 404 
DS = Draft Standard 

CAN device profile for measurement and 
control technology 
 

 

CiA DS 405 
DS = Draft Standard 

Specification for interface to programmable 
controllers (IEC 61131-3) 
 

 

CiA DS 406 
DS = Draft Standard 

CAN device profile for encoders 
 

 

CiA DS 407 
DS = Draft Standard 

CAN application profile for local public 
transport 
 

 

Clamp 15 
In vehicles clamp 15 is the plus cable switched 
by the ignition lock. 
 

 

COB-ID 
COB = Communication Object  
ID = Identifier 

Via the COB-ID the participants distinguish the 
different messages to be exchanged. 
 

 

CoDeSys 
CoDeSys® is a registered trademark of 3S – 
Smart Software Solutions GmbH, Germany. 

"CoDeSys for Automation Alliance" associates 
companies of the automation industry whose 
hardware devices are all programmed with the 
widely used IEC 61131-3 development tool 
CoDeSys®. 

Homepage → http://www.3s-software.com 
 

 

Cycle time 
This is the time for a cycle. The PLC program 
performs one complete run. 

Depending on event-controlled branchings in 
the program this can take longer or shorter. 
 

 

D 

DC 
Direct Current 
 

 

DC 
Diagnostic Coverage 
Diagnostic coverage is the measure of the 
effectiveness of diagnostics as the ratio 
between the failure rate of detected dangerous 
failures and the failure rate of total dangerous 
failures: 

Formula: DC = failure rate detected dangerous failures / 
total dangerous failures 

Designation Range 

none DC < 60 % 

low 60 % < DC < 90 % 

medium 90 % < DC < 99 % 

high 99 % < DC 

Table: Diagnostic coverage DC 

An accuracy of 5 % is assumed for the limit 
values shown in the table. 

Diagnostic coverage can be determined for the 
whole safety-related system or for only parts of 
the safety-related system. 
 

 

http://www.3s-software.com/�


ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  
 

283 

Demand rate rd 
The demand rate rd is the frequency of 
demands to a safety-related reaction of an 
SRP/CS per time unit. 
 

 

Diagnostic coverage 
Diagnostic Coverage 
Diagnostic coverage is the measure of the 
effectiveness of diagnostics as the ratio 
between the failure rate of detected dangerous 
failures and the failure rate of total dangerous 
failures: 

Formula: DC = failure rate detected dangerous failures / 
total dangerous failures 

Designation Range 

none DC < 60 % 

low 60 % < DC < 90 % 

medium 90 % < DC < 99 % 

high 99 % < DC 

Table: Diagnostic coverage DC 

An accuracy of 5 % is assumed for the limit 
values shown in the table. 

Diagnostic coverage can be determined for the 
whole safety-related system or for only parts of 
the safety-related system. 
 

 

Dither 
Dither is a component of the PWM signals to 
control hydraulic valves. It has shown for 
electromagnetic drives of hydraulic valves that 
it is much easier for controlling the valves if the 
control signal (PWM pulse) is superimposed by 
a certain frequency of the PWM frequency. 
This dither frequency must be an integer part 
of the PWM frequency. 
→ chapter What is the dither? (→ page 180) 
 

 

Diversity 
In technology diversity is a strategy to increase 
failure safety. 

The systems are designed redundantly, 
however different implementations are used 
intentionally and not any individual systems of 
the same design. It is assumed that systems of 
the same performance, however of different 
implementation, are sensitive or insensitive to 
different interference and will therefore not fail 
simultaneously. 

The actual implementation may vary according 
to the application and the requested safety: 

• use of components of several 
manufacturers, 

• use of different protocols to control 
devices, 

• use of totally different technologies, for 
example an electrical and a pneumatic 
controller, 

• use of different measuring methods 
(current, voltage), 

• two channels with reverse value 
progression: 
channel A: 0...100 % 
channel B: 100...0 % 

 

 

E 

EDS-file 
EDS = Electronic Data Sheet, e.g. for: 

• File for the object directory in the master 

• CANopen device descriptions 

Via EDS devices and programs can exchange 
their specifications and consider them in a 
simplified way. 
 

 

Embedded software 
System software, basic program in the device, 
virtually the operating system. 

The firmware establishes the connection 
between the hardware of the device and the 
user software. This software is provided by the 
manufacturer of the controller as a part of the 
system and cannot be changed by the user. 
 

 

EMCY 
abbreviation for emergency  
 

 

EMV 
EMC = Electro Magnetic Compatibility 

According to the EC directive (2004/108/EEC) 
concerning electromagnetic compatibility (in 
short EMC directive) requirements are made 
for electrical and electronic apparatus, 
equipment, systems or components to operate 
satisfactorily in the existing electromagnetic 



 

284 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  

environment. The devices must not interfere 
with their environment and must not be 
adversely influenced by external 
electromagnetic interference. 
 

 

Ethernet 
Ethernet is a widely used, manufacturer-
independent technology which enables data 
transmission in the network at a speed of 10 or 
100 million bits per second (Mbps). Ethernet 
belongs to the family of so-called "optimum 
data transmission" on a non exclusive 
transmission medium. The concept was 
developed in 1972 and specified as 
IEEE 802.3 in 1985.  
 

 

EUC 
EUC = "Equipment Under Control"  

EUC is equipment, machinery, apparatus or 
plant used for manufacturing, process, 
transportation, medical or other activities 
(→ IEC 61508-4, section 3.2.3). Therefore, the 
EUC is the set of all equipment, machinery, 
apparatus or plant that gives rise to hazards 
for which the safety-related system is required.  

If any reasonably foreseeable action or 
inaction leads to hazards with an intolerable 
risk arising from the EUC, then safety functions 
are necessary to achieve or maintain a safe 
state for the EUC. These safety functions are 
performed by one or more safety-related 
systems. 
 

 

F 

Failure 
Failure is the termination of the ability of an 
item to perform a required function. 

After a failure, the item has a fault. Failure is 
an event, fault is a state. 

The concept as defined does not apply to 
items consisting of software only. 
 

 

Failure, dangerous 
A dangerous failure has the potential to put the 
SRP/SC in a hazardous or fail-to-function 
state. Whether or not the potential is realized 
can depend on the channel architecture of the 
system; in redundant systems a dangerous 

hardware failure is less likely to lead to the 
overall dangerous or fail-to-function state. 
 

 

Failure, systematic 
A systematic failure is a failure related in a 
deterministic way (not coincidental) to a certain 
cause. The systematic failure can only be 
eliminated by a modification of the design or of 
the manufacturing process, operational 
procedures, documentation or other relevant 
factors. 

Corrective maintenance without modification of 
the system will usually not eliminate the failure 
cause. 
 

 

Fault 
A fault is the state of an item characterized by 
the inability to perform the requested function, 
excluding the inability during preventive 
maintenance or other planned actions, or due 
to lack of external resources. 

A fault is often the result of a failure of the item 
itself, but may exist without prior failure. 

In ISO 13849-1 "fault" means "random fault". 
 

 

Fault tolerance time 
The max. time it may take between the 
occurrence of a fault and the establishment of 
the safe state in the application without having 
to assume a danger for people.  

The max. cycle time of the application program 
(in the worst case 100 ms, → Watchdog, 
→ page 44) and the possible delay and 
response times due to switching elements 
have to be considered. 

The resulting total time must be smaller than 
the fault tolerance time of the application. 
 

 

Firmware 
System software, basic program in the device, 
virtually the operating system. 

The firmware establishes the connection 
between the hardware of the device and the 
user software. This software is provided by the 
manufacturer of the controller as a part of the 
system and cannot be changed by the user. 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  
 

285 

First fault occurrence time 
Time until the first failure of a safety element. 

The operating system verifies the controller by 
means of the internal monitoring and test 
routines within a period of max. 30 s. 

This "test cycle time" must be smaller than the 
statistical first fault occurrence time for the 
application. 
 

 

Functional safety 
Part of the overall safety referred to the →EUC 
and the EUC control system which depends on 
the correct functioning of the electric or 
electronic safety-related system, safety-related 
systems of other technologies and external 
devices for risk reduction.                 
 

 

H 

Harm 
Physical injury or damage to health. 
 

 

Hazard 
Hazard is the potential source of harm. 

A distinction is made between the source of 
the hazard, e.g.: 
- mechanical hazard, 
- electrical hazard, 
or the nature of the potential harm, e.g.: 
- electric shock hazard, 
- cutting hazard, 
- toxic hazard. 

The hazard envisaged in this definition is either 
permanently present during the intended use 
of the machine, e.g.: 
- motion of hazardous moving elements, 
- electric arc during a welding phase, 
- unhealthy posture, 
- noise emission, 
- high temperature, 
or the hazard may appear unexpectedly, e.g.: 
- explosion, 
- crushing hazard as a consequence of an 
unintended/unexpected start-up, 
- ejection as a consequence of a breakage, 
- fall as a consequence of 
acceleration/deceleration. 
 

 

Heartbeat 
The participants regularly send short signals. 
In this way the other participants can verify if a 
participant has failed. No master is necessary. 
 

 

I 

ID 
ID = Identifier  

Name to differentiate the devices / participants 
connected to a system or the message 
packets transmitted between the participants. 
 

 

Instructions 
Superordinate word for one of the following 
terms: 
installation instructions, data sheet, user 
information, operating instructions, device 
manual installation information, online help, 
system manual, programming manual, etc. 
 

 

Intended use 
Use of a product in accordance with the 
information provided in the instructions for use. 
 

 

IP address 
IP = Internet Protocol 

The IP address is a number which is 
necessary to clearly identify an internet 
participant. For the sake of clarity the number 
is written in 4 decimal values, e.g. 
127.215.205.156. 
 

 

L 

LED 
LED = Light Emitting Diode 

Light emitting diode, also called luminescent 
diode, an electronic element of high coloured 
luminosity at small volume with negligible 
power loss. 
 

 

Life, mean 
Mean Time To Failure (MTTF) or: mean life. 



 

286 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  

The MTTFd is the expectation of the mean time 
to dangerous failure. 

Designation Range 

low 3 years < MTTFd < 10 years 

medium 10 years < MTTFd < 30 years 

high 30 years < MTTFd < 100 years 

Table: Mean time of each channel to the dangerous failure 
MTTFd 
 

 

Link 
A link is a cross-reference to another part in 
the document or to an external document. 
 

 

M 

MAC-ID 
MAC = Manufacturer‘s Address Code = 
manufacturer's serial number 
→ID = Identifier  

Every network card has a MAC address, a 
clearly defined worldwide unique numerical 
code, more or less a kind of serial number. 
Such a MAC address is a sequence of 
6 hexadecimal numbers, e.g. "00-0C-6E-D0-
02-3F".  
 

 

Master 
Handles the complete organisation on the bus. 
The master decides on the bus access time 
and polls the →slaves cyclically. 
 

 

Mission time TM 
Mission time TM is the period of time covering 
the intended use of an SRP/CS. 
 

 

Misuse 
The use of a product in a way not intended by 
the designer. 

The manufacturer of the product has to warn 
against readily predictable misuse in his user 
information. 
 

 

Monitoring 
Safety function which ensures that a protective 
measure is initiated:  

• if the ability of a component or an element 
to perform its function is diminished. 

• if the process conditions are changed in 
such a way that the resulting risk 
increases. 

 

 

MTBF 
Mean Time Between Failures (MTBF)  
Is the expected value of the operating time 
between two consecutive failures of items that 
are maintained. 

NOTE: For items that are NOT maintained the 
mean life →MTTF is the expected value (mean 
value) of the distribution of lives. 
 

 

MTTF 
Mean Time To Failure (MTTF) or: mean life. 
 

 

MTTFd 
Mean Time To Failure (MTTF) or: mean life. 

The MTTFd is the expectation of the mean time 
to dangerous failure. 

Designation Range 

low 3 years < MTTFd < 10 years 

medium 10 years < MTTFd < 30 years 

high 30 years < MTTFd < 100 years 

Table: Mean time of each channel to the dangerous failure 
MTTFd 
 

 

Muting 
Muting is the temporary automatic suspension 
of a safety function(s) by the SRP/CS. 

Example: The safety light curtain is bridged, if 
the closing tools have reached a finger-proof 
distance to each other. The operator can now 
approach the machine without any danger and 
guide the workpiece. 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  
 

287 

N 

NMT 
NMT = Network Management = (here: in the 
CAN bus) 

The NMT master controls the operating states 
of the NMT slaves. 
 

 

Node 
This means a participant in the network. 
 

 

Node Guarding 
Network participant 

Configurable cyclic monitoring of each slave 
configured accordingly. The master verfies if 
the slaves reply in time. The slaves verify if the 
master regularly sends requests. In this way 
failed network participants can be quickly 
identified and reported. 
 

 

O 

Obj / object 
Term for data / messages which can be 
exchanged in the CANopen network. 
 

 

Object directory 
Contains all CANopen communication 
parameters of a device as well as device-
specific parameters and data. 
 

 

OBV 
Contains all CANopen communication 
parameters of a device as well as device-
specific parameters and data. 

 
 

Operating system 
Basic program in the device, establishes the 
connection between the hardware of the 
device and the user software. 
 

 

Operational 
Operating state of a CANopen participant. In 
this mode SDOs, NMT commands and PDOs 
can be transferred. 
 

 

P 

PC card 
→PCMCIA card 
 

 

PCMCIA card 
PCMCIA = Personal Computer Memory Card 
International Association, a standard for 
expansion cards of mobile computers. 
Since the introduction of the cardbus standard 
in 1995 PCMCIA cards have also been called 
PC card. 
 

 

PDO 
PDO = Process Data Object  

The time-critical process data is transferred by 
means of the "process data objects" (PDOs). 
The PDOs can be freely exchanged between 
the individual nodes (PDO linking). In addition 
it is defined whether data exchange is to be 
event-controlled (asynchronous) or 
synchronised. Depending on the type of data 
to be transferred the correct selection of the 
type of transmission can lead to considerable 
relief for the CAN bus. 

These services are not confirmed by the 
protocol, i.e. it is not checked whether the 
message reaches the receiver. Exchange of 
network variables corresponds to a "1 to 
n connection" (1 transmitter to n receivers). 
 

 

Performance Level 
Performance Level 
According to ISO 13849-1, a specification 
(PL a...e) of safety-related parts of control 
systems to perform a safety function under 
foreseeable conditions. 
 

 

PES 
Programmable Electronic System 
A programmable electronic system is a system 
... 
- for control, protection or monitoring, 



 

288 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  

- dependent for its operation on one or more 
programmable electronic devices, 
- including all elements of the system such as 
input and output devices. 
 

 

Pictogram 
Pictograms are figurative symbols which 
convey information by a simplified graphic 
representation.  

→ Chapter What do the symbols and formats 
stand for? (→ page 7) 
 

 

PL 
Performance Level 
According to ISO 13849-1, a specification 
(PL a...e) of safety-related parts of control 
systems to perform a safety function under 
foreseeable conditions. 
 

 

PLr 
Using the "required performance level" PLr the 
risk reduction for each safety function 
according to ISO 13849 is achieved. 

For each selected safety function to be carried 
out by a SRP/CS, a PLr shall be determined 
and documented. The determination of the PLr 
is the result of the risk assessment and refers 
to the amount of the risk reduction. 
 

 

Pre-Op 
Pre-Op = Preoperational mode  

Operating status of a CANopen participant. 
After application of the supply voltage each 
participant automatically passes into this state. 
In the CANopen network only SDOs and NMT 
commands can be transferred in this mode but 
no process data. 
 

 

prepared 
Operating status of a CANopen participant. In 
this mode only NMT commands are 
transferred.  
 

 

Programming language, safety-
related 
Only the following programming languages 
shall be used for safety-related applications: 

• Limited variability language (LVL) that 
provides the capability of combining 
predefined, application-specific library 
functions. 
In CoDeSys these are LD (ladder diagram) 
and FBD (function block diagram). 

• Full variability language (FVL) provides the 
capability of implementing a wide variety of 
functions. 
These include e.g. C, C++, Assembler. In 
CoDeSys it is ST (structured text). 

► Structured text is recommended 
exclusively in separate, certified functions, 
usually in embedded software. 

► In the "normal" application program only 
LD and FBD should be used. The following 
minimum requirements shall be met. 

In general the following minimum requirements 
are made on the safety-related application 
software (SRASW): 

► Modular and clear structure of the 
program. Consequence: simple testability. 

► Functions are represented in a 
comprehensible manner: 
- for the operator on the screen 
(navigation) 
- readability of a subsequent print of the 
document. 

► Use symbolic variables (no IEC 
addresses). 

► Use meaningful variable names and 
comments. 

► Use easy functions (no indirect 
addressing, no variable fields). 

► Defensive programming. 

► Easy extension or adaptation of the 
program possible. 

 

 

Protective measure 
Measure intended to achieve risk reduction, 
e.g.: 
- fault-excluding design, 
- safeguarding  measures (guards), 
- complementary protective measures (user 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  
 

289 

information), 
- personal protective equipment (helmet, 
protective goggles). 
 

 

PWM 
PWM = pulse width modulation 

Via PWM a digital output (capability provided 
by the device) can provide an almost analogue 
voltage by means of regular fast pulses. The 
PWM output signal is a pulsed signal between 
GND and supply voltage.  

Within a defined period (PWM frequency) the 
mark-to-space ratio is varied. Depending on 
the mark-to-space ratio, the connected load 
determines the corresponding RMS current. 
→ chapter PWM signal processing 
(→ page 161) 
→ chapter What does a PWM output do? 
(→ page 179) 
 

 

R 

Ratio 
Measurements can also be performed 
ratiometrically. The input signal generates an 
output signal which is in a defined ratio to the 
input signal. This means that analogue input 
signals can be evaluated without additional 
reference voltage. A fluctuation of the supply 
voltage has no influence on this measured 
value. 
→ Chapter Counter functions (→ page 200) 
 

 

redundant 
Redundancy is the presence of more than the 
necessary means so that a function unit 
performs a requested function or that data can 
represent information. 

Several kinds of redundancy are distinguished: 

• Functional redundancy aims at designing 
safety-related systems in multiple ways in 
parallel so that in the event of a failure of 
one component the others ensure the task. 

• In addition it is tried to separate redundant 
systems from each other with regard to 
space. Thus the risk that they are affected 
by a common interference is minimised. 

• Finally, components from different 
manufacturers are sometimes used to 

avoid that a systematic fault causes all 
redundant systems to fail (diverse 
redundancy). 

The software of redundant systems should 
differ in the following aspects: 

• specification (different teams), 

• specification language, 

• programming (different teams), 

• programming language, 

• compiler. 
 

 

remanent 
Remanent data is protected against data loss 
in case of power failure.  

The operating system for example 
automatically copies the remanent data to a 
flash memory as soon as the voltage supply 
falls below a critical value. If the voltage supply 
is available again, the operating system loads 
the remanent data back to the RAM memory. 

The data in the RAM memory of a controller, 
however, is volatile and normally lost in case of 
power failure. 
 

 

Reset, manual 
The manual reset is an internal function within 
the SRP/CS used to restore manually one or 
more safety functions before re-starting a 
machine. 
 

 

Residual risk 
Risk remaining after protective measures have 
been taken. The residual risk has to be clearly 
warned against in operating instructions and 
on the machine. 
 

 

Risk 
Combination of the probability of occurrence of 
harm and the severity of that harm. 
 

 

Risk analysis 
Combination of ...  

• the specification of the limits of the 
machine (intended use, time limits), 



 

290 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  

• hazard identification (intervention of 
people, operating status of the machine, 
foreseeable misuse) and  

• the risk estimation (degree of injury, extent 
of damage, frequency and duration of the 
risk, probability of occurrence, possibility of 
avoiding the hazard or limiting the harm). 

 

 

Risk assessment 
Overall process comprising risk analysis and 
risk evaluation. 

According to Machinery Directive 2006/42/EU 
the following applies: "The manufacturer of 
machinery or his authorised representative 
must ensure that a risk assessment is carried 
out in order to determine the health and safety 
requirements which apply to the machinery. 
The machinery must then be designed and 
constructed taking into account the results of 
the risk assessment." (→ Annex 1, General 
principles) 
 

 

Risk evaluation 
Judgement, on the basis of the risk analysis, of 
whether risk reduction objectives have been 
achieved. 
 

 

ro 
RO = read only for reading only 

Unidirectional data transmission: Data can only 
be read and not changed. 
 

 

rw 
RW = read/ write  

Bidirectional data transmission: Data can be 
read and also changed. 
 

 

S 

Safety function 
Function of the machine whose failure can 
result in an immediate increase of the risk(s). 
The designer of such a machine therefore has 
to: 
- safely prevent a failure of the safety function, 
- reliably detect a failure of the safety function 
in time, 

- bring the machine into a safe state in time in 
the event of a failure of the safety function. 
 

 

Safety-standard types 
The safety standards in the field of machines 
are structured as below: 

Type-A standards (basic safety standards)  
giving basic concepts, principles for design, 
and general aspects that can be applied to all 
machinery. Examples: basic terminology, 
methodology (ISO 12100-1), technical 
principles (ISO 12100-2), risk assessment 
(ISO 14121), ... 

Type-B standards (generic safety standards) 
dealing with one safety aspect or one type of 
safeguard that can be used across a wide 
range of machinery. 

• Type-B1 standards on particular safety 
aspects. Examples: safety distances 
(EN 294), hand/arm speeds  (EN 999), 
safety-related parts of control systems 
(ISO 13849), temperatures, noise, ... 

• Type-B2 standards on safeguards. 
Examples: emergency stop circuits 
((ISO 13850), two-hand controls, 
interlocking devices or electro-sensitive 
protective equipment  (ISO 61496), ... 

Type-C standards (machine safety standards) 
dealing with detailed safety requirements for a 
particular machine or group of machines. 
 

 

SCT 
In CANopen safety the Safeguard Cycle Time 
(SCT) monitors the correct function of the 
periodic transmission (data refresh) of the 
SRDOs. The data must have been repeated 
within the set time to be valid. Otherwise the 
receiving controller signals a fault and passes 
into the safe state (= outputs switched off). 
 

 

SDO 
SDO = Service Data Object. 

SDO is a specification for a manufacturer-
dependent data structure for standardised data 
access. "Clients" ask for the requested data 
from "servers". The SDOs always consist of 
8 bytes. Longer data packages are distributed 
to several messages. 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  
 

291 

Examples: 

• Automatic configuration of all slaves via 
SDOs at the system start, 

• reading error messages from the object 
directory. 

Every SDO is monitored for a response and 
repeated if the slave does not respond within 
the monitoring time. 
 

 

SIL 
According to IEC 62061 the safety-integrity 
level SIL is a classification (SIL CL 1...4) of the 
safety integrity of the safety functions. It is 
used for the evaluation of 
electrical/electronic/programmable electronic 
(E/E/EP) systems with regard to the reliability 
of safety functions. The safety-related design 
principles that have to be adhered to so that 
the risk of a malfunction can be minimised 
result from the required level. 
 

 

Slave 
Passive participant on the bus, only replies on 
request of the →master. Slaves have a clearly 
defined and unique →address in the bus.  
 

 

SRDO 
Safe data is exchanged via SRDOs (Safety-
Related Data Objects). An SRDO always 
consists of two CAN messages with different 
identifiers: 

• message 1 contains the original user data, 

• message 2 contains the same data which 
are inverted bit by bit. 

 

 

SRP/CS 
Safety-Related Part of a Control System 

Part of a control system that responds to 
safety-related input signals and generates 
safety-related output signals. The combined 
safety-related parts of a control system start at 
the point where the safety-related input signals 
are initiated (including, for example, the 
actuating cam and the roller of the position 
switch) and end at the output of the power 
control elements (including, for example, the 
main contacts of a contactor). 
 

 

SRVT 
The SRVT (Safety-Related Object Validation 
Time) ensures with CANopen safety that the 
time between the SRDO-message pairs is 
adhered to. 

Only if the redundant, inverted message has 
been transmitted after the original message 
within the SRVT set are the transmitted data 
valid. Otherwise the receiving controller signals 
a fault and will pass into the safe state 
(= outputs switched off). 
 

 

State, safe 
The state of a machine is said to be safe when 
there is no more hazard formed by it. This is 
usually the case if all possible dangerous 
movements are switched off and cannot start 
again unexpectedly. 
 

 

Symbols 
Pictograms are figurative symbols which 
convey information by a simplified graphic 
representation.  

→ Chapter What do the symbols and formats 
stand for? (→ page 7) 
 

 

T 

Target 
The target indicates the target system where 
the PLC program is to run. The target contains 
the files (drivers and if available specific help 
files) required for programming and parameter 
setting. 
 

 

TCP 
The Transmission Control Protocol is part of 
the TCP/IP protocol family. Each TCP/IP data 
connection has a transmitter and a receiver. 
This principle is a connection-oriented data 
transmission. In the TCP/IP protocol family the 
TCP as the connection-oriented protocol 
assumes the task of data protection, data flow 
control and takes measures in the event of 
data loss.  

(compare: →UDP) 
 

 



 

292 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Glossary of Terms  

Template 
A template can be filled with content. 
Here: A structure of pre-configured software 
elements as basis for an application program. 
 

 

Test rate rt 
The test rate rt is the frequency of the 
automatic tests to detect errors in an SRP/CS 
in time. 
 

 

U 

UDP 
UDP (User Datagram Protocol) is a minimal 
connectionless network protocol which belongs 
to the transport layer of the internet protocol 
family. The task of UDP is to ensure that data 
which is transmitted via the internet is passed 
to the right application. 

At present network variables based on CAN 
and UDP are implemented. The values of the 
variables are automatically exchanged on the 
basis of broadcast messages. In UDP they are 
implemented as broadcast messages, in CAN 
as PDOs. These services are not confirmed by 
the protocol, i.e. it is not checked whether the 
message is received. Exchange of network 
variables corresponds to a "1 to n connection" 
(1 transmitter to n receivers). 
 

 

Uptime, mean 
Mean Time Between Failures (MTBF)  
Is the expected value of the operating time 
between two consecutive failures of items that 
are maintained. 

NOTE: For items that are NOT maintained the 
mean life →MTTF is the expected value (mean 
value) of the distribution of lives. 
 

 

Use, intended 
Use of a product in accordance with the 
information provided in the instructions for use. 

 
 

W 

Watchdog 
In general the term watchdog is used for a 
component of a system which watches the 
function of other components. If a possible 
malfunction is detected, this is either signalled 
or suitable program branchings are activated. 
The signal or branchings serve as a trigger for 
other co-operating system components to 
solve the problem. 
 

 

wo 
WO = write only  

Unidirectional data transmission: Data can only 
be changed and not read. 
 

 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Index  
 

293 

14 Index 
About the ifm templates ................................. 17, 18 

About this manual .................................................. 7 

Above-average stress ........................................... 42 

Access to the CAN device at runtime ................ 107 

Access to the OD entries by the application 
program.............................................................. 107 

Access to the status of the CANopen master ....... 97 

Access to the structures at runtime of the 
application.......................................................... 128 

Activating the PLC configuration ........................ 15 

Adapting analogue values .................................. 253 

Add and configure CANopen slaves............ 89, 106 

Address .............................................................. 283 

Address assignment inputs / outputs .................. 272 

Addresses / variables of the I/Os........................ 272 

Address assignment and I/O operating modes ... 272 

Analogue inputs ................................................... 31 

Analogue inputs ANALOG4...7 (%IW6...%IW9) ...
............................................................................. 31 

Annex..................................................... 13, 29, 271 

Application software .......................................... 283 

Applications ....................................................... 201 

Architecture........................................................ 283 

Automatic data backup....................................... 216 

Available memory................................................ 44 

Baud ................................................................... 283 

Boot up of the CANopen master .......................... 94 

Boot up of the CANopen slaves........................... 95 

Bus ..................................................................... 283 

Bus cable length ................................................... 53 

Bus level .............................................................. 52 

Calculation examples RELOAD value .............. 163 

Calculation of the RELOAD value .................... 162 

CAN................................................................... 283 

CAN device.................................................. 83, 100 

CAN device configuration ................................. 101 

CAN errors and error handling ...................... 51, 55 

CAN in the ecomatmobile controller ................... 47 

CAN interfaces .................................................... 48 

CAN network variables...........................48, 83, 108 

CAN-ID ..........................................................49, 50 

CANopen master.....................................83, 85, 127 

CANopen support by CoDeSys ........................... 83 

CANopen terms and implementation................... 84 

Category (CAT) ................................................. 283 

CCF.................................................................... 283 

Change the PDO properties at runtime .............. 107 

Changing the standard mapping by the  
master configuration .......................................... 106 

CiA..................................................................... 283 

CiA DS 304........................................................ 283 

CiA DS 401........................................................ 283 

CiA DS 402........................................................ 284 

CiA DS 403........................................................ 284 

CiA DS 404........................................................ 284 

CiA DS 405........................................................ 284 

CiA DS 406........................................................ 284 

CiA DS 407........................................................ 284 

Clamp 15............................................................ 284 

COB-ID.............................................................. 284 

CoDeSys ............................................................ 284 

CoDeSys® CANopen libraries .......................... 278 

Configuration of CAN network variables .......... 108 

Configurations ..................................................... 13 

Configure inputs .................................................. 29 

Configure outputs ................................................ 33 

Control hydraulic valves with current-controlled 
outputs................................................................ 179 

Controlled system with delay............................. 257 

Controlled system without inherent regulation ........
........................................................................... 257 

Controller functions in the ecomatmobile controller
........................................................................... 256 

Counter functions for frequency and period 
measurement .......................................200, 273, 291 

Create a CANopen project ................................... 86 

Current control with PWM .........................172, 273 

Current measurement with PWM channels........ 172 



 

294 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Index  

Cycle time .......................................................... 284 

Damping of overshoot........................................ 258 

Data access and data check ................................ 223 

Data reception ...................................................... 50 

Data transmission................................................. 50 

DC...................................................................... 284 

DEBUG mode...................................................... 38 

Demand rate rd................................................... 285 

Demo program for controller ............................... 25 

Demo program for PDM:..................................... 27 

Description of the CAN functions........................ 58 

Diagnostic coverage........................................... 285 

Differentiation from other CANopen libraries..... 85 

Digital and PWM outputs .................................... 33 

Digital input group I0...I3 (%IX0.0...%IX1.8)..... 32 

Digital inputs........................................................ 29 

Dither ................................................................. 285 

Dither frequency and amplitude......................... 181 

Diversity............................................................. 285 

EDS-file ............................................................. 285 

Embedded software............................................ 285 

EMCY................................................................ 285 

EMV................................................................... 285 

Error codes and diagnostic information ............... 39 

Error counter ........................................................ 56 

Error message....................................................... 55 

Ethernet .............................................................. 286 

EUC ................................................................... 286 

Example 1 .......................................................... 255 

Example 2 .......................................................... 255 

Example Dither .................................................. 182 

Example for CHECK_DATA ............................ 231 

Example Initialisation of 
CANx_RECEIVE_RANGE in 4 cycles......... 76, 78 

Example of an object directory .......................... 101 

Example process for response to a system error ......
............................................................................. 41 

Example with function 
CANx_MASTER_SEND_EMERGENCY........ 122 

Example with function CANx_MASTER_STATUS
........................................................................... 127 

Example with function 
CANx_SLAVE_SEND_EMERGENCY ........... 135 

Examples NORM_HYDRAULIC ..................... 199 

Exchange of CAN data ...................................49, 51 

Failure ................................................................ 286 

Failure, dangerous.............................................. 286 

Failure, systematic ............................................. 286 

Fast inputs ............................................................ 30 

Fatal error............................................................. 35 

Fault ................................................................... 286 

Fault tolerance time ........................................... 286 

Files for the operating system / runtime system.......
........................................................................... 277 

Firmware............................................................ 286 

First fault occurrence time ................................. 287 

Folder structure in general ................................... 19 

Function CAN1_BAUDRATE ...............58, 59, 107 

Function CAN1_DOWNLOADID ...................... 61 

Function CAN1_EXT ...................................63, 107 

Function CAN1_EXT_ERRORHANDLER........ 69 

Function CAN1_EXT_RECEIVE ....................... 67 

Function CAN1_EXT_TRANSMIT.................... 65 

Function CAN2.........................................58, 70, 81 

Function CANx_ERRORHANDLER.................. 81 

Function CANx_EXT_RECEIVE_ALL.............. 79 

Function CANx_MASTER_EMCY_HANDLER
....................................................................114, 118 

Function CANx_MASTER_SEND_EMERGENCY
....................................................................114, 120 

Function CANx_MASTER_STATUS.....................
..........................92, 93, 94, 95, 96, 97, 98, 123, 127 

Function CANx_RECEIVE ................49, 50, 74, 76 

Function CANx_RECEIVE_RANGE ................. 76 

Function CANx_SDO_READ ......................86, 140 

Function CANx_SDO_WRITE ....................86, 142 

Function CANx_SLAVE_EMCY_HANDLER.......
....................................................100, 107, 114, 131 

Function CANx_SLAVE_NODEID...........107, 130 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Index  
 

295 

Function CANx_SLAVE_SEND_EMERGENCY
....................................................100, 107, 114, 133 

Function CANx_SLAVE_STATUS .......... 107, 136 

Function CANx_TRANSMIT.................. 49, 50, 72 

Function CHECK_DATA.................................. 230 

Function configuration of the inputs and outputs.....
............................................................................. 29 

Function CONTROL_OCC ....................... 182, 183 

Function DELAY............................................... 260 

Function E2READ ..................................... 216, 222 

Function E2WRITE ................................... 216, 221 

Function FAST_COUNT............................. 30, 213 

Function FLASHREAD............................. 216, 220 

Function FLASHWRITE ........................... 216, 218 

Function FREQUENCY ...................... 30, 201, 202 

Function GET_IDENTITY ................................ 226 

Function GLR .................................................... 269 

Function INC_ENCODER................................. 210 

Function INPUT_ANALOG........................ 31, 249 

Function INPUT_CURRENT ............................ 252 

Function INPUT_VOLTAGE............................ 251 

Function J1939_x............................................... 148 

Function J1939_x_GLOBAL_REQUEST......... 158 

Function J1939_x_RECEIVE ............................ 150 

Function J1939_x_RESPONSE......................... 154 

Function J1939_x_SPECIFIC_REQUEST ........ 156 

Function J1939_x_TRANSMIT......................... 152 

Function JOYSTICK_0.............................. 182, 186 

Function JOYSTICK_1.............................. 182, 190 

Function JOYSTICK_2.............................. 182, 194 

Function MEMCPY ........................................... 217 

Function NORM ................................................ 254 

Function NORM_HYDRAULIC............... 182, 197 

Function OCC_TASK................................ 175, 182 

Function OUTPUT_CURRENT ..............................
..............................33, 167, 169, 171, 177, 182, 183 

Function OUTPUT_CURRENT_CONTROL .........
........................................................... 173, 182, 183 

Function PERIOD................................ 30, 201, 204 

Function PERIOD_RATIO.......................... 30, 206 

Function PHASE...........................................30, 208 

Function PID1.................................................... 264 

Function PID2.................................................... 266 

Function PT1...............................................258, 262 

Function PWM....................................161, 162, 166 

Function PWM100............................................. 168 

Function PWM1000....................161, 162, 168, 170 

Function SERIAL_PENDING........................... 245 

Function SERIAL_RX................................243, 245 

Function SERIAL_SETUP ................................ 240 

Function SERIAL_TX....................................... 242 

Function SET_DEBUG ................................38, 223 

Function SET_IDENTITY..........................224, 226 

Function SET_INTERRUPT_I .......................... 236 

Function SET_INTERRUPT_XMS................... 233 

Function SET_PASSWORD ............................. 228 

Function SOFTRESET ...................................... 215 

Function TIMER_READ................................... 246 

Function TIMER_READ_US............................ 247 

Functional safety................................................ 287 

Functionality ...................................................... 100 

Functions for controllers .................................... 259 

Functions of the library...................................... 182 

Further ifm libraries for CANopen .................... 139 

General............................................................9, 256 

General about CAN ............................................. 47 

General information........................................... 108 

General information about CANopen with 
CoDeSys .............................................................. 83 

General overview............................................... 275 

Harm .................................................................. 287 

Hazard................................................................ 287 

Heartbeat............................................................ 287 

Hints to wiring diagrams...................................... 34 

How is this manual structured?.............................. 8 

Hydraulic control in PWM................................. 178 

ID ....................................................................... 287 

ifm CANopen libraries master / slave................ 278 

ifm CANopen library ......................................48, 83 



 

296 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Index  

ifm demo programs .............................................. 25 

ifm device libraries............................................. 277 

Information concerning the device....................... 11 

Information concerning the software ................... 11 

Information on the EMCY and error codes..............
................................................................... 113, 128 

Initialisation of the network with 
RESET_ALL_NODES ........................................ 97 

Instructions......................................................... 287 

Intended use ....................................................... 287 

IP address ........................................................... 287 

LED.................................................................... 287 

Library for the CANopen master ....................... 117 

Library for the CANopen slave.......................... 129 

Life, mean .......................................................... 287 

Limits of the SmartController .............................. 43 

Link.................................................................... 288 

Load the operating system ................................... 37 

MAC-ID............................................................. 288 

Manual data storage ........................................... 216 

Master ................................................................ 288 

Master at runtime ................................................. 91 

Mission time TM................................................ 288 

Misuse................................................................ 288 

Monitoring ......................................................... 288 

More functions in the ecomatmobile controller .......
........................................................................... 200 

MTBF................................................................. 288 

MTTF................................................................. 288 

MTTFd............................................................... 288 

Muting................................................................ 288 

Network states...................................................... 94 

Network structure................................................. 51 

NMT................................................................... 289 

No operating system............................................. 36 

Node................................................................... 289 

Node Guarding................................................... 289 

Nodeguarding/heartbeat error .............................. 96 

Notes on devices with monitoring relay............... 40 

Obj / object ........................................................ 289 

Object directory ................................................. 289 

OBV................................................................... 289 

Operating modes .................................................. 37 

Operating states.................................................... 35 

Operating states and operating system................. 35 

Operating system ............................................... 289 

Operational ........................................................ 289 

Output group Q0...Q4 (%QX0.0...%QX1.8)........ 33 

Overview CANopen EMCY codes .................... 117 

Overview of CANopen error codes ............114, 115 

Overview of the files and libraries used............. 275 

Parameters of internal structures........................ 126 

Participant, bus off ............................................... 57 

Participant, error active........................................ 56 

Participant, error passive...................................... 56 

Particularities for network variables ...........109, 112 

PC card............................................................... 289 

PCMCIA card .................................................... 289 

PDO ................................................................... 289 

Performance Level ............................................. 289 

PES .................................................................... 289 

Physical connection of CAN................................ 51 

Physical structure of ISO 11992-1 ....................... 54 

Pictogram........................................................... 290 

PL....................................................................... 290 

PLC configuration................................................ 12 

PLC configuration file ....................................... 277 

PLr ..................................................................... 290 

Possible operating modes inputs / outputs ......... 273 

Pre-Op................................................................ 290 

prepared ............................................................. 290 

Processing analogue input values ...................... 248 

Processing interrupts.......................................... 232 

Program creation and download in the PLC ........ 45 

Programming and system resources..................... 42 

Programming language, safety-related............... 290 

Programs and functions in the folders of the 
templates .............................................................. 19 



ifm System Manual ecomatmobile SmartController (CR2500) V05 

Index  
 

297 

Protective measure ............................................. 290 

PWM.................................................................. 291 

PWM / PWM1000 ............................................. 161 

PWM channels 0...3 ........................................... 162 

PWM channels 4...7 / 8...11 ............................... 163 

PWM dither........................................................ 164 

PWM frequency ................................................. 161 

PWM functions and their parameters (general) .......
........................................................................... 161 

PWM in the ecomatmobile controller ................ 160 

PWM signal processing ......161, 165, 182, 273, 291 

Ramp function.................................................... 165 

Ratio................................................................... 291 

Reading the system time .................................... 246 

Recommended setting ................................ 265, 268 

redundant............................................................ 291 

remanent............................................................. 291 

Reset..................................................................... 35 

Reset, manual..................................................... 291 

Residual risk....................................................... 291 

Response to the system error................................ 40 

Risk .................................................................... 291 

Risk analysis ...................................................... 291 

Risk assessment ................................................. 292 

Risk evaluation................................................... 292 

ro ........................................................................ 292 

Run state .............................................................. 35 

rw ....................................................................... 292 

Safety function ................................................... 292 

Safety instructions.................................................. 9 

Safety-standard types ......................................... 292 

Saving, reading and converting data in the memory
........................................................................... 216 

SCT .................................................................... 292 

SDO ................................................................... 292 

Self-regulating process....................................... 256 

SERIAL_MODE.................................................. 38 

Set up programming system................................. 14 

Set up programming system manually ................. 14 

Set up programming system via templates........... 16 

Setting control.................................................... 258 

Setting of the node numbers and the baud rate  
of a CAN device ................................................ 107 

Setting rule for a controller ................................ 258 

Settings in the global variable lists .................... 109 

Settings in the target settings ............................. 108 

Setup the target ...............................................14, 86 

Signalling of device errors ................................. 114 

SIL ..................................................................... 293 

Slave .................................................................. 293 

Slave information............................................... 127 

Software for CAN and CANopen ........................ 55 

Software reset .................................................... 215 

Specific ifm libraries.......................................... 279 

SRDO................................................................. 293 

SRP/CS .............................................................. 293 

SRVT ................................................................. 293 

Standardise the output signals of a joystick ....... 178 

Start the network.............................................93, 94 

Starting the network with GLOBAL_START ..... 96 

Starting the network with START_ALL_NODES
............................................................................. 97 

State, safe........................................................... 293 

Status LED........................................................... 36 

Stop state.............................................................. 35 

Structure Emergency_Message.......................... 128 

Structure node status .......................................... 127 

Structure of an EMCY message......................... 113 

Structure of the visualisations in the templates.... 22 

Summary CAN / CANopen ............................... 144 

Supplement project with further functions......18, 23 

Symbols ............................................................. 293 

System configuration ........................................... 48 

System description............................................... 11 

System flags..................................................40, 274 

Tab [Base settings]............................................. 101 

Tab [CAN parameters]....................................87, 89 

Tab [CAN settings] ............................................ 103 



 

298 

ifm System Manual ecomatmobile SmartController (CR2500) V05 

Index  

Tab [Default PDO mapping].............................. 104 

Tab [Receive PDO-Mapping] and [Send PDO-
Mapping].............................................................. 90 

Tab [Service Data Objects] .................. 91, 140, 142 

Target ................................................................. 293 

Target file........................................................... 277 

TCP .................................................................... 293 

Template ............................................................ 294 

TEST mode .................................................... 35, 38 

Test rate rt .......................................................... 294 

The object directory of the CANopen master ..........
..................................................................... 97, 108 

The purpose of this library? – An introduction ........
........................................................................... 178 

Topology.............................................................. 47 

Transmit emergency messages via the  
application program ........................................... 107 

UDP ................................................................... 294 

Uptime, mean..................................................... 294 

Use as digital inputs ........................................... 201 

Use of the CAN interfaces to SAE J1939 ................
..........................................................48, 63, 70, 145 

Use of the serial interface............................. 38, 239 

Use, intended...................................................... 294 

Watchdog ........................................................... 294 

Watchdog behaviour .................................... 44, 286 

What are the individual files and libraries used for?
........................................................................... 277 

What do the symbols and formats mean?.................
............................................................... 7, 290, 293 

What does a PWM output do? ................... 179, 291 

What is the dither? ..................................... 180, 285 

What previous knowledge is required? ................ 10 

When is a dither useful?..................................... 180 

Wire cross-sections .............................................. 54 

wo....................................................................... 294 

 


	1 About this manual
	1.1 What do the symbols and formats mean?
	1.2 How is this manual structured?

	2 Safety instructions
	2.1 General
	2.2 What previous knowledge is required?

	3 System description
	3.1 Information concerning the device
	3.2 Information concerning the software
	3.3 PLC configuration

	4 Configurations
	4.1 Set up programming system
	4.1.1 Set up programming system manually
	Setup the target
	Activating the PLC configuration

	4.1.2 Set up programming system via templates
	About the ifm templates
	Folder structure in general
	Programs and functions in the folders of the templates
	Structure of the visualisations in the templates

	Supplement project with further functions

	4.1.3 ifm demo programs
	Demo program for controller
	Demo program for PDM:


	4.2 Function configuration of the inputs and outputs
	4.2.1 Configure inputs
	Digital inputs
	Fast inputs
	Analogue inputs
	Analogue inputs ANALOG4...7 (%IW6...%IW9)
	Digital input group I0...I3 (%IX0.0...%IX1.8)

	4.2.2 Configure outputs
	Digital and PWM outputs
	Output group Q0...Q4 (%QX0.0...%QX1.8)


	4.3 Hints to wiring diagrams

	5 Operating states and operating system
	5.1 Operating states
	5.1.1 Reset
	5.1.2 Run state
	5.1.3 Stop state
	5.1.4 Fatal error
	5.1.5 No operating system

	5.2 Status LED
	5.3 Load the operating system
	5.4 Operating modes
	5.4.1 TEST mode
	5.4.2 SERIAL_MODE
	5.4.3 DEBUG mode


	6 Error codes and diagnostic information
	6.1 Response to the system error
	6.1.1 Notes on devices with monitoring relay
	6.1.2 Example process for response to a system error


	7 Programming and system resources
	7.1 Above-average stress
	7.2 Limits of the SmartController
	7.3 Watchdog behaviour
	7.4 Available memory
	7.5 Program creation and download in the PLC

	8 CAN in the ecomatmobile controller
	8.1 General about CAN
	8.1.1 Topology
	8.1.2 CAN interfaces
	8.1.3 System configuration

	8.2 Exchange of CAN data
	8.2.1 CAN-ID
	8.2.2 Data reception
	8.2.3 Data transmission

	8.3 Physical connection of CAN
	8.3.1 Network structure
	8.3.2 Bus level
	8.3.3 Bus cable length
	8.3.4 Wire cross-sections

	8.4 Software for CAN and CANopen
	8.5 CAN errors and error handling
	8.5.1 Error message
	8.5.2 Error counter
	8.5.3 Participant, error active
	8.5.4 Participant, error passive
	8.5.5 Participant, bus off

	8.6 Description of the CAN functions
	8.6.1 Function CAN1_BAUDRATE
	Description
	Parameters of the function inputs

	8.6.2 Function CAN1_DOWNLOADID
	Description
	Parameters of the function inputs

	8.6.3 Function CAN1_EXT
	Description
	Parameters of the function inputs

	8.6.4 Function CAN1_EXT_TRANSMIT
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	8.6.5 Function CAN1_EXT_RECEIVE
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	8.6.6 Function CAN1_EXT_ERRORHANDLER
	Description
	Parameters of the function inputs

	8.6.7 Function CAN2
	Description
	Parameters of the function inputs

	8.6.8 Function CANx_TRANSMIT
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	8.6.9 Function CANx_RECEIVE
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	8.6.10 Function CANx_RECEIVE_RANGE
	Description
	Parameters of the function inputs
	Parameters of the function outputs
	Example Initialisation of CANx_RECEIVE_RANGE in 4 cycles

	8.6.11 Function CANx_EXT_RECEIVE_ALL
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	8.6.12 Function CANx_ERRORHANDLER
	Description
	Parameters of the function inputs


	8.7 ifm CANopen library
	8.7.1 CANopen support by CoDeSys
	General information about CANopen with CoDeSys
	CANopen terms and implementation
	"Addresses" in CANopen

	8.7.2 CANopen master
	Differentiation from other CANopen libraries
	Create a CANopen project
	Tab [CAN parameters]

	Add and configure CANopen slaves
	Tab [CAN parameters]
	Tab [Receive PDO-Mapping] and [Send PDO-Mapping]
	Tab [Service Data Objects]

	Master at runtime
	Start the network
	Network states
	Boot up of the CANopen master
	Boot up of the CANopen slaves
	Nodeguarding/heartbeat error


	8.7.3 Start-up of the network without [Automatic startup]
	Starting the network with GLOBAL_START
	Starting the network with START_ALL_NODES
	Initialisation of the network with RESET_ALL_NODES
	Access to the status of the CANopen master
	The object directory of the CANopen master

	8.7.4 CAN device
	Functionality
	CAN device configuration
	Tab [Base settings]
	Example of an object directory

	Tab [CAN settings]
	Tab [Default PDO mapping]
	Changing the standard mapping by the master configuration

	Access to the CAN device at runtime
	Setting of the node numbers and the baud rate of a CAN device
	Access to the OD entries by the application program
	Change the PDO properties at runtime
	Transmit emergency messages via the application program


	8.7.5 CAN network variables
	General information
	Configuration of CAN network variables
	Settings in the target settings
	Settings in the global variable lists

	Particularities for network variables

	8.7.6 Information on the EMCY and error codes
	Structure of an EMCY message
	Signalling of device errors
	Overview of CANopen error codes
	Overview CANopen EMCY codes

	8.7.7 Library for the CANopen master
	Function CANx_MASTER_EMCY_HANDLER
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	Function CANx_MASTER_SEND_EMERGENCY
	Description
	Parameters of the function inputs
	Example with function CANx_MASTER_SEND_EMERGENCY

	Function CANx_MASTER_STATUS
	Description
	Parameters of the function inputs
	Parameters of the function outputs
	Parameters of internal structures
	Example with function CANx_MASTER_STATUS
	Slave information
	Structure node status
	Structure Emergency_Message
	Access to the structures at runtime of the application



	8.7.8 Library for the CANopen slave
	Function CANx_SLAVE_NODEID
	Description
	Parameters of the function inputs

	Function CANx_SLAVE_EMCY_HANDLER
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	Function CANx_SLAVE_SEND_EMERGENCY
	Description
	Parameters of the function inputs
	Example with function CANx_SLAVE_SEND_EMERGENCY

	Function CANx_SLAVE_STATUS
	Description
	Parameters of the function inputs
	Parameters of the function outputs


	8.7.9 Further ifm libraries for CANopen
	Function CANx_SDO_READ
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	Function CANx_SDO_WRITE
	Description
	Parameters of the function inputs
	Parameters of the function outputs



	8.8 Summary CAN / CANopen
	8.9 Use of the CAN interfaces to SAE J1939
	Example of a detailed message documentation:
	Example of a short message documentation:
	8.9.1 Function J1939_x
	Description
	Parameters of the function inputs

	8.9.2 Function J1939_x_RECEIVE
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	8.9.3 Function J1939_x_TRANSMIT
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	8.9.4 Function J1939_x_RESPONSE
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	8.9.5 Function J1939_x_SPECIFIC_REQUEST
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	8.9.6 Function J1939_x_GLOBAL_REQUEST
	Description
	Parameters of the function inputs
	Parameters of the function outputs



	9 PWM in the ecomatmobile controller
	9.1 PWM signal processing
	9.1.1 PWM functions and their parameters (general)
	PWM / PWM1000
	PWM frequency
	PWM channels 0...3
	Calculation of the RELOAD value
	Calculation examples RELOAD value
	PWM channels 4...7 / 8...11
	PWM dither
	Ramp function

	9.1.2 Function PWM
	Description
	Parameters of the function inputs

	9.1.3 Function PWM100
	Description
	Parameters of the function inputs

	9.1.4 Function PWM1000
	Description
	Parameters of the function inputs


	9.2 Current control with PWM
	9.2.1 Current measurement with PWM channels
	9.2.2 Function OUTPUT_CURRENT_CONTROL
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	9.2.3 Function OCC_TASK
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	9.2.4 Function OUTPUT_CURRENT
	Description
	Parameters of the function inputs
	Parameters of the function outputs


	9.3 Hydraulic control in PWM
	9.3.1 The purpose of this library? – An introduction
	Standardise the output signals of a joystick
	Control hydraulic valves with current-controlled outputs

	9.3.2 What does a PWM output do?
	9.3.3 What is the dither?
	When is a dither useful?
	Dither frequency and amplitude
	Example Dither

	9.3.4 Functions of the library "ifm_HYDRAULIC_16bitOS05_Vxxyyzz.Lib"
	9.3.5 Function CONTROL_OCC
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	9.3.6 Function JOYSTICK_0
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	9.3.7 Function JOYSTICK_1
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	9.3.8 Function JOYSTICK_2
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	9.3.9 Function NORM_HYDRAULIC
	Description
	Parameters of the function inputs
	Parameters of the function outputs
	Examples NORM_HYDRAULIC



	10 More functions in the ecomatmobile controller
	10.1 Counter functions for frequency and period measurement
	10.1.1 Applications
	10.1.2 Use as digital inputs
	10.1.3 Function FREQUENCY
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	10.1.4 Function PERIOD
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	10.1.5 Function PERIOD_RATIO
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	10.1.6 Function PHASE
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	10.1.7 Function INC_ENCODER
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	10.1.8 Function FAST_COUNT
	Description
	Parameters of the function inputs
	Parameters of the function outputs


	10.2 Software reset
	10.2.1 Function SOFTRESET
	Description
	Parameters of the function inputs


	10.3 Saving, reading and converting data in the memory
	10.3.1 Automatic data backup
	10.3.2 Manual data storage
	10.3.3 Function MEMCPY
	Description
	Parameters of the function inputs

	10.3.4 Function FLASHWRITE
	Description
	Parameters of the function inputs

	10.3.5 Function FLASHREAD
	Description
	Parameters of the function inputs

	10.3.6 Function E2WRITE
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	10.3.7 Function E2READ
	Description
	Parameters of the function inputs
	Parameters of the function outputs


	10.4 Data access and data check
	10.4.1 Function SET_DEBUG
	Description
	Parameters of the function inputs

	10.4.2 Function SET_IDENTITY
	Description
	Parameters of the function inputs

	10.4.3 Function GET_IDENTITY
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	10.4.4 Function SET_PASSWORD
	Description
	Parameters of the function inputs

	10.4.5 Function CHECK_DATA
	Description
	Parameters of the function inputs
	Parameters of the function outputs
	Example for CHECK_DATA


	10.5 Processing interrupts
	10.5.1 Function SET_INTERRUPT_XMS
	Description
	Parameters of the function inputs

	10.5.2 Function SET_INTERRUPT_I
	Description
	Parameters of the function inputs


	10.6 Use of the serial interface
	10.6.1 Function SERIAL_SETUP
	Description
	Parameters of the function inputs

	10.6.2 Function SERIAL_TX
	Description
	Parameters of the function inputs

	10.6.3 Function SERIAL_RX
	Description
	Parameters of the function inputs
	Parameters of the function outputs
	Example:

	10.6.4 Function SERIAL_PENDING
	Description
	Parameters of the function outputs


	10.7 Reading the system time
	10.7.1 Function TIMER_READ
	Description
	Parameters of the function outputs

	10.7.2 Function TIMER_READ_US
	Description
	Parameters of the function outputs


	10.8 Processing analogue input values
	10.8.1 Function INPUT_ANALOG
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	10.8.2 Function INPUT_VOLTAGE
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	10.8.3 Function INPUT_CURRENT
	Description
	Parameters of the function inputs
	Parameters of the function outputs


	10.9 Adapting analogue values
	10.9.1 Function NORM
	Description
	Parameters of the function inputs
	Parameters of the function outputs
	Example 1
	Example 2



	11 Controller functions in the ecomatmobile controller
	11.1 General
	11.1.1 Self-regulating process
	11.1.2 Controlled system without inherent regulation
	11.1.3 Controlled system with delay

	11.2 Setting rule for a controller
	11.2.1 Setting control
	11.2.2 Damping of overshoot

	11.3 Functions for controllers
	11.3.1 Function DELAY
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	11.3.2 Function PT1
	Description
	Parameters of the function inputs
	Parameters of the function outputs

	11.3.3 Function PID1
	Description
	Parameters of the function inputs
	Parameters of the function outputs
	Recommended setting

	11.3.4 Function PID2
	Description
	Parameters of the function inputs
	Parameters of the function outputs
	Recommended setting

	11.3.5 Function GLR
	Description
	Parameters of the function inputs
	Parameters of the function outputs



	12 Annex
	12.1 Address assignment and I/O operating modes
	12.1.1 Addresses / variables of the I/Os
	12.1.2 Address assignment inputs / outputs
	12.1.3 Possible operating modes inputs / outputs

	12.2 System flags
	12.3 Overview of the files and libraries used
	12.3.1 General overview
	12.3.2 What are the individual files and libraries used for?
	Files for the operating system / runtime system
	Target file
	PLC configuration file
	ifm device libraries
	ifm CANopen libraries master / slave
	CoDeSys® CANopen libraries
	Specific ifm libraries



	13 Glossary of Terms
	Address
	Application software
	Architecture
	Baud
	Bus
	CAN
	Category (CAT)
	CCF
	CiA
	CiA DS 304
	CiA DS 401
	CiA DS 402
	CiA DS 403
	CiA DS 404
	CiA DS 405
	CiA DS 406
	CiA DS 407
	Clamp 15
	COB-ID
	CoDeSys
	Cycle time
	DC
	DC
	Demand rate rd
	Diagnostic coverage
	Dither
	Diversity
	EDS-file
	Embedded software
	EMCY
	EMV
	Ethernet
	EUC
	Failure
	Failure, dangerous
	Failure, systematic
	Fault
	Fault tolerance time
	Firmware
	First fault occurrence time
	Functional safety
	Harm
	Hazard
	Heartbeat
	ID
	Instructions
	Intended use
	IP address
	LED
	Life, mean
	Link
	MAC-ID
	Master
	Mission time TM
	Misuse
	Monitoring
	MTBF
	MTTF
	MTTFd
	Muting
	NMT
	Node
	Node Guarding
	Obj / object
	Object directory
	OBV
	Operating system
	Operational
	PC card
	PCMCIA card
	PDO
	Performance Level
	PES
	Pictogram
	PL
	PLr
	Pre-Op
	prepared
	Programming language, safety-related
	Protective measure
	PWM
	Ratio
	redundant
	remanent
	Reset, manual
	Residual risk
	Risk
	Risk analysis
	Risk assessment
	Risk evaluation
	ro
	rw
	Safety function
	Safety-standard types
	SCT
	SDO
	SIL
	Slave
	SRDO
	SRP/CS
	SRVT
	State, safe
	Symbols
	Target
	TCP
	Template
	Test rate rt
	UDP
	Uptime, mean
	Use, intended
	Watchdog
	wo

	14 Index

