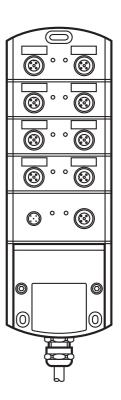


 $\epsilon$ 


Device manual

Output module CompactModule Metal

**CR2031** 

UK





# Contents

| 1  | Preliminary note                                                                                                                                                                                                                 | . 3                        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2  | Safety instructions                                                                                                                                                                                                              | . 3                        |
| 3  | Function and features                                                                                                                                                                                                            | . 4                        |
| 4  | Function                                                                                                                                                                                                                         | . 4                        |
| 5  | Mounting                                                                                                                                                                                                                         | . 5                        |
| 6  | Electrical connection.  6.1 M12 sockets.  6.2 Tightening torque of the cover screws (terminal chamber).  6.3 M16 cable gland.  6.4 Definition of short-circuit and overload protection.  6.5 CAGE CLAMP ® connection technology. | . 6<br>. 6<br>. 6<br>. 7   |
|    | 6.6 Types of connection and fuses                                                                                                                                                                                                |                            |
| 7  | Set-up 7.1 PLC configuration in CODESYS 2.3 7.2 PLC configuration in CODESYS 3.5 7.2.1 Heartbeat configuration 7.2.2 SyncMonitoring 7.3 Electronic Data Sheet.                                                                   | . 9<br>10<br>10<br>11.     |
| 8  | Parameter setting                                                                                                                                                                                                                |                            |
| 9  | Programming  9.1 General.  9.2 Programming function  9.3 Data structures.  9.3.1 Function CR2031.  9.3.2 Data structure CR2031 ConfigStruct  9.3.3 Data structure: CR2031 InOutStruct                                            | 14<br>14<br>15<br>16<br>17 |
| 10 | Technical data                                                                                                                                                                                                                   | 20                         |
| 11 | Fault correction                                                                                                                                                                                                                 |                            |
| 12 | Object directory                                                                                                                                                                                                                 | 25                         |
| 13 | B Maintenance, repair and disposal                                                                                                                                                                                               | 30                         |
| 14 | Declaration of conformity                                                                                                                                                                                                        | 31                         |
| 15 | 5 Terms and abbreviations                                                                                                                                                                                                        | 31                         |

# UK

## 1 Preliminary note

Technical data, approvals, accessories and further information at www.ifm.com.

- Instructions
- → Cross-reference
- Important note
  - Non-compliance may result in malfunction or interference.
- Information Supplementary note.

# 2 Safety instructions

This description is part of the unit. It contains texts and drawings concerning the correct handling of the module and must be read before installation or use.

Observe the information of the description. Non-observance of the notes, operation which is not in accordance with use as prescribed below, wrong installation or handling can result in serious harm concerning the safety of persons and plant.

The instructions are for authorised persons according to the EMC and low voltage guidelines. The unit must be installed and commissioned by a skilled electrician (programmer or service technician). The device may only be installed, connected and commissioned by qualified personnel.

Disconnect the device externally before doing any work on it. If necessary, also disconnect separately supplied output load circuits.

If the unit is not supplied by the mobile on-board system (12/24 V battery operation) it must be ensured that the external voltage is generated and supplied according to the criteria for safety extra-low voltage (SELV) as this is supplied without further measures to the connected controller, the sensors, and the actuators.

The wiring of all signals in connection with the SELV circuit of the unit must also comply with the SELV criteria (safe extra-low voltage, safe electrical separation from other electric circuits).

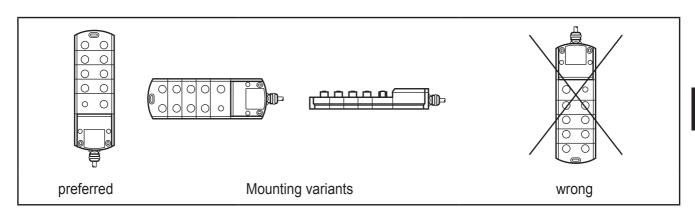
If the supplied SELV voltage has an external connection to ground (SELV becomes PELV) the responsibility lies with the user and the respective national regulations for installation must be complied with. All statements in these operating instructions refer to the unit the SELV voltage of which is not grounded.

The terminals may only be supplied with the signals indicated in the technical data or on the unit label and only the approved accessories of ifm electronic may be connected.

The unit can be operated within a wide temperature range according to the technical specification indicated below. Due to the additional self-heating the housing walls can have high perceptible temperatures when touched in hot environments.

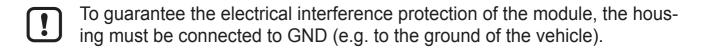
In case of malfunctions or uncertainties please contact the manufacturer. Tampering with the unit can lead to considerable risks for the safety of persons and plant. It is not permitted and leads to the exclusion of any liability and warranty claims.

### 3 Function and features


The CR2031 I/O module enables decentralised triggering of actuators and proportional valves. The coil current can be monitored and controlled via the integrated current measurement.

### 4 Function

- The module supports binary/analogue outputs and is therefore classified in the device profile "I/O module" to CiA DS 401.
- As regards the output functions, the module can be configured and it supports the following functions:
  - binary outputs with/without current detection; up to 4 A
  - PWM outputs with/without current detection; up to 4 A
  - current-controlled PWM outputs, up to 4 A
  - selectable current measuring range 0...1 A or 0...4 A.
- There are 1 server SDO and the 3 default PDOs to CiA DS 401. The PDO mapping cannot be changed (static PDO mapping). The default identifiers are assigned according to the "predefined connection set".
- The COB IDs of the PDOs as well as the transmission type (synch / asynch) of the individual PDOs can be configured.
- The module expects a synch object. The CAN identifier of the synch object can be configured.
- The module supports "node guarding" and "heartbeat". The "guard time",the
  "life time factor" and the "heartbeat time"can be configured. When there are no
  heartbeat or node guarding signals, the outputs are automatically switched off
  by the operating system.
- The module generates an emergency object. The COB ID of the EMCY object can be configured.
- The module stores the last error.
   The error code of the corresponding emergency object is stored.
- The module supports a reset function, i.e. assignment of the parameters to the factory default values\* upon request.
- The CR2031 I/O module ist not approved for safety-relevant tasks in the field of safety of persons.
- \*) factory default values → 8.1 Parameter list.


# 5 Mounting

To protect the module against mechanical stress it must be mounted so that it lies completely flat on an even mounting surface. To do so, three cylinder screws with hexagon socket (M5 x L) to DIN 912 or DIN 7984 must be used.



To avoid contact corrosion between the mounting screws and the module housing, do not use any stainless steel screws or nickel-plated screws! In very corrosive environments such as extremely salty air, we recommend to use screws with surface finishing on a zinc/nickel basis with thick-film passivation and sealing. For normal corrosive requirements zinc-plated screws are sufficient.

### 6 Electrical connection



Due to the maximum operating temperature of 85 °C and the internal heating of the unit, the respective minimum rated temperature of the con-nection cable must be taken into account.

#### 6.1 M12 sockets

- Use sockets with gold-plated contacts.
- ▶ Use protective caps (supplied) for unconnected connectors of the I/O module.

### **6.2 Tightening torque of the cover screws (terminal chamber)**

To close the terminal chamber the cover screws are tightened with a tightening torque of 1.2 Nm.

### 6.3 M16 cable gland

Use a suitable cable to ensure ingress resistance of the M16 cable gland.

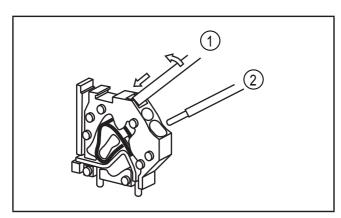
If the M12 connectors are used for the device supply and CAN connection, close the terminal chamber with the supplied M16 cover plug (remove the cable gland and insert the M16 cover plug).

### 6.4 Definition of short-circuit and overload protection

Short-circuit test:

All outputs must withstand a short-circuit current limited to 60 A flowing between output and ground (GND) or supply voltage (+VBB).

Test duration: 3 minutes


Overload test:

Outputs must not be destroyed by a 100 % overload. (e.g. nominal switching current IN = 4 A  $\rightarrow$  100 % overload = 8 A)

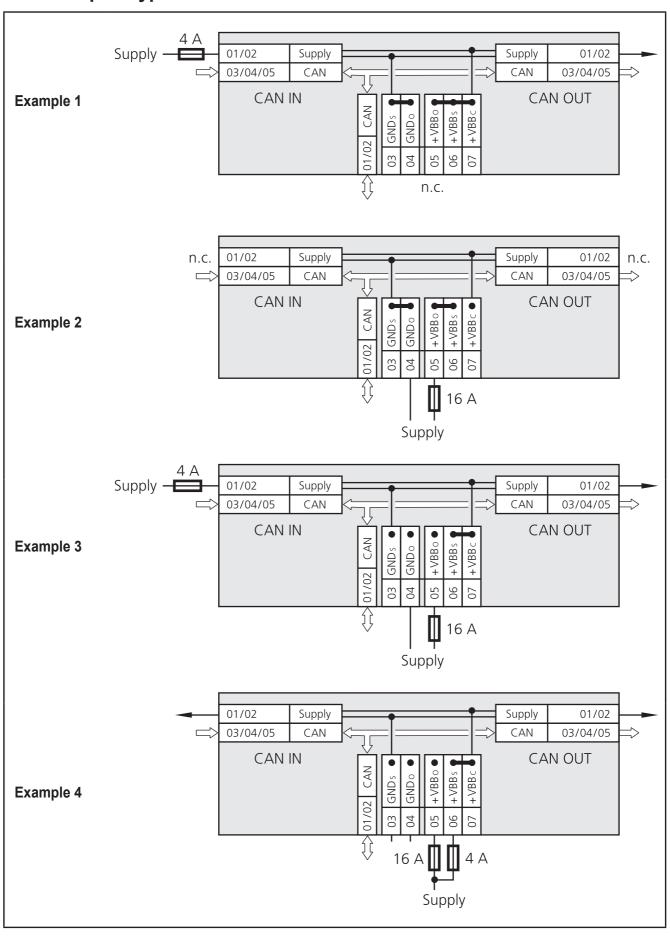
Test duration: 5 minutes

## UK

### 6.5 CAGE CLAMP ® connection technology



- 1: Screwdriver
- 2: Wire
- ► Insert screw driver and tilt slightly.
- > Spring opens.
- ► Insert wire.
- ► Remove screw driver.
- > Spring closes.

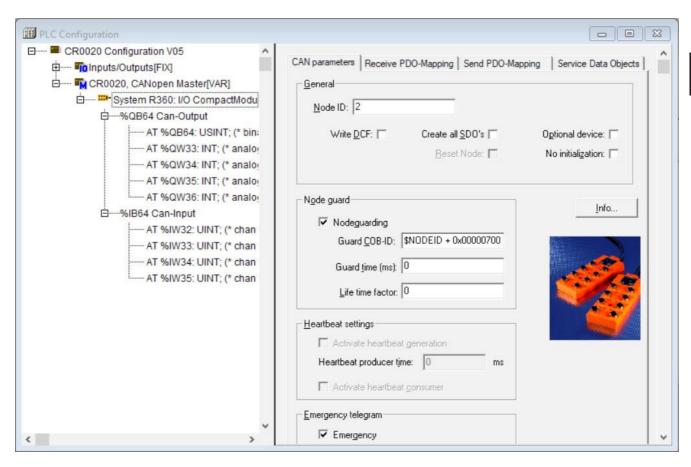

### 6.6 Types of connection and fuses

To protect the whole system (wiring and module) the individual electric circuits are to be protected using fuses according to the type of connection and jumper settings. The M12 plugs are designed for max. 4 A, the clamps for max. 16 A.

| Example | Connection (→ 6.7)                                               | Jumpers     | Fuse        |
|---------|------------------------------------------------------------------|-------------|-------------|
| 1       | Supply via M12 CANin/CANout plug                                 | 3+4 / 5+6+7 | 4 A         |
| 2       | Supply via clamps 3+4 / 5+6 16 A (not via M12 CANin/CANout plug) | 3+4 / 5+6   | 16 A        |
| 3       | Separate supply via clamps and M12 CANin/CANout plug             | 6+7         | 16 A<br>4 A |
| 4       | Supply via clamps<br>(via M12 CANin/CANout plug)                 | 6+7         | 16 A<br>4 A |

Note: Do not use examples 3 and 4 with the I/O modules CR2032 and CR2033 in one supply line.

## 6.7 Examples types of connection




= jumper inserted

# 7 Set-up

### 7.1 PLC configuration in CODESYS 2.3

Parameter setting of the device functions and of the CAN interface is directly done from the application programmed with CODESYS 2.3. To do so, the "Electronic Data Sheet" (EDS) is integrated via the CODESYS PLC configuration.



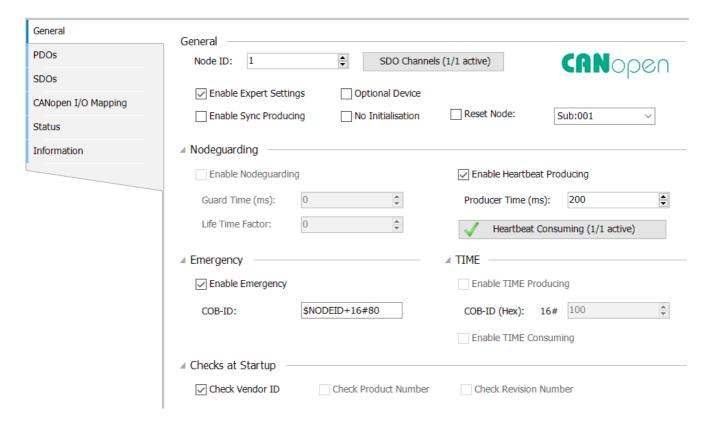
CODESYS dialogue "PLC configuration" (example)

For a description of the setting and application of the "PLC configuration" dialogue see the CODESY manual and the CODESYS online help.

UK

### 7.2 PLC configuration in CODESYS 3.5

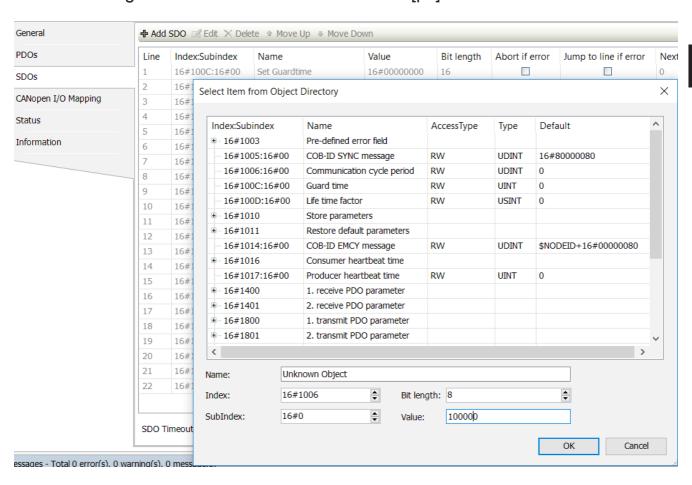
The "Electronic Data Sheet" (EDS) is installed in the [Device Repository]. Proceed as follows in the main menu:

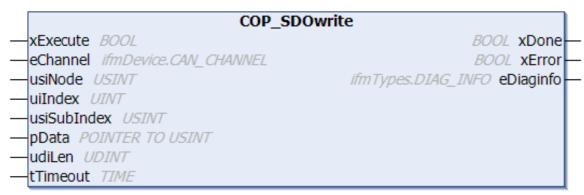

- Click on [Tools] / [Device Repository].
- Select [Fieldbuses] / [CiA CANopen] / [CiA Remote Device] and click on [Install].
- Select EDS file and click on [Open].
- > In CODESYS 3.5 the devices are integrated as CiA remote devices in the device tree under a [CANopen Manager] element.



The CANopen communication is configured via the CODESYS configuration editor.

### 7.2.1 Heartbeat configuration


The function [Reset Node] must be activated on the tab [General] so that the device applies the parameters set for heartbeat monitoring of the CANopen Manager.




### 7.2.2 SyncMonitoring

To activate the device-internal monitoring of the Sync cycle, the monitoring time has to be written into the object directory entry 0x1006. This is possible by supplementing the SDO list in the CANopen configurator or during the operating time via the function block COP\_SDOwrite.

The monitoring time is indicated in microseconds [µs].





#### 7.3 Electronic Data Sheet

The EDS contains the description of all parameters and I/O data of the device in a format defined by CANopen. The EDS files are provided for all CANopen slaves by ifm electronic.

The EDS files are available at www.ifm.com.

## 8 Parameter setting

Automatic saving of the communication and unit parameters can be activated or deactivated by means of the "save all parameters" entry ( $\rightarrow$  12 Object directory, index 1010). When the value 0x02 is entered into Sldx 01, all parameters are automatically saved if changes were made.

With the value 0x00 there is no automatic saving, i.e. changed parameters will only be valid until the unit is switched off or until the next reset is made.

With the function "restore" ( $\rightarrow$  12 Object directory, index 1011) the parameters (except the baud rate and the node ID) can be assigned to the factory default values. With the next power on they become valid.

### Control characteristics (index 2004...7)

The current control behaviour can be parameterised separately for each channel pair in the P and I values. For each of the 4 output pairs the max. load current [mA] has to be indicated. By means of this value the respective measuring range (1 A or 4 A) is automatically selected.

#### 8.1 Parameter list

| Parameter                                                                                     | Index in object directory    | Default (factory preset) | Change<br>automatically<br>saved                     | Change effective                                         |
|-----------------------------------------------------------------------------------------------|------------------------------|--------------------------|------------------------------------------------------|----------------------------------------------------------|
| Manufacturer Specific Profile                                                                 | Area; index 2000             | to 5FFF                  |                                                      |                                                          |
| I/O Configuration                                                                             | 2000                         | binary outputs           | adjustable                                           | after PreOp                                              |
| PWM Frequency                                                                                 | 2001                         | 0x64 (100 Hz)            | adjustable                                           | after PreOp                                              |
| Control parameters (P/I values, max. current) Channel 1/2 Channel 3/4 Channel 5/6 Channel 7/8 | 2004<br>2005<br>2006<br>2007 | <br><br>                 | adjustable<br>adjustable<br>adjustable<br>adjustable | after PreOp<br>after PreOp<br>after PreOp<br>after PreOp |
| Node ID *)                                                                                    | 20F0, 20F1                   | 0x20 (0d32)              | yes                                                  | after a reset                                            |
| Baud rate *)                                                                                  | 20F2, 20F3                   | 0x04 (125 Kbits/s)       | yes                                                  | after a reset                                            |
| Communication Profile Area; Index 1000 to 1FFF                                                |                              |                          |                                                      |                                                          |
| COB ID Synch Objekt                                                                           | 1005                         | 0x80                     | adjustable                                           | after a reset                                            |
| Communication Cycle                                                                           | 1006                         | 0x00 (Off)               | adjustable                                           | immediately                                              |
| Guard Time                                                                                    | 100C                         | 0x00 (Off)               | adjustable                                           | immediately                                              |
| Life Time Factor                                                                              | 100D                         | 0x00                     | adjustable                                           | immediately                                              |
| Save Parameter                                                                                | 1010                         | 0x02<br>(AutoSave ON)    | yes                                                  | immediately                                              |
| COB ID EMCY                                                                                   | 1014                         | 0x80 + Node ID           | adjustable                                           | after a reset                                            |
| Consumer Heartbeat time                                                                       | 1016                         | 0x00 (Off)               | adjustable                                           | immediately                                              |
| Producer Heartbeat time                                                                       | 1017                         | 0x00 (Off)               | adjustable                                           | immediately                                              |

| Parameter              | Index in object directory | Default (factory preset) | Change automatically saved | Change effective |
|------------------------|---------------------------|--------------------------|----------------------------|------------------|
| COB ID Rec PDO 1       | 1400 01                   | 0x200 + Node ID          | adjustable                 | after a reset    |
| Trans Type Rec PDO 1   | 1400 02                   | 0x01 (synchronous)       | adjustable                 | immediately      |
| COB ID Rec PDO 2       | 1401 01                   | 0x300 + Node ID          | adjustable                 | after a reset    |
| Trans Type Rec PDO 2   | 1401 02                   | 0x01 (synchronous)       | adjustable                 | immediately      |
| COB ID Trans PDO 1     | 1800 01                   | 0x180 + Node ID          | adjustable                 | after a reset    |
| Trans Type Trans PDO 1 | 1800 02                   | 0x01 (synchronous)       | adjustable                 | immediately      |
| Event Timer Trans PDO1 | 1800 05                   | 0x00                     | adjustable                 | immediately      |

The life time factor 0 is interpreted as 1.

The first guard protocol is assessed as "start guarding" even if guarding is not active at this time (guard time = 0).

#### \*) Observe the position of the hex-code switch!

Éntries in the object directory are only valid if the hex-code switches for baud rate (S1) and/or node ID (S2, S3) are in the position "F". (For position and coding of the hex-code switches see connecting and operating elements  $\rightarrow$  10 Technical data)

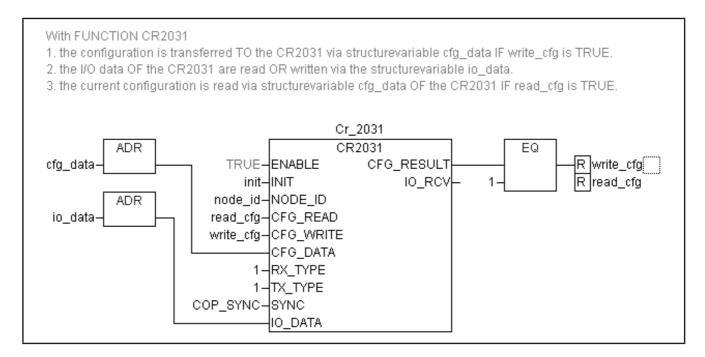
#### Explanation of the abbreviations:

0x...=hexadecimal numberstr=string0b...=binary valuerw=read-write0d...=decimal numerical valuero=read onlyu8=unsigned 8 bitu16=unsigned 16 bit

## 9 Programming

#### 9.1 General

The I/O module must be initialised as CANopen slave with the CANopen start functions "COP\_MSTR\_BOOTUP" and "COP\_MSTR\_MAIN" by the R 360 master and set to the state "OPERATIONAL" (LED "PWR"flashes, 2 Hz).

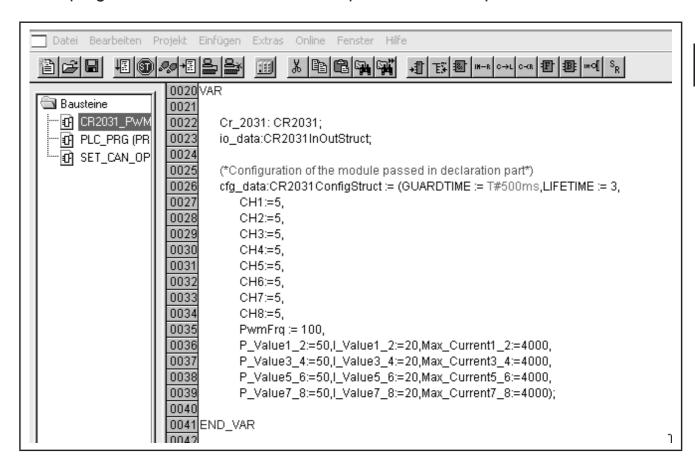

### 9.2 Programming function

If the function "CR2031" is integrated into the program, this automatically ensures a continuous updating of the I/O data in the controller. The function "CR2031" is in the library "CR2031\_x.lib" of the programming software CODESYS.

If no configuration data are transferred to the I/O module, the device operates with the default values set at the factory.

Before commissioning change the node ID of the I/O module set at the factory, if necessary. Check whether the baud rate of the master and that of the module are identical or set accordingly (also see notes on hex-code switch  $\rightarrow$  8.1).

| Default values:                  | Switch position |
|----------------------------------|-----------------|
| baud rate = 0x04 (= 125 Kbits/s) | S1 = "F"        |
| node ID = 0x20 (= 0d32)          | S2, S3 = "F"    |




Screen shot of the CODESYS programming platform

#### 9.3 Data structures

The CR2031 configuration and I/O data are transferred via data structures. The structure as well as other variable types must be declared in the declaration part. For configuration data the declaration part can already contain an assignment of values.

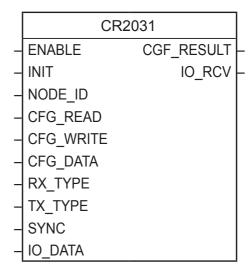
In the program access to a structure component can be represented as follows:



Screen shot of the CODESYS programming platform



More programming examples of the I/O module can be obtained from ifm electronic upon request.


### 9.3.1 Function CR2031

Function: CR2031

Library: CR2031\_x.lib

Purpose: Sets parameters and reads

the configuration and I/O data of the input/output module CR2031



#### Parameter:

| Name       | Data type | Description                                                                                                                                                                          |  |  |  |
|------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Inputs     | Inputs    |                                                                                                                                                                                      |  |  |  |
| ENABLE     | BOOL      | TRUE: function processing                                                                                                                                                            |  |  |  |
| INIT       | BOOL      | TRUE: function initialisation                                                                                                                                                        |  |  |  |
|            |           | FALSE: cyclical function call                                                                                                                                                        |  |  |  |
| NODE_ID    | BYTE      | Node identifier                                                                                                                                                                      |  |  |  |
| CFG_READ   | BOOL      | TRUE: read the current configuration of the I/O module                                                                                                                               |  |  |  |
| CFG_WRITE  | BOOL      | TRUE: write the current configuration of the I/O module                                                                                                                              |  |  |  |
| CFG_DATA   | DWORD     | Address of the configuration data (data structure)                                                                                                                                   |  |  |  |
| RX_TYPE    | BYTE      | Receive transmission type (default = 0; synch acyclic)                                                                                                                               |  |  |  |
| TX_TYPE    | BYTE      | Transmit Transmission Type (default = 1; synch cyclic)                                                                                                                               |  |  |  |
| SYNC       | BOOL      | CANopen synchronisation cycle (system variable COB_SYNC)                                                                                                                             |  |  |  |
| IO_DATA    | DWORD     | Address of the input/output data (data structure)                                                                                                                                    |  |  |  |
| Ausgänge   | Ausgänge  |                                                                                                                                                                                      |  |  |  |
| CFG_RESULT | ВУТЕ      | 1 = configuration read or written successfully 2 = configuration not yet read or written 3 = configuration cannot be read or written (missing or incorrect node ID or faulty device) |  |  |  |
| IO_RCV     | BOOL      | TRUE: for one cycle if new data were transmitted                                                                                                                                     |  |  |  |



If not described otherwise, a "FALSE" signal with boolean data types is always the negation of the described "TRUE" signal.

### 9.3.2 Data structure CR2031 ConfigStruct

Data CR2031 ConfigStruct

structure:

Purpose: Parameter and configuration

data can be written or read. The data structure is assigned to the function input "CFG\_DATA" via

the ADR operator.

```
TYPE CR2031 ConfigStruct
STRUCT
      GUARDTIME: TIME;
      LIFETIME: BYTE;
      Ch1: BYTE;
                                 (*2000/1*)
                                              (*0,2,4,5*)
      Ch2: BYTE;
                                 (*2000/2*)
                                              (*0,2,4,5*)
      Ch3: BYTE;
                                 (*2000/3*)
                                              (*0,2,4,5*)
      Ch4: BYTE;
                                 (*2000/4*)
                                              (*0,2,4,5*)
      Ch5: BYTE;
                                 (*2000/5*)
                                              (*0,2,4,5*)
      Ch6: BYTE;
                                 (*2000/6*)
                                              (*0,2,4,5*)
      Ch7: BYTE;
                                 (*2000/7*)
                                              (*0,2,4,5*)
                                              (*0,2,4,5*)
      Ch8: BYTE;
                                 (*2000/8*)
      PwmFrq: BYTE;
                                 (*2001/0*)
      P_Value1_2: BYTE;
                                 (*2004/1*)
      I_Value1_2: BYTE;
                                 (*2004/2*)
      Max Current1 2: WORD;
                                 (*2004/3*)
      P_Value7_8: BYTE;
                                 (*2007/1*)
      I_Value7_8: BYTE;
                                 (*2007/2*)
      Max_Current7_8: WORD;
                                 (*2007/3*)
END STRUCT
END_TYPE
```

### Structure components:

| Name       | Data type | Description                                                                                                                      |
|------------|-----------|----------------------------------------------------------------------------------------------------------------------------------|
| GUARDTIME  | TIME      | Guarding time of the module [ms]                                                                                                 |
| LIFETIME   | BYTE      | Lifetime of the module                                                                                                           |
| Ch1        | ВУТЕ      | Config. channel 1 0 = disabled (OFF) 2 = binary output * 4 = analogue output (PWM) 5 = analogue output (PWM; current-controlled) |
| Ch2        | ВУТЕ      | Config. channel 2 0 = disabled (OFF) 2 = binary output * 4 = analogue output (PWM) 5 = analogue output (PWM; current-controlled) |
| Ch3        | ВУТЕ      | Config. channel 3 0 = disabled (OFF) 2 = binary output * 4 = analogue output (PWM) 5 = analogue output (PWM; current-controlled) |
| :          | :         |                                                                                                                                  |
| Ch8        | ВУТЕ      | Config. channel 8 0 = disabled (OFF) 2 = binary output * 4 = analogue output (PWM) 5 = analogue output (PWM; current-controlled) |
| PwmFrq     | BYTE      | PWM frequency in Hz; 20 to 250 Hz (default 100 Hz)                                                                               |
| P_Value1_2 | BYTE      | P value of the current control function channel pair 1/2 value in % referred to the preset-actual value difference (default 50)  |

| Name            | Data type | Description                                                                                                                     |
|-----------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|
| I_Value1_2      | BYTE      | I value of the current control function channel pair 1/2 value in % referred to the preset-actual value difference (default 20) |
| Max_ Current1_2 | WORD      | max. possible load current in mA channel pair 1/2 current at 1000‰ PWM (default 4000 mA)                                        |
| P_Value3_4      | BYTE      | P value of the current control function channel pair 3/4 value in % referred to the preset-actual value difference (default 50) |
| I_Value3_4      | BYTE      | I value of the current control function channel pair 3/4 value in % referred to the preset-actual value difference (default 20) |
| Max_ Current3_4 | WORD      | max. possible load current in mA channel pair 3/4 current at 1000‰ PWM (default 4000 mA)                                        |
| P_Value5_6      | BYTE      | P value of the current control function channel pair 5/6 value in % referred to the preset-actual value difference (default 50) |
| I_Value5_6      | BYTE      | I value of the current control function channel pair 5/6 value in % referred to the preset-actual value difference (default 20) |
| Max_ Current5_6 | WORD      | max. possible load current in mA channel pair 5/6 current at 1000% PWM (default 4000 mA)                                        |
| P_Value7_8      | BYTE      | P value of the current control function channel pair 7/8 value in % referred to the preset-actual value difference (default 50) |
| I_Value7_8      | BYTE      | I value of the current control function channel pair 7/8 value in % referred to the preset-actual value difference (default 20) |
| Max_ Current7_8 | WORD      | max. possible load current in mA channel pair 7/8 current at 1000‰ PWM (default 4000 mA)                                        |

<sup>\*)</sup> default

#### 9.3.3 Data structure: CR2031 InOutStruct

Data CR2031 InOutStruct

structure:

Purpose: The current I/O data of the

module are read or written. The data structure is assigned to the function input "IO\_DATA" via the

ADR operator.

TYPE CR2031 inOutStruct
STRUCT

BinOut1: BOOL;
BinOut2: BOOL;
BinOut3: BOOL;
BinOut4: BOOL;
BinOut5: BOOL;
:
BinOut5: BOOL;
:
AnaOut1\_2: INT;
:
AnaOut7\_8: INT;
ActCurrent1\_2: WORD;
:
ActCurrent7\_8: WORD;
END\_STRUCT
END\_TYPE

<sup>\*\*)</sup> Mode 5 is only available if connection is made via the outputs with current monitoring (see also wiring  $\rightarrow$  10 Technical data).

# Structure components:

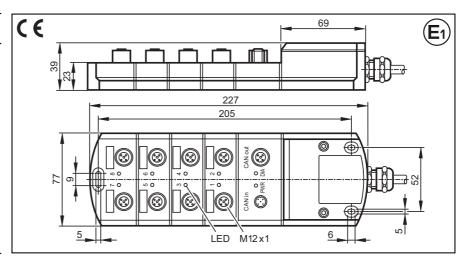
| Name          | Data type | Description                                                      |  |
|---------------|-----------|------------------------------------------------------------------|--|
| BinOut1       | BOOL      | Output status channel 1 (if Ch1 configuration = 2)               |  |
| BinOut2       | BOOL      | Output status channel 2 (if Ch2 configuration = 2)               |  |
| BinOut3       | BOOL      | Output status channel 3 (if Ch3 configuration = 2)               |  |
| BinOut4       | BOOL      | Output status channel 4 (if Ch4 configuration = 2)               |  |
| BinOut5       | BOOL      | Output status channel 5 (if Ch5 configuration = 2)               |  |
| BinOut6       | BOOL      | Output status channel 6 (if Ch6 configuration = 2)               |  |
| BinOut7       | BOOL      | Output status channel 7 (if Ch7 configuration = 2)               |  |
| BinOut8       | BOOL      | Output status channel 8 (if Ch8 configuration = 2)               |  |
| AnaOut1_2     | INT       | Analogue output value (if Ch1_2 config. = 4 or 5) channel 1 or 2 |  |
| AnaOut3_4     | INT       | Analogue output value (if Ch3_4 config. = 4 or 5) channel 3 or 4 |  |
| AnaOut5_6     | INT       | Analogue output value (if Ch5_6 config. = 4 or 5) channel 5 or 6 |  |
| AnaOut7_8     | INT       | Analogue output value (if Ch7_8 config. = 4 or 5) channel 7 or 8 |  |
| ActCurrent1_2 | WORD      | Actual current value [mA], channel 1 or 2                        |  |
| ActCurrent3_4 | WORD      | Actual current value [mA], channel 3 or 4                        |  |
| ActCurrent5_6 | WORD      | Actual current value [mA], channel 5 or 6                        |  |
| ActCurrent7_8 | WORD      | Actual current value [mA], channel 7 or 8                        |  |

<sup>\*)</sup> The odd-numbered channels 1, 3, 5, 7 are active if the variable contains a positive value. The even-numbered channels 2, 4, 6, 8 are active if the variable contains a negative value.

<sup>\*\*)</sup> The actual current value can only be read if connection is made via the outputs with current monitoring (see also wiring  $\rightarrow$  10 Technical data).

# 10 Technical data

## **CR2031**

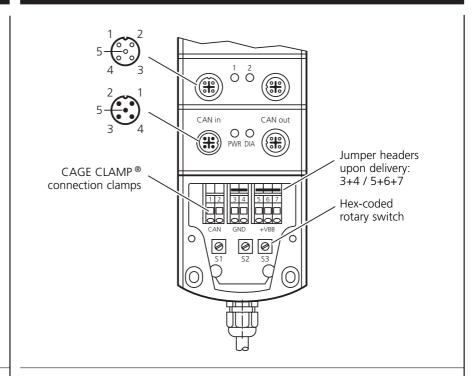

CompactModule Metal

Output module digital and analogue for R360 system

**CANopen** interface

Surface electrostatically coated (cathodic immersion)

10...32 V DC




| Technical data                                    | 8 digital / PWM outputs with integrated current measurement                                                                                                                                                                                                                                                                |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Housing                                           | Die-cast zinc housing with 8 outputs and terminal chamber surface electrostatically coated (cathodic immersion), black                                                                                                                                                                                                     |
| Dimensions (I x w x h)                            | 227 x 77 x 39 mm (without cable gland)                                                                                                                                                                                                                                                                                     |
| Installation                                      | Screw connection by means of 3 M5 x l screws to DIN 912 or DIN 7984                                                                                                                                                                                                                                                        |
| Connections Operating voltage and CAN bus Outputs | 7-pole terminal strip with CAGE CLAMP® connection technology (2 x 2-pole / 1 x 3-pole) 0.084 mm² (AWG 28AWG 12), nominal current 20 A Identical potentials can be linked using a jumper header (GND and U <sub>B</sub> potentials linked upon delivery) Cable entry via M16 cable gland 8 x M12 connector (socket), 5-pole |
| CANin/CANout                                      | 2 x M12 connector (plug/socket), 5-pole                                                                                                                                                                                                                                                                                    |
| Weight                                            | 1.2 kg                                                                                                                                                                                                                                                                                                                     |
| Outputs                                           | 8                                                                                                                                                                                                                                                                                                                          |
| can be configured as                              | digital, positive-switching (high side) PWM channel, or current-controlled channel                                                                                                                                                                                                                                         |
| switching current per output                      | max. 4 A                                                                                                                                                                                                                                                                                                                   |
| total current                                     | max. 16 A                                                                                                                                                                                                                                                                                                                  |
| Operating voltage U <sub>B</sub>                  | 1032 V DC                                                                                                                                                                                                                                                                                                                  |
| Current consumption                               | ≤ 50 mA (without external load at 24 V DC)                                                                                                                                                                                                                                                                                 |
| Operating temperature                             | -4085 °C                                                                                                                                                                                                                                                                                                                   |
| Storage temperature                               |                                                                                                                                                                                                                                                                                                                            |
| Protection                                        |                                                                                                                                                                                                                                                                                                                            |
| Interface                                         | CAN interface 2.0 B, ISO 11898                                                                                                                                                                                                                                                                                             |
| Baud rate                                         | 20 Kbits/s1 Mbit/s (default setting 125 Kbits/s) (adjustable using hex-code switch in the terminal chamber or via the CANopen object directory)                                                                                                                                                                            |
| Communication profile                             | CANopen, CiA DS 301 version 4, CiA DS 401 version 2.1                                                                                                                                                                                                                                                                      |
| Node ID (default)                                 | hex 20 (= dec 32) (adjustable using 2 hex-code switches in the terminal chamber or via the CANopen object directory)                                                                                                                                                                                                       |
| Indication                                        | 1 LED green (PWR)<br>1 LED red (diagnosis, DIA)<br>8 LEDs yellow (status of the outputs)                                                                                                                                                                                                                                   |

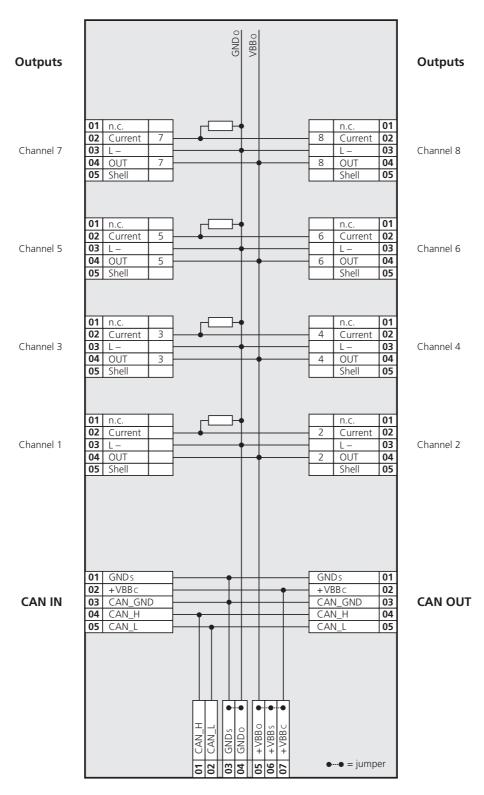
#### CR2031

Connecting and operating elements

#### Technical data



Hex-code switch coding


| Switch               | Position | Description                                 |
|----------------------|----------|---------------------------------------------|
| S1                   | 0        | 1000 Kbits/s                                |
| Baud rate            | 1        | 800 Kbits/s                                 |
|                      | 2        | 500 Kbits/s                                 |
|                      | 3        | 250 Kbits/s                                 |
|                      | 4        | 125 Kbits/s                                 |
|                      | 5        | 100 Kbits/s                                 |
|                      | 6        | 50 Kbits/s                                  |
|                      | 7        | 20 Kbits/s                                  |
|                      | 8E       | not defined                                 |
|                      | F        | adjustment via object directory (default)   |
| S2                   | 07       | high nibble, e.g. <u>2</u> 0 hex (= 32 dec) |
| Node ID <sub>H</sub> | F        | adjustment via object directory (default)   |
| S3                   | 0E       | low nibble, e.g. 2 <u>0</u> hex (= 32 dec)  |
| Node ID ∟            | F        | adjustment via object directory (default)   |

Operating states (LEDs)

| LED          | Status              | Description                                                                                                                                                               |
|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PWR (green)  | OFF<br>ON<br>2.0 Hz | no supply voltage module in stand-by mode CANopen status: PREOPERATIONAL / PREPARED outputs = OFF module active CANopen status: OPERATIONAL outputs are updated           |
| DIA (red)    | OFF<br>ON           | communication OK communication disturbed • node guard / heartbeat error (if node guarding / heartbeat is activated) • no synch objects (if synch monitoring is activated) |
| OUT (yellow) | ON                  | binary output: output switched (ON)<br>analogue output: PWM preset value ≠ 0<br>current preset value > 20                                                                 |

| CR2031                                | Characteristics of the outputs                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital outputs                       | 8 semiconductor outputs; short-circuit and overload protected Switching voltage 1032 V DC Switching current max. 4 A Total current max. 16 A The current measurement of 2 channels each can be selected by means of the wire connections. The following channels are combined: 1+2, 3+4, 5+6, 7+8                                                                                                                                                   |
| PWM outputs                           | With the configuration as "PWM output" two outputs each are combined (1+2, 3+4, 5+6, 7+8).  PWM frequency 20250 Hz Pulse duty factor 501000 % Resolution 1 %  Switching current max. 4 A Total current max. 16 A                                                                                                                                                                                                                                    |
| Current outputs                       | With the configuration as "current-controlled output" two outputs each are combined (1+2, 3+4, 5+6, 7+8). PWM frequency 20250 Hz Control range 201000 mA / 804000 mA Control resolution 1 mA / 4 mA (see control parameters) Setting resolution 1 mA Control characteristics Accuracy $\pm 2\%$ FS Switching current max. 4 A Load resistance min. 12 / 3 $\Omega$ (at U <sub>B</sub> = 12 V DC) min. 24 / 6 $\Omega$ (at U <sub>B</sub> = 24 V DC) |
| Control parameters                    | By indicating the max. load current [mA] for each output pair the respective control or value range (1000 or 4000 mA) is automatically selected. In addition the P/I behaviour of the current controller can be parameterised for each output pair.                                                                                                                                                                                                 |
| Free-wheel diode is integrated!       | To avoid errors in the measuring result, no external free-wheel diode must be connected in parallel with the load in the "current-controlled output" operating mode.                                                                                                                                                                                                                                                                                |
| Climatic test                         | Test standards and regulations  Damp heat to EN 60068-2-30, test Db (≤ 95% rel. humidity, non-condensing) Salt mist test to EN 60068-2-52, test Kb, severity level 3                                                                                                                                                                                                                                                                                |
| Mechanical resistance                 | Protection test to EN 60529  Vibration to EN 60068-2-6, test Fc Shock to EN 60068-2-27, test Ea Bump to EN 60068-2-29, test Eb                                                                                                                                                                                                                                                                                                                      |
| Immunity<br>to conducted interference | to ISO 7637-2, pulses 2, 3a, 3b, 4, severity level 4, function state A to ISO 7637-2, pulse 5, severity level 1, function state A to ISO 7637-2, pulse 1, severity level 4, function state C                                                                                                                                                                                                                                                        |
| Immunity to interfering fields        | according to UN/ECE-R10 at 100 V/m (E1 type approval) and DIN EN 61000-6-2 (CE)                                                                                                                                                                                                                                                                                                                                                                     |
| Interference emission                 | according to UN/ECE-R10 (E1 type approval) and DIN EN 61000-6-3 (CE)                                                                                                                                                                                                                                                                                                                                                                                |
| Tests for railway applications        | EN 50155 clause 12.2 mechanical/climatic tests EN 50121-3-2 EMC noise emission and noise immunity additional information on request                                                                                                                                                                                                                                                                                                                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

CR2031 Wiring



#### **CAN Interface / Supply**

#### Abbreviations

 $\begin{array}{lll} \mathsf{CAN_H} = & \mathsf{CAN} \; \mathsf{interface} \; (\mathsf{high}) \\ \mathsf{CAN_L} = & \mathsf{CAN} \; \mathsf{interface} \; (\mathsf{low}) \\ \mathsf{GND_0} = & \mathsf{ground} \; (\mathsf{output}) \\ \mathsf{GND_S} = & \mathsf{ground} \; (\mathsf{module}) \end{array}$ 

 $\begin{array}{ll} PWM = & output \ for \ pulse-width \ modulated \ signals \\ VBB_C = & operating \ voltage \ (via \ CANin/CANout \ plug) \\ VBB_O = & operating \ voltage \ (output) \\ VBB_S = & operating \ voltage \ (module) \end{array}$ 

ifm electronic ambh • Friedrichstraße 1 • 45128 Feen We receive the right to make technical alterations without prior notice

CR2031 / nage / 1// 02/201/

## 11 Fault correction

## 11.1 EMCY Object

The following error codes to DSP-401 and DSP-301 are supported:

| EMC Code | Error Reg | Additional Code | Description                                                                                                                                                                                                                                                                     |  |
|----------|-----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0x3300   | 0x05      | 0x00            | "Output Voltage" Supply voltage VBBO of the outputs is missing                                                                                                                                                                                                                  |  |
| 0x6100   | 0x11      | 0x00            | "Internal Software" Overflow of a Tx queue,<br>e.g. frequency of the RxPDOs is too high. Only external reset<br>via an entry in 1003 00                                                                                                                                         |  |
| 0x6101   | 0x11      | 0x00            | "Internal Software" Overflow of a Tx queue, e.g. device does not communicate with the bus. Only external reset via an entry in 1003 00                                                                                                                                          |  |
| 0x6200   | 0x81      | bit coded       | "User Software" I/O configuration is not permissible. EMCY object contains faulty channel pair, each bit represents a channel pair. 0000 0010 channel pair 1, 2 0000 1000 channel pair 3, 4 0010 0000 channel pair 5, 6 1000 0000 channel pair 7, 8                             |  |
| 0x8000   | 0x11      | 0x00            | "Monitoring" (Synch Error) For "communication cycle" no synch object is received (only in OPERATIONAL). Reset with the next synch OBJ or PREOP.                                                                                                                                 |  |
| 0x8130   | 0x11      | 0x00            | "Monitoring" (Guarding Error/Heartbeat Error) For "guard time" x "life time factor" no guard object is received or heartbeat object outside the expected time. Reset after node is active again.                                                                                |  |
| 0xFF00   | 0x81      | bit-codiert     | "Device Specific" The output current could not be achieved because the load resistor is too high/small.  0000 0001 channel 1  0000 0100 channel 2  0000 0100 channel 3  0000 1000 channel 4  0001 0000 channel 5  0010 0000 channel 6  0100 0000 channel 7  1000 0000 channel 8 |  |



Only the first error of an error group is indicated.

If there is for example an error "load resistor is too high/small" on channel 1 and then on channel 2, only the error which occured first is signalled. CANopen does not allow to send two identical EMCY objects one after the other.

# 12 Object directory

# 12.1 Manufacturer Specific Profile Area; index 2000 to 5FFF

| Index | S-ldx | Designation                            | Туре   | Default          | Description                                                                                           |
|-------|-------|----------------------------------------|--------|------------------|-------------------------------------------------------------------------------------------------------|
| 2000  | 0     | I/O Konfiguration                      | u8, ro | 0x08             | Number of the entries (= number of the output channels)                                               |
| 2000  | 1     | Configuration<br>channel 1<br>(output) | u8, rw | 0x02             | 0 = OFF<br>2 = binary output<br>4 = analogue output (PWM)<br>5 = analogue output (current-controlled) |
| 2000  | 2     | Configuration<br>channel 2<br>(output) | u8, rw | 0x02             | 0 = OFF 2 = binary output 4 = analogue output (PWM) 5 = analogue output (current-controlled)          |
| 2000  | 3     | Configuration channel 3 (output)       | u8, rw | 0x02             | 0 = OFF<br>2 = binary output<br>4 = analogue output (PWM)<br>5 = analogue output (current-controlled) |
| 2000  | 4     | Configuration channel 4 (output)       | u8, rw | 0x02             | 0 = OFF<br>2 = binary output<br>4 = analogue output (PWM)<br>5 = analogue output (current-controlled) |
| 2000  | 5     | Configuration channel 5 (output)       | u8, rw | 0x02             | 0 = OFF<br>2 = binary output<br>4 = analogue output (PWM)<br>5 = analogue output (current-controlled) |
| 2000  | 6     | Configuration channel 6 (output)       | u8, rw | 0x02             | 0 = OFF<br>2 = binary output<br>4 = analogue output (PWM)<br>5 = analogue output (current-controlled) |
| 2000  | 7     | Configuration channel 7 (output)       | u8, rw | 0x02             | 0 = OFF<br>2 = binary output<br>4 = analogue output (PWM)<br>5 = analogue output (current-controlled) |
| 2000  | 8     | Configuration channel 8 (output)       | u8, rw | 0x02             | 0 = OFF<br>2 = binary output<br>4 = analogue output (PWM)<br>5 = analogue output (current-controlled) |
| 2001  | 0     | PWM<br>Frequency                       | u8, rw | 0x64<br>(100 Hz) | Setting in Hz (20250 Hz) If an invalid value is entered, the previous value remains valid.            |
| 2002  | 0     | Actual current values                  | u8, ro | 0x04             | Number of the entries (= number of the current measuring channels)                                    |
| 2002  | 1     | Current values channel 1, 2            | u8, ro | _                | Actual current value in mA                                                                            |
| 2002  | 2     | Current values channel 3, 4            | u8, ro | _                | Actual current value in mA                                                                            |

| Index | S-Idx | Designation                     | Туре    | Default | Description                                                                                                         |
|-------|-------|---------------------------------|---------|---------|---------------------------------------------------------------------------------------------------------------------|
| 2002  | 3     | Current values channel 5, 6     | u8, ro  | _       | Actual current value in mA                                                                                          |
| 2002  | 4     | Current values channel 7, 8     | u8, ro  | _       | Actual current value in mA                                                                                          |
| 2004  | 0     | Control parameters channel 1, 2 | u8, ro  | 0x03    | Number of the entries (= number of the control parameters)                                                          |
| 2004  | 1     | P value channel<br>1, 2         | u8, rw  | 0x32    | P value of the current control function channel 1, 2 (= value in % referred to the preset- actual value difference) |
| 2004  | 2     | I value channel<br>1, 2         | u8, rw  | 0x14    | I value of the current control function channel 1, 2 (= value in % referred to the preset- actual value difference) |
| 2004  | 3     | max. current channel 1, 2       | u16, rw | 0xFA0   | max. possible load current in mA (= current at 1000% PWM)                                                           |
| 2005  | 0     | Control parameters channel 3, 4 | u8, ro  | 0x03    | Number of the entries (= number of the control parameters)                                                          |
| 2005  | 1     | P value channel 3, 4            | u8, rw  | 0x32    | P value of the current control function channel 3, 4 (= value in % referred to the preset- actual value difference) |
| 2005  | 2     | I value channel 3, 4            | u8, rw  | 0x14    | I value of the current control function channel 3, 4 (= value in % referred to the preset- actual value difference) |
| 2005  | 3     | max. current channel 3, 4       | u16, rw | 0xFA0   | max. possible load current in mA (= current at 1000% PWM)                                                           |
| 2006  | 0     | Control parameters channel 5, 6 | u8, ro  | 0x03    | Number of the entries (= number of the control parameters)                                                          |
| 2006  | 1     | P value channel 5, 6            | u8, rw  | 0x32    | P value of the current control function channel 5, 6 (= value in % referred to the preset- actual value difference) |
| 2006  | 2     | I value channel 5, 6            | u8, rw  | 0x14    | I value of the current control function channel 5, 6 (= value in % referred to the preset- actual value difference) |
| 2006  | 3     | max. current channel 5, 6       | u16, rw | 0xFA0   | max. possible load current in mA (= current at 1000% PWM)                                                           |
| 2007  | 0     | Control parameters channel 7, 8 | u8, ro  | 0x03    | Number of the entries (= number of the control parameters)                                                          |
| 2007  | 1     | P value channel 7, 8            | u8, rw  | 0x32    | P value of the current control function channel 7, 8 (= value in % referred to the preset- actual value difference) |
| 2007  | 2     | I value channel 7, 8            | u8, rw  | 0x14    | I value of the current control function channel 7, 8 (= value in % referred to the preset- actual value difference) |
| 2007  | 3     | max. current channel 7, 8       | u16, rw | 0xFA0   | max. possible load current in mA (= current at 1000% PWM)                                                           |

| Index               | S-ldx | Designation                 | Туре   | Default          | Description                                                                                                                                           |
|---------------------|-------|-----------------------------|--------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20F0<br>20F1<br>**) | 0     | Setting of the Node ID *)   | u8, rw | 0x20<br>(= 0d32) | The node ID used to access the module in the CANopen network.                                                                                         |
| 20F2<br>20F3<br>**) | 0     | Setting of the Baud rate *) | u8, rw | 0x04             | Baud rate of the CAN network 0 = 1000 kBaud 1 = 800 kBaud 2 = 500 kBaud 3 = 250 kBaud 4 = 125 kBaud (default) 5 = 100 kBaud 6 = 50 kBaud 7 = 20 kBaud |

<sup>\*)</sup> Observe hex-code switch position!

Entries under 20F0/20F1 and 20F2/20F3 are only valid if the hex-code switches for baud rate (S1) and/or node ID (S2, S3) are in the position "F". (For position and coding of the hex-code switches see connecting and operating elements  $\rightarrow$  10 Technical data)

Values outside the permissible ranges will be rejected.

Explanation of the abbreviations:

0x...= hexadecimal number str = string 0b...= binary value rw = read-write 0d...= decimal numerical value ro = read only unsigned 8 bit u8 = u16 = unsigned 16 bit

### 12.2 Communication Profile Area; index 1000 to 1FFF

| Index | S-ldx | Designation            | Туре    | Default    | Description                                                                                                                                                                |
|-------|-------|------------------------|---------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1000  | 0     | Device type            | u32, ro | 0x00030191 | Profile 401;<br>Inputs and outputs, binary and analogue                                                                                                                    |
| 1001  | 0     | Error register         | u8, ro  | 0x00       | Bit-coded to profile 301, the following is supported: 0b 0000 0000 no error 0b 0000 0001 generic error 0b 0001 0000 communication error 0b 1000 0000 manufacturer specific |
| 1003  | 0     | Pre-defined errorfield | u8, ro  | 0x00       | An error list with 4 entries is supported.                                                                                                                                 |
| 1003  | 1     | Error history          | u64, ro | 0x00       | Error occured, coded according to the EMCY list, the last error is in the sub- index 1.                                                                                    |
| 1005  | 0     | COB ID<br>synch objekt | u32, rw | 0x00000080 | Module generates no synch message (bit 30 = 0) 11-bit identifier system (bit 29 = 0) Identifier of the synch message                                                       |
| 1006  | 0     | Communic.<br>Cycle     | u32, rw | 0x00000000 | Max. time between 2 synch objects in µs Useful resolution = 1ms                                                                                                            |
| 1008  | 0     | Device name            | str, ro | CR2031     | Device name                                                                                                                                                                |
| 1009  | 0     | HW Version             | str, ro | X.X        | Hardware version                                                                                                                                                           |

<sup>\*\*)</sup> The entries 20F0/20F1 and 20F2/20F3 must always contain identical values. The new entries are valid after a reset (switching the module off/on).

| Index | S-ldx | Designation                                           | Туре    | Default                 | Description                                                                                                                                                                                                                                                                                     |
|-------|-------|-------------------------------------------------------|---------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100A  | 0     | SW Version                                            | str, ro | X.X                     | Software version                                                                                                                                                                                                                                                                                |
| 100C  | 0     | Guard time                                            | u16, rw | 0x0000                  | Time in ms Within this time the output module expects a "node guarding" of the network master. If the value 0 is entered here, this function is not supported. Note: Node monitoring with "node guarding" or "heartbeat" can only to be used as an alternative.                                 |
| 100D  | 0     | Life time<br>factor                                   | u8, rw  | 0x00                    | If no "node guarding" is received for "guard time" x "life time", the module switches the outputs off.  The module changes the CANopen status to PREOP.  The result from "guard time" x "life time" must be between 0 and 65535.                                                                |
| 1010  | 0     | Number of save options                                | u8, ro  | 0x01                    | Number of the "save" options                                                                                                                                                                                                                                                                    |
| 1010  | 1     | "Save all parameters"                                 | u32, rw | 0x02                    | Automatic saving of all changed parameters OFF/ON.  0 = AutoSave OFF 2 = AutoSave ON                                                                                                                                                                                                            |
| 1011  | 0     | Number of restore options                             | u8, ro  | 0x01                    | Number of the "restore" options                                                                                                                                                                                                                                                                 |
| 1011  | 1     | "Reset for all parameters"                            | u32, rw | 0x01                    | If the string "load" is entered here, the parameters are assigned to the factory default values and are valid after the next reset.                                                                                                                                                             |
| 1014  | 0     | COB ID<br>Emergency                                   | u32, rw | 0x00000080<br>+ Node ID | - EMCY is valid (Bit 31 = 0) - EMCY is not valid (Bit 31 = 1) - 11 Bit ID (Bit 29 = 0) - ID = 0x80 + Node ID CAN identifier can be changed by the user                                                                                                                                          |
| 1016  | 0     | Number<br>of options<br>Consumer<br>heartbeat<br>time | u8, ro  | 0x01                    | Number of the monitored units                                                                                                                                                                                                                                                                   |
| 1016  | 1     | Consumer<br>heartbeat<br>time                         | u32, rw | 0x00                    | Heartbeat monitoring time for node n. Monitoring of only one node is supported.  0x0nntttt = monitoring time [ms]  0x0nntttt = node number  (If nn or tttt = 0, no monitoring is carried out)  Note:  Node monitoring with "node guarding" or "heartbeat" is only to be used as an alternative. |
| 1017  | 0     | Producer<br>heartbeat<br>time                         | u16, rw | 0x00                    | Time interval [ms] where the inclination sensor generates a producer heartbeat.                                                                                                                                                                                                                 |
| 1018  | 0     | Number<br>of identity<br>objects                      | u8, ro  | 0x01                    | Device identification                                                                                                                                                                                                                                                                           |

| Index | S-ldx | Designation                         | Туре    | Default            | Description                                                                                                                                                                                                                                                                                                    |
|-------|-------|-------------------------------------|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1018  | 1     | Vendor ID                           | u32, ro | 0x0069666D         | Vendor ID to CiA specification                                                                                                                                                                                                                                                                                 |
| 1400  | 0     | Receive<br>PDO 1                    | u8, ro  | 0x02               | Number of the entries Rec PDO 1 Binary outputs                                                                                                                                                                                                                                                                 |
| 1400  | 1     | COB ID<br>PDO 1                     | u32, rw | 0x200 +<br>Node ID | - PDO is valid (bit 31 = 0) - CAN ID of the 1st Rec PDOs                                                                                                                                                                                                                                                       |
| 1400  | 2     | Trans Type<br>PDO 1                 | u8, rw  | 0x01               | 0x00 = synch acyclic 0x010xF0 = synch cylic,<br>Outputs are only updated after "n" synch<br>objects.<br>n = 0x01 (1) 0xF0 (240)<br>0xFC/0xFD not implemented<br>0xFE = asynch manuf. specific event, outputs<br>are updated immediately 0xFF = asynch device<br>profile event, outputs are updated immediately |
| 1401  | 0     | Receive<br>PDO 2                    | u8, ro  | 0x02               | Number of the entries Rec PDO 2<br>Analogue outputs                                                                                                                                                                                                                                                            |
| 1401  | 1     | COB ID<br>PDO 2                     | u32, rw | 0x300 +<br>Node ID | - PDO is valid (Bit 31 = 0) - CAN ID of the 2nd Rec PDOs                                                                                                                                                                                                                                                       |
| 1401  | 2     | Trans Type<br>PDO 2                 | u8, rw  | 0x01               | 0x00 = synch acyclic 0x010xF0 = synch cylic, Outputs are only updated after "n" synch objects. n = 0x01 (1) 0xF0 (240) 0xFC/0xFD not implemented 0xFE = asynch manuf. specific event, outputs are updated immediately 0xFF = asynch device profile event, outputs are updated immediately                      |
| 1600  | 0     | Mapping Rec<br>PDO 1                | u32, ro | 0x01               | Number of the application objects linked with the binary output PDO                                                                                                                                                                                                                                            |
| 1600  | 1     | Index in<br>the object<br>directory | u32, ro | 0x6200 01          | 6200 Sldx 01 contains 1 byte 0b 0000 0001 channel 1 0b 0000 0010 channel 2 0b 0000 0100 channel 3 0b 0000 1000 channel 4 0b 0001 0000 channel 5 0b 0010 0000 channel 6 0b 0100 0000 channel 7 0b 1000 0000 channel 8                                                                                           |
| 1601  | 0     | Mapping Rec<br>PDO 2                | u32, ro | 0x04               | Number of the application objects linked with the analogue output PDO                                                                                                                                                                                                                                          |
| 1601  | 1     | Index in<br>the object<br>directory | u32, ro | 0x6411 01          | 6411 Sldx 01 contains the preset value of the analogue output channel 1 or 2. The value is interpreted as pulse/break ratio in ‰ or as preset current value (depending on the configuration of the index 2000, → 12 Object directory).                                                                         |
| 1601  | 2     | Index in<br>the object<br>directory | u32, ro | 0x6411 02          | 6411 Sldx 02 contains the preset value of the analogue output channel 3 or 4. The value is interpreted as pulse/break ratio in ‰ or as preset current value (depending on the configuration).                                                                                                                  |

| Index | S-ldx | Designation                         | Туре    | Default            | Description                                                                                                                                                                                                                                                                                                              |
|-------|-------|-------------------------------------|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1601  | 3     | Index in<br>the object<br>directory | u32, ro | 0x6411 03          | 6411 Sldx 03 contains the preset value of the analogue output channel 5 or 6. The value is interpreted as pulse/break ratio in ‰ or as preset current value (depending on the configuration).                                                                                                                            |
| 1601  | 4     | Index in<br>the object<br>directory | u32, ro | 0x6411 04          | 6411 Sldx 04 contains the preset value of the analogue output channel 7 or 8. The value is interpreted as pulse/break ratio in ‰ or as preset current value (depending on the configuration).                                                                                                                            |
| 1800  | 0     | Trans PDO 1                         | u8, ro  | 0x05               | Number of the entries Trans PDO 1 (Actual current value)                                                                                                                                                                                                                                                                 |
| 1800  | 1     | COB ID<br>PDO 1                     | u32, rw | 0x180 +<br>Node ID | - PDO is valid (Bit 31 = 0) - CAN ID of the 1st Trans PDOs                                                                                                                                                                                                                                                               |
| 1800  | 2     | Trans Type<br>PDO 1                 | u8, rw  | 0x01               | 0x00 = synch acyclic 0x010xF0 = synch cyclic; Current values are only transferred after "n" synch objects. n = 0x01 (1) 0xF0 (240) 0xFC/0xFD not implemented 0xFE = asynch man. spec. event; Current values are immediately transferred. 0xFF = asynch device profile event; Current values are immediately transferred. |
| 1800  | 5     | Event timer<br>Trans PDO 1          | u16,rw  | 0x00               | Max. transfer break in trans type "asynch" (065535 ms), when this time has elapsed the PDO is transferred even if the appl. event has not occurred.                                                                                                                                                                      |
| 1A00  | 0     | Mapping<br>Trans PDO 1              | u32, ro | 0x04               | Number of the linked application objects (actual current values)                                                                                                                                                                                                                                                         |
| 1A00  | 1     | Index in the object directory       | u32, ro | 0x2002 01          | Idx 2002, SIdx 01 contains the actual current value channel 1/2                                                                                                                                                                                                                                                          |
| 1A00  | 2     | Index in the object directory       | u32, ro | 0x2002 02          | Idx 2002, SIdx 02 contains the actual current value channel 3/4                                                                                                                                                                                                                                                          |
| 1A00  | 3     | Index in the object directory       | u32, ro | 0x2002 03          | Idx 2002, SIdx 03 contains the actual current value channel 5/6                                                                                                                                                                                                                                                          |
| 1A00  | 4     | Index in the object directory       | u32, ro | 0x2002 04          | Idx 2002, SIdx 04 contains the actual current value channel 7/8                                                                                                                                                                                                                                                          |

# 13 Maintenance, repair and disposal

As the module does not contain any components which must be maintained by the user, the housing must not be opened. The maintenance of the module may only be carried out by the manufacturer.

UK

The disposal must be carried out according to the corresponding national environmental regulations.

## 14 Declaration of conformity

For test standards and regulations  $\rightarrow$  10 Technical data.

The CE Declaration of Conformity and the E1-approval are available at www.ifm.com.

### 15 Terms and abbreviations

0b ... binary value (for bit coding), e.g. 0b0001 0000

0d ... decimal numerical value, e.g. 0d100

0x ... hexadecimal value, e.g. 0x64 (= 100 decimal)

Baudrate transmission speed (1 baud = 1 bit/s)

CAL CAN Application Layer

CAN-based network protocol on application level

CAN Controller Area Network (bus system for use in mobile applications)

CAN\_H CAN-High; CAN connection /cable with high voltage level CAN L CAN-Low; CAN connection /cable with low voltage level

CANopen CAN-based network protocol on application level with an open configuration interface

(object directory)

CiA "CAN in Automation e.V." (user and manufacturer organisation in Germany/Erlangen)

Definition and control body for CAN and CAN-based network protocols

CiA DS Draft Standard (published CiA specification which usually has not been modified or supple-

mented for one year)

CiA DSP Draft Standard Proposal (published CiA specification draft)
CiA WD Work Draft (work draft accepted for discussion within CiA)

CiA DS 301 Specification for CANopen communication profile;

describes the basic communication between network participants, such as the transfer of process data in real time, the exchange of data between units or the configuration stage.

Depending on the application this is completed by the following CiA specifications:

CiA DS 401 Device profile for digital and analogue I/O modules

CiA DS 402 Device profile for drives
CiA DS 403 Device profile for HMI

CiA DS 404 Device profile for measurement and control technology

CiA DS 405 Specification for interfaces to programmable systems (IEC 61131-3)

CiA DS 406 Device profile for encoders

CiA DS 407 Application profile for local public transport

COB CANopen Communication Object (PDO, SDO EMCY, ...)

COB ID CANopen Identifier of a Communication Object

Communication the synchronisation time to be monitored, max. time between 2 Sync objects

cycle

EMCY Object Emergency Object (alarm message, device indicates an error)

Error Register (entry with an error code)

Guarding Error Node or network participant could or can no longer be found

Guard Master: one or several slaves no longer reply

Guard Slave: no polling of the slave

Guard Time During this time the network participant expects a "Node Guarding" of the network master

Cyclic monitoring with parameter setting among network participants. In contrast to "node"

guarding" no superior NMT master is required.

ID identifies a CAN message. The numerical value of the ID also contains a priority for the

(Identifier) access to the bus system. ID 0 = top priority

ldx index; together with the S index it forms the address of an entry in the object directory

Life Time Factor number of attempts in case of a missing Guarding reply

Monitoring is used to describe the error class (guarding monitoring, synch etc.)

NMT network management

NMT-Master/-

The NMT master controls the operating states of the NMT slaves

Slaves

Node Guarding adjustable cyclic monitoring of slave network participants by a higher master node as well

as the monitoring of this polling process by the slave participants

Node ID node identifier (identification of a participant in the CANopen network)

Object (OBJ) term for data/messages which can be exchanged in the CANopen network

Object directory contains all CANopen communication parameters of a device as well as device-specific

parameters and data. Access to the individual entries is possible via the index and S index.

Operational Operating state of a CANopen participant.

In this mode SDOs, NMT commands and PDOs can be transferred.

PDO Process Data Object; in the CANopen network for transfer of process data in real time;

such as the speed of a motor. PDOs have a higher priority than SDOs; in contrast to the SDOs they are transferred without confirmation. PDOs consist of a CAN message with

identifier and up to 8 bytes of user data.

PDO Mapping describes the application data transferred with a PDO.

Pre-Op Preoperational; operating state of a CANopen participant.

After application of the supply voltage each participant automatically goes into this state. In the CANopen network only SDOs and NMT commands can be transferred in this mode

but no process data.

Prepared (also stopped) operating state of a CANopen participant In this mode only NMT commands

are transferred.

Rec PDO Receive Process Data Object

(Rx PDO)

ro read only (unidirectional)
rw read-write (bidirectional)

Rx-Queue reception buffer

s16 data type signed 16 bit

SDO Service Data Object. With this object direct access to the object directory of a network

participant is possible (read/write). An SDO can consist of several CAN messages. The

transfer of the individual messages is confirmed by the addressed participant.

With the SDOs devices can be configured and parameters can be set.

Server SDO process and parameter set to make the object directory of a network participant available to

other participants (clients).

S-ldx Subindex within the object directory of a CANopen device

(Sldx)

Start Guarding start node guarding

str data type string (variable for strings such as text "load")

Sync Error missing Sync OBJ in the adjustable communication cycle

Sync OBJ synchronisation object for simultaneous update in the complete network or for accepting

process data of the respective parameterised PDOs.

Sync Windows time during which the synchronous PDOs have to be transferred

Time Stamp to align existing clocks in network participants

Trans Type type of process data transmission; synchronous, asynchronous

Trans PDO transmit process data object

(Tx PDO)

Trans SDO transmit service data object

(Tx SDO)

Tx-Queue (transmit) transmission buffer u8 (16, 32) data type unsigned 8 (16, 32) bits

wo write only

