

Инструкция по эксплуатации Электронный датчик уровня

> LK10xx LK70xx

RU

Содержание

1	Введение	
2	Инструкции по безопасной эксплуатации	
3	Функции и ключевые характеристики	5
	3.1 Применение	
	3.2 Ограничения по применению	5
4	Ввод в эксплуатацию	6
	4.1 Пример конфигурации 1	
	4.2 Пример конфигурации 2	
	Функция	
	5.1 Принцип измерения	
	5.2 Принцип работы / Характеристики прибора	
	5.2.1 Режимы работы	
	5.2.2 Примечание к встроенной защите от переполнения	
	5.2.3 Изображение и коммутационные функции	10
	5.2.4 Смещение для отображения фактического уровня в резервуар	
	5.2.5 Состояние в случае ошибки	
	5.2.6 Функция IO-Link	11
6	Установка	12
	6.1 Инструкция по установке для эксплуатации с защитой от переполне	
		13
	6.2 Инструкция по установке для работы без защиты от переполнения	14
	6.2.1 Установка в неактивной зоне	14
	6.2.2 Установка в активной зоне А зонда	
	6.3 Дополнительные рекомендации по установке	
	6.3.1 Монтажные принадлежности:	16
7	Электрическое подключение	17
8	Органы управления и индикация	19
9	Меню	20
	9.1 Структура меню	
1() Настройка параметров	
	10.1 О настройке параметров	∠1

10.2 Основные настройки	22
10.2.1 Настройка единицы измерения [uni]	
10.2.2 Настройка значения смещения [OFS]	22
10.2.3 Настройка среды [MEdI]	23
10.2.4 Настройка защиты от переполнения [ОР]	
10.2.5 Настройка защиты от переполнения [сОР]	
10.3 Настройка выходных сигналов	25
10.3.1 Настройка функции выхода [oux] для OUTx	
10.3.2 Настройка пределов переключения [SPx] /[rPx]	
	26 _{RU}
10.3.3 Настройка пределов переключения [FHx] / [FLx]	
	26
10.3.4 Настройка задержки срабатывания [dSx] для коммутационных	
выходов	26
10.3.5 Настройка задержки выключения [drx]	26
10.3.6 Настройка логики выхода [P-n]	26
10.3.7 Поведение выходов в случае ошибки или неисправности	27
10.3.8 Конфигурация дисплея [diS]	27
10.3.9 Сброс всех параметров к заводским настройкам [rES]	27
11 Эксплуатация	27
11.1 Рабочие индикаторы	28
11.2 Просмотр установленных параметров	
11.3 Индикация ошибок	
11.4 Срабатывание выхода в разных эксплуатационных состояниях	
12.1. Значания настрайки [OES]	
12.1 Значения настройки [OFS]	
12.3 Помощь для вычисления [ОР]	
12.3.1 Определение "от люка"	
1737 ()ПРАПАПАЦИА "СО ПЦЭ"	
12.3.2 Определение "со дна"	33
12.4 Диапазоны настройки [SPx] / [FHx] и [rPx] / [FLx]	
12.4 Диапазоны настройки [SPx] / [FHx] и [rPx] / [FLx]	
12.4 Диапазоны настройки [SPx] / [FHx] и [rPx] / [FLx]	33
12.4 Диапазоны настройки [SPx] / [FHx] и [rPx] / [FLx]	33

15 Области применения	35
15.1 Гидравлический резервуар	
15.2 Насосная станция	
15.3 Резервуар для хранения	

1 Введение

1.1 Используемые символы

- ▶ Инструкции по применению
- > Реакция, результат
- [...] Маркировка органов управления, кнопок или обозначение индикации
- → Ссылка на соответствующий раздел
- Важное примечание Несоблюдение этих рекомендаций может привести к неправильному функционированию устройства или созданию помех.
- Информация Дополнительное разъяснение.

2 Инструкции по безопасной эксплуатации

- Внимательно прочитайте эту инструкцию до начала установки и эксплуатации. Убедитесь в том, что прибор подходит для Вашего применения без каких-либо ограничений.
- При не соблюдении инструкций по эксплуатации или технических характеристик, возникает риск травм обслуживающего персонала и/ или повреждения оборудования. Все работы по установке, настройке, подключению, вводу в эксплуатацию и техническому обслуживанию должны проводиться квалифицированным персоналом, получившим допуск к работе на данном технологическом оборудовании.
- Для гарантированно надёжной работы прибора, необходимо использовать его только в среде, где его конструкционные материалы, являются достаточно стойкими (→ Технические характеристики).
- Ответственность за совместимость измерительного прибора с конкретным применением несёт пользователь. Производитель не несёт ответственности за последствия неправильного использования прибора оператором.

- Неправильная установка и использование прибора приводит к потере гарантии.
- Прибор соответствует стандарту EN 61000-6-4. Данный прибор может создавать радиопомехи для работы бытовой электроники. В этом случае пользователь должен принять соответствующие меры для их устранения.

3 Функции и ключевые характеристики

3.1 Применение

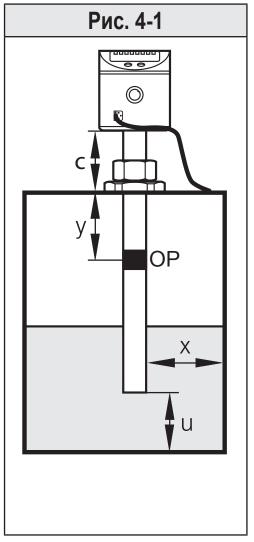
Датчик был специально разработан для отрасли станкостроения с учетом всех предъявляемых требований к данной отрасли промышленности. Он предназначен для контроля за смазочно-охлаждающими эмульсиями (в том числе загрязненными), гидравлическими маслами и маслами для металлорежущих инструментов.

3.2 Ограничения по применению

- Датчик не подходит для:
 - кислот и щелочей
 - гигиенической среды и гальванотехники
 - сильно проводящей и липкой среды (напр. клей, шампунь)
 - гранулятов, сыпучих материалов
 - использования в дробилках (повышенный риск образования отложений).
- Пена, имеющая высокую электропроводность, может распознаваться как уровень:
 - проверьте правильное функционирование.
- Если температура воды или водной среды > 35°C, то поместите и установите датчик в климатическую трубку (→ Принадлежности).
- Для автоматического обнаружения среды: Негомогенные (неоднородные) среды, которые формируют разделяющие слои с разной плотностью (напр. слой масла на слое воды):
 - проверьте правильное функционирование.

4 Ввод в эксплуатацию

Для быстрой настройки можно использовать ниже указанные примеры конфигурации. Указанные минимальные расстояния применяются исключительно для каждого отдельно описанного случая.


4.1 Пример конфигурации 1

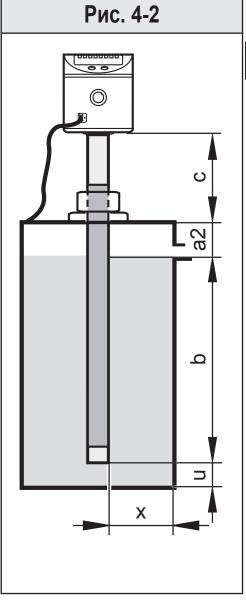
Используемый датчик:	LK1022 (длина зонда L = 264 мм)
Обнаруживаемая среда:	Минеральные масла
	Ручной выбор среды с защитой от переполнения (заводская настройка LK10xx) (→ 5.2.1)
Тип монтажа:	Металлический резервуар, установка см. Рис. 4-1

- ▶ Установка датчика.
- ► Соблюдайте расстояния (x), (u) и (c):

X:	мин. 4.0 см
u:	мин. 1.0 см
C:	мин. 14.0 см

- Ваземление датчика и резервуара с помощью электрического подключения (→ 7).
- Соблюдайте последовательность настройки параметров:
 - [MEdI] = [OIL.2] (→ 10.2.3)
 - [OFS] = (u); напр. (u) = 2.0 см (\rightarrow 5.2.4)
 - [OP]: Настройте защиту от переполнения OP на расстояние (у) больше, чем 4,5 см под монтажным элементом.
- При расстоянии (у) меньше, чем 4,5 см могут в процессе настройки возникать сбои и сообщения об ошибках [сОР]

- Шаг приращения и диапазон настройки: (→) Помощь для вычисления [OP]: (→ 12.3)
 - ► Настройка защиты от переполнения ОР на [сОР] (→ 10.2.5)
 - > Прибор готов к работе.
 - ▶ При необходимости произведите дополнительные настройки.
 - Проверьте правильность функционирования прибора.

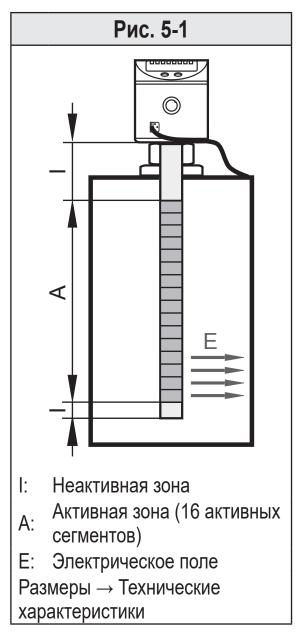

4.2 Пример конфигурации 2

Используемый датчик:	LK7023 (длина зонда L = 472 мм)
Обнаруживаемая среда:	Смазочно-охлаждающая эмульсия
Режим работы:	Автоматическое обнаружение среды
	(заводская настройка LK70xx) (→ 5.2.1).
Типа монтажа:	Металлический резервуар, установка см. Рис. 4-2

- Установка датчика.
- ▶ Соблюдайте расстояния (x), (u) и (c):

X:	мин. 4.0 см
u:	мин. 1.0 см
C:	макс. 23.0 см

- Ваземление датчика и резервуара с помощью электрического подключения (→ 7).
- ► Соблюдайте максимальный допустимый уровень (b).
- Между максимальным уровнем (b) и монтажным приспособлением, необходимо соблюдать расстояние (a2) не менее чем 5.0 см.
- Соблюдайте последовательность настройки параметров:
- [MEdI] = [Auto] (→ 10.2.3)
- [OFS] = (u), напр. (u) = 1.0 м (\rightarrow 5.2.4)
- [SP1] = Настройте точку переключения на расстояние (a2) больше чем 5.0 см под монтажным элементом.


- Регулируется с шагом 0,5 см.Точка переключения [SP1] используется как защита от переполнения (отключение насоса, закрытие впускной трубы, ...)
- ▶ Прибор должен быть повторно инициализирован:
- ▶ Выключите и снова включите рабочее напряжение.
- > Прибор готов к работе.
- ▶ При необходимости произведите дополнительные настройки.
- ▶ Проверьте правильность функционирования прибора.

5 Функция

5.1 Принцип измерения

Датчик определяет уровень жидкости при помощи емкостного принципа действия:

- Распознаваемая среда воздействует на электрическое поле (Е), генерируемое датчиком. Любое изменение поля генерирует измерительный сигнал, который преобразуется с помощью электроники.
- Диэлектрическая постоянная среды имеет важное значение для ее обнаружения. Среда с высокой диэлектрической постоянной (напр. вода) генерирует сильный измерительный сигнал, среды с низкой диэлектрической постоянной (напр. масла) генерируют, соответственно, слабый сигнал.
- Активная измерительная зона зонда датчика состоит из 16 емкостных измерительных сегментов. Они генерируют измерительные сигналы в зависимости от глубины погружения зонда.

5.2 Принцип работы / Характеристики прибора

Прибор можно установить в резервуары различных размеров. Доступны 2 выхода. Они могут настраиваться по отдельности.

OUT1	Коммутационный сигнал для предельного значения уровня / IO-Link
OUT2	Коммутационный сигнал для предельного значения уровня

Для настройки прибора на данное применение, выберите необходимый режим работы.

5.2.1 Режимы работы

1. Ручной выбор среды с защитой от переполнения (заводская настройка LK10xx)

Рекомендуется! Самая высокая надежность функционирования!

Обнаруживаемая среда настраивается вручную [MEdI]. Кроме того, доступна независимая, встроенная функция защиты от переполнения.

2. Ручной выбор среды без защиты от переполнения Средняя надежность функционирования!

Обнаруживаемая среда настраивается вручную, как указано в пункте 1. Однако, защита от переполнения отключена. Поэтому, настройка невозможна.

3. Автоматическое обнаружение среды (заводская настройка LK70xx) Самая низкая надежность!

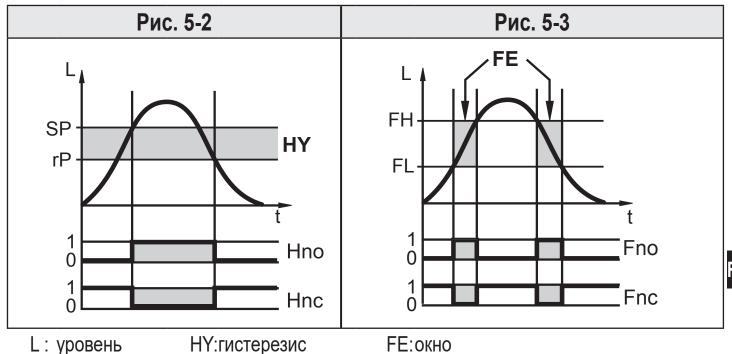
При каждом включении рабочего напряжения, прибор настраивает себя на среду и условия окружающей среды.

Для автоматического обнаружения среды, защита от переполнения недоступна!

Автоматическое обнаружение среды может работать правильно только при определенных условиях (напр. соблюдение специальных монтажных спецификаций, ограничений для эксплуатации и техобслуживания).

5.2.2 Примечание к встроенной защите от переполнения

С помощью параметра [OP] (OP = защита от переполнения), один из верхних измерительных сегментов определяется как встроенная защита от переполнения.


- Если защита от переполнения (ОР) активирована, необходимо произвести настройку на данные условия установки.
- Защиту от переполнения OP можно отключить ([OP] = [OFF]).
- Отключение защиты от переполнения может ухудшить эксплуатационную надежность. Для оптимального функционирования и максимальной надежности работы, мы рекомендуем не отключать защиту от переполнения!

- Защита от переполнения, это максимальный предел диапазона измерения. Точки переключения [SPx] / [FHx] всегда ниже [OP]!
- Защита от переполнения **не** присвоена к отдельному входу! Он предлагает дополнительную защиту и приводит к срабатыванию только в случае, если выходы не сработали, даже если соответствующая точка переключения была превышена (напр. из-за неисправностей связанных с применением).
- Стандартно защита от переполнения OP реагирует, при достижении выбранного измерительного сегмента (несколько мм до установленного значения OP).
- Защита от переполнения OP отвечает немедленно и без задержки. Настроенное время задержки (напр. точка переключения непосредственно ниже) не оказывает влияния на защиту от переполнения OP.
- Срабатывание защиты от переполнения отображается на дисплее ("Full" и индикация текущего уровня изменяется каждую секунду).

5.2.3 Изображение и коммутационные функции

Датчик показывает текущий уровень, по выбору в см или дюймах. Единица измерения устанавливается с помощью программирования. Настроенная единица измерения и состояние переключения выходов отображается с помощью светодиодов. С помощью двух коммутационных входов (OUT1, OUT2) датчик сигнализирует, что настроенный предел был превышен или что уровень ниже предельного значения. Параметры коммутационных выходов можно настроить.

- Функция гистерезиса / нормально открытый (рис. 5-2): [oux] = [Hno].
- Функция гистерезиса / нормально закрытый (рис. 5-2): [oux] = [Hnc].
- Сначала настраивается точка срабатывания (SPx), затем точка сброса (rPx) с нужным интервалом.
- Гистерезис защиты от переполнения ОР зафиксирован.
- Функция окна / нормально открытый (рис. 5-3): [oux] = [Fno].
- Функция окна / нормально закрытый (рис. 5-3): [oux] = [Fnc].
- Ширина окна может быть установлена с помощью разницы между [FHx] и [FLx]. [FHx] = верхний порог, [FLx] = нижний порог.

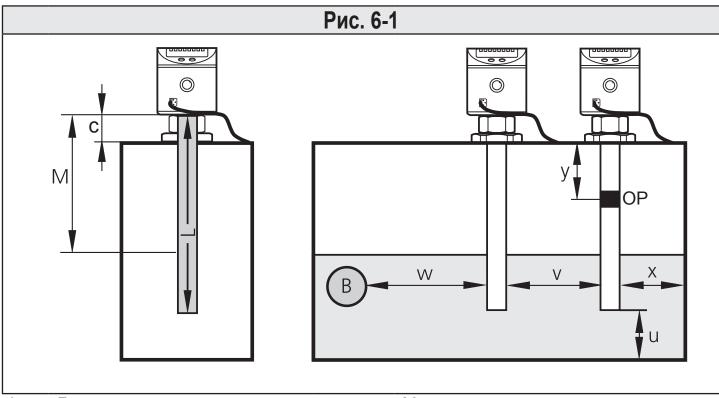
5.2.4 Смещение для отображения фактического уровня в резервуаре

Расстояние между дном резервуара и нижней кромкой зонда можно ввести как значение смещения [OFS]. Поэтому дисплей и точки переключения отображают фактический уровень (опорная точка = дно резервуара).

- ្ស័ Для [OFS] = [0]: опорная точка нижняя кромка зонда.
- Настроенное смещение ссылается только на дисплей прибора. Он не оказывает влияния ни на какие рабочие значения перенесенные через IO-Link. Параметр OFS, однако, передается правильно через IO-Link и таким образом может быть принят во внимание. Более подробная информация (→ 5.2.6).

5.2.5 Состояние в случае ошибки

В случае ошибки, безопасное состояние может быть установлено для каждого выхода. Если ошибка обнаружена, или качество сигнала ниже минимального значения, то выходы переходят в определенное состояние. В этом случае отклик выходов может быть установлен с помощью параметров [FOU1], [FOU2] (— 10.3.7).


5.2.6 Функция IO-Link

Датчик оснащен коммуникационным интерфейсом IO-Link, который позволяет прямой доступ к рабочим и диагностическим данным.

Кроме того, можно настроить параметры прибора во время работы. Эксплуатация прибора с помощью интерфейса IO-Link требует модуль с поддержкой IO-Link (IO-Link мастер).

С помощью ПК, подходящего ПО IO-Link и адаптерного кабеля IO-Link, коммуникация возможна даже если система находится в нерабочем режиме. Необходимые IODD для конфигурации прибора, подробная информация о структуре рабочих данных, диагностическая информация, адреса параметров и необходимая информация о аппаратном и программном обеспечении IO-Link находятся на нашем сайте www.ifm.com.

6 Установка

L: Длина зонда

М: Зона для монтажных

с: приспособлений

Максимальное удлинение

u ... у: Минимальные расстояния

ОР: Защита от переполнения

В: Металлический предмет внутри

резервуара

Таблица 6-1							
	LKx022 LKx023 LKx024					x024	
	[см]	[дюймы]	[CM]	[дюймы]	[CM]	[дюймы]	
L (длина зонда)	26.4	10.4	47.2	18.6	72.8	28.7	
М (зона установки) с (макс. удлинение)*	14.0	5.5	23.0	9.1	36.0	14.2	

^{*} Действительно для установки как указано (толщина стенки люка резервуара не учитывается; монтажное приспособление не выступает в резервуар). В обратном случае см. монтажная зона М.

6.1 Инструкция по установке для эксплуатации с защитой от переполнения

[MEdI] = [CLW..] или [OIL..]

[OP] = [значение ...] (Защита от переполнения ОР активирована)

- Разрешается зафиксировать монтажные приспособления в пределах монтажной зоны (М) (Рис. 6-1).
- ▶ Соблюдайте максимальное допустимое удлинение (с) в соответствии с Таблицей 6-1.
- ▶ Соблюдайте минимальное расстояние в соответствии с Рис. 6-1 и Таблицей 6-2.
- ▶ Соблюдайте примечания к встроенной защите от переполнения!
- !

Защита от переполнения (ОР) должна:

- 1. быть ниже монтажного приспособления
- 2. быть отрегулирована на минимальное расстояние (у) до него, измеренное между нижним краем монтажного элемента и значением OP.

Таблица 6-2								
	MEdI =	CLW.1	MEdI = CLW.2, OIL.1		MEdI = OIL.2			
	[CM]	[дюймы]	[CM]	[дюймы]	[CM]	[дюймы]		
Х	x 2.0 0.8		3.0	1.2	4.0	1.6		
u 1.0 0.4		1.0	0.4	1.0	0.4			
y (LKx022)	y (LKx022) 2.5 1.0		3.5	1.4	4.5	1.8		
y (LKx023) 4.5 1.8		5.5	2.2	6.5	2.6			
y (LKx024) 6.0		2.4	7.0	2.8	8.0	3.2		
v 4.5 1.8		4.5	1.8	4.5	1.8			
W	4.0	1.6	5.0	2.0	6.0	2.4		

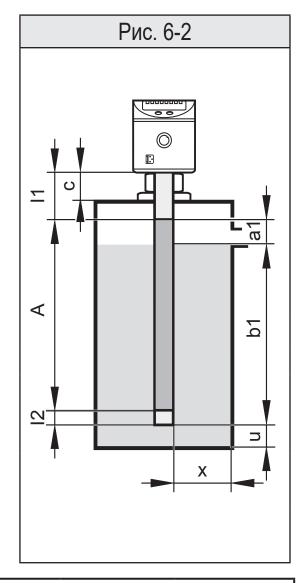
 \S Помощь для вычисления [OP]: (ightarrow 12.3).

6.2 Инструкция по установке для работы без защиты от переполнения

[MEdI] = [Auto] или [OP] = [OFF] (Защита от переполнения OP отключена!)

6.2.1 Установка в неактивной зоне

- Между максимальным уровнем (b1) и неактивной зоной (I1), должно соблюдаться минимальное расстояние (a1) (см Рис. 6-2 и Таблица 6-3)!
- ▶ Закрепите датчик с помощью монтажных приспособлений в неактивной зоне (I1). Удлинение (c) не должно превышать (I1) (см. Таблица 6-3).
- ▶ Убедитесь, что максимальный уровень (b1) после установки не превышен (см. Таблица 6-3).
- Соблюдайте минимальное расстояние в соответствии с Таблицей 6-4.

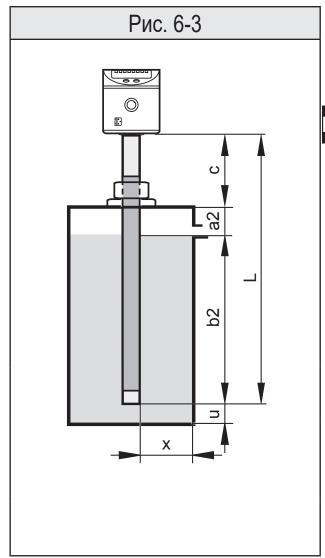

I1 / I2: Неактивные зоны

А: Активная зона

а1: Минимальное расстояние между неактивной зоной (I1) и максимальным уровнем (b)

b1: Макс. уровень от нижней кромки датчика (без смещения)

с: Макс. разрешенное удлинение (Соблюдайте примечание в Таблице 6-1)


Таблица 6-3									
	LKx022		LKx023		LKx024				
	[CM]	[дюймы]	[см]	[дюймы]	[CM]	[дюймы]			
11	5.3	2.1	6.0	2.4	10.4	4.1			
Α	A 19.5 7.7		39.0	15.4	58.5	23.0			
a1	1.0	0.4	1.5	0.6	2.5	1			
b1	20.0	7.9	39.5	15.6	59.5	23.4			

6.2.2 Установка в активной зоне А зонда

ñ

Необходимо соблюдать минимальное расстояние (a2) между максимальным уровнем (b2) и монтажным приспособлением (см. Рис. 6-3 и Таблица 6-4).

- ▶ Закрепите монтажные приспособления в монтажной зоне (М). Придерживайтесь максимального допустимого удлинения (с) (см. Таблица 6-4).
- ▶ Убедитесь, что максимальный уровень (b2) после установки не превышен:
- ► (b) = (L) (c) (a2) (без смещения)
- ► Соблюдайте остальные минимальные расстояния в соответствии с Таблицей 6-4.
 - с: Макс. допустимая величина удлинения
 - а2: Минимальное расстояние между монтажным приспособлением и максимальным уровнем (b).
 - b2: Макс. уровень от нижней кромки датчика

Таблица 6-4								
	MEdI =	: CLW.1	MEdI = C	MEdI = CLW.2, OIL.1		MEdI = OIL.2 / Auto		
	[CM]	[дюймы]	[CM]	[дюймы]	[CM]	[дюймы]		
Х	2.0	0.8	3.0	1.2	4.0	1.6		
u	u 1.0 0.4 1.0		1.0	0.4	1.0	0.4		
a2 (LKx022)	2.0	0.8	2.5	1.0	3.0	1.2		
a2 (LKx023)	4.0	1.6	4.5	1.8	5.0	2.0		
a2 (LKx024)	6.0	2.4	7.0	2.8	8.0	3.2		
V *)	4.5	1.8	4.5	1.8	4.5	1.8		
W *)	4.0	1.6	5.0	2.0	6.0	2.4		

^{*)} \rightarrow Рис. 6-1.

!

В случае автоматического обнаружения среды [MEdl] = [Auto] или отключенной защиты от переполнения [OP] = [OFF], датчик повторно инициализирует себя каждый раз, когда он включен и настраивается на среду. Активная зона / диапазон измерения не должны быть полностью погружены в среду! Это обеспечивают указанные минимальные расстояния.Слишком короткие расстояния могут привести к неисправностям!

6.3 Дополнительные рекомендации по установке

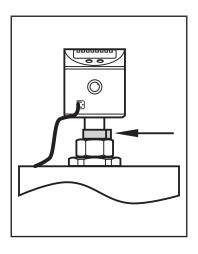

- При установке датчика в пластиковые трубы/пластиковые резервуары внутренний диаметр трубы должен быть не менее 12,0 см (4,8 дюймов). Установите датчик по центру.
- При установке датчика в металлические трубы внутренний диаметр (d) должен быть не менее:

Таблица 6-5						
	MEdI = CLW.1		MEdI = CLW.2, OIL.1		MEdI = OIL.2 / Auto	
	[CM]	[дюймы]	[CM]	[дюймы]	[CM]	[дюймы]
d	4.0	1.6	6.0	2.4	10.0	4.0

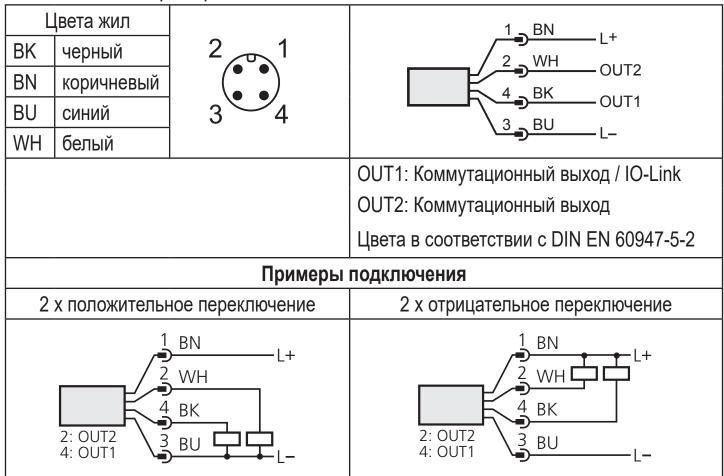
Маркировка высоты установки

 Зафиксируйте заданную высоту с помощью прилагаемого хомута из нержавеющей стали.

Если датчик снимается в целях технического обслуживания, то хомут служит ограничителем для повторной установки датчика. Таким образом исключается неправильная установка датчика. Это необходимо для надежного функционирования защиты от переполнения.

- Зафиксируйте зажим для трубки из нержавеющей стали с помощью плоскогубцев.
- ▶ Плотно затяните.
- ▶ Чтобы устранить зажим, его необходимо разрушить.

6.3.1 Монтажные принадлежности:

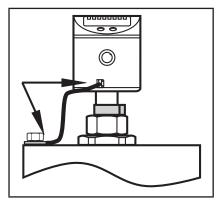

Доступные принадлежности: www.ifm.com

7 Электрическое подключение

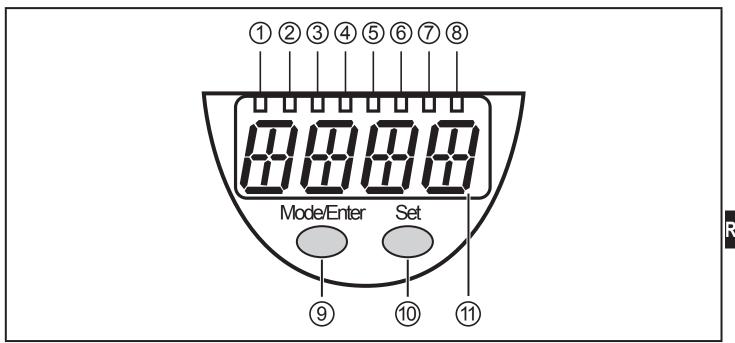
К работам по установке и вводу в эксплуатацию допускаются только квалифицированные специалисты - электрики.

Придерживайтесь действующих государственных и международных норм и правил по монтажу электротехнического оборудования. Напряжение питания соответствует стандартам EN 50178, SELV, PELV.

- Отключите электропитание.
- Подключите прибор согласно данной схеме:



Для надежного функционирования корпус датчика должен быть электрически подключён к противоположному электроду (заземление).


▶ Для этого используйте клемму на корпусе датчика (см. чертеж) и короткий кабель с поперечным сечением не менее 1.5 mm².

При использовании металлических резервуаров стенка резервуара служит заземлением прибора.

Для пластиковых резервуаров необходимо обеспечить противоположный электрод, напр. металлическая пластина внутри резервуара с зондом. Соблюдайте минимальное расстояние до зонда

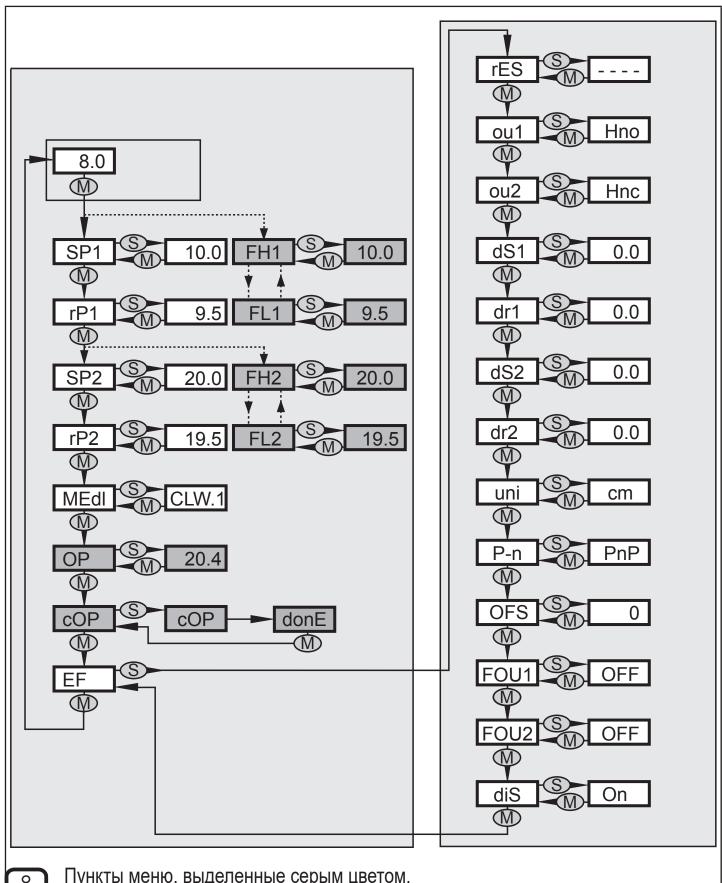
8 Органы управления и индикация

1 до 8: Светодиодная индикация		
Светодиод 1	Индикация в см.	
Светодиод 2	Индикация в дюймах.	
Светодиоды 3 - 6	Не используются.	
Светодиод 7	Коммутационное состояние OUT2 (горит, когда выход 2 замкнут).	
Светодиод 8	Коммутационное состояние OUT1 (горит, когда выход 1 замкнут).	

9: Кнопка [Mode/Enter]

- Выбор параметров и подтверждение заданных значений

10: Кнопка [Set]


- Установка значений параметров (прокрутка при удержании в нажатом положении; пошагово, однократным нажатием кнопки).

12: Буквенно-цифровой, 4-значный дисплей

- Отображение текущего уровня.
- Индикация параметров и значений параметров.
- Индикация рабочего состояния и индикация ошибок.

9 Меню

9.1 Структура меню

Пункты меню, выделенные серым цветом, напр. [сор], активны только когда выбраны назначенные параметры.

10 Настройка параметров

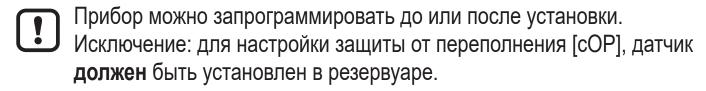
10.1 О настройке параметров

1	Mode/Enter Set		 ► Нажмите кнопку [Mode/Enter] несколько раз пока не отобразится текущее измеренное значение. Для выбора параметров в расширенном меню (уровень меню 2): ► Выберите [EF] и кратко нажмите [Set].
2	Mode/Enter Set	1'[0]	 Нажмите и удерживайте кнопку [Set]. Текущее значение параметра мигает в течение 5 с. Значение увеличивается* (пошаговым нажатием кнопки или ее постоянным удерживанием).
3	Mode/Enter Set		 Кратко нажмите кнопку [Mode/Enter] (= подтверждение). Параметр снова отображается на экране; новое значение параметра действительно.
4	Чтобы изменить други ▶ Необходимо нача		 Завершение настройки параметров: ▶ Ждите 30 с или нажмите и удерживайте кнопку [Mode/Enter]. > Отображается текущее измеренное значение. ▶ Отпустите кнопку [Mode/Enter], > настройка параметров завершена.

^{*)} Для уменьшения значения: дождитесь, пока отображаемая на дисплее величина достигнет своего максимального значения.

Затем начнётся новый цикл и отображение с минимального значения.

Таймаут: Если в течение 30 с во время программирования не будет нажата ни одна кнопка, то датчик возвращается в рабочий режим с неизменными значениями (исключение: cOP).


Блокировка/ разблокировка: Для предотвращения несанкционированного доступа к настройкам прибор может быть заблокирован с помощью электроники (заводская настройка: в незаблокированном состоянии).

► Убедитесь, что прибор работает в нормальном рабочем режиме. Чтобы заблокировать прибор:

- ▶ удерживайте обе кнопки одновременно в течение 10 с.
- > [Loc] отображается на экране.

Для разблокировки прибора:

- ▶ нажмите одновременно обе кнопки и удерживайте в течение 10 с.
- > [uLoc] отображается на экране.

10.2 Основные настройки

Диапазоны настройки всех параметров: (→ 12) Заводские настройки всех параметров: (→ 14)

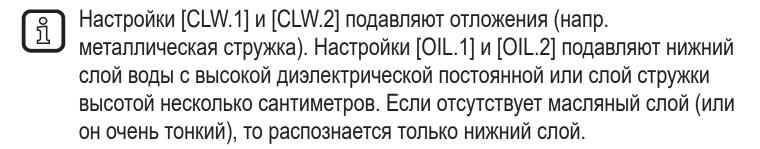
10.2.1 Настройка единицы измерения [uni]

Введите [uni] перед вводом значений для SPx, rPx, OP или OFS. Это предотвращает непреднамеренные изменения в настройках.

► Выберите [Uni]	uni
▶ Настройте единицу измерения: [cm], [inch]	uiii

10.2.2 Настройка значения смещения [OFS]

Расстояние между дном резервуара и нижней кромкой зонда может быть введено как значение смещения(\rightarrow 5.2.4).


► Настройте [OFS] перед вводом значений для SPx, rPx или OP. Это предотвращает непреднамеренные изменения в настройках.

 ▶ Выберите [OFS]. ▶ Введите значение для смещения. Запишите установленную единицу измерения [uni].

10.2.3 Настройка среды [MEdl]

▶ Выбери	rre [MEdl] и настройте соответствующую чувствительность:	
[CLW.1] =	вода, водная среда, жидкие хладагенты.	MEdI
[CLW.2] =	среда на основе воды для температуры > 35 °C (установка в климатическую трубку).	
[OIL.1] =	масла с повышенным значением DC (напр. некоторые синтетические масла).	
[OIL.2] =	масла с низким значением DC (напр. минеральные масла).	
[Auto] =	автоматическое обнаружение среды.	

- ▶ В случае сомнений, для масла выберите [OIL.2].
- Убедитесь в правильном функционировании путем проведения теста!

При настройке [MEdI] = [Auto], защита от переполнения **не**доступна. В этом случае, пункты меню [ОР] и [сОР] недоступны.

10.2.4 Настройка защиты от переполнения [ОР]

▶ Соответствует минимальным расстояниям и инструкциям по	
установке.	OP
▶ Выберите [OP].	
▶ Определите положение защиты от переполнения.	
Опция [OP] = [OFF] отключает защиту от переполнения.	

- ► Настройка [OP] перед [SPx] или [FHx].
- [FHx] после настройки [SPx] / [FHx].
 - > Если [OP] увеличивается, [SPx] / [FHx] также увеличивается [OP] и [SPx] / [FHx] близко друг друга (1 x шаг приращения).

- Когда защита от переполнения отключена [OP] = [OFF] или [MEdl] = [Auto], необходимо с особой осторожностью проверить безопасное функционирование датчика. Для этого в процессе проверки должны учитываться процессы включения и выключения и специальные рабочие состояния, такие как очень полные резервуары, возможные операции по техническому обслуживанию и очистке.
- Для настройки [OP] = [OFF] пункт меню [сOP] недоступен.

10.2.5 Настройка защиты от переполнения [сОР]

После установки прибора настройте только защиту от переполнения ОР.

Если возможно, производите настройку когда резервуар находится в пустом состоянии!

Однако, резервуар может быть частично заполнен.

Убедитесь, что защита от переполнения ОР не погружена в среду! Соблюдайте минимальное расстояние между защитой от переполнения ОР и уровнем (→ Таблица 10-1).

	Выберите [сОР]	
	Нажмите кнопку [SET] и удерживайте её нажатой.	сОР
>	[сОР] мигает на протяжении несколько секунд; затем, постоянно	COF
	светящий дисплей отображает, что настройка была произведена.	
>	Если настройка успешна, то на экране отображается [donE].	
•	Подтвердите настройку с помощью кнопки [Mode/Enter].	
>	Если настройка не успешна, отображается [FAIL].	
	Снизьте уровень, если необходимо, или исправьте положение	
	защиты от переполнения [ОР] и повторите операцию настройки.	

Минимальное расстояние между защитой от переполнения ОР и уровнем во время настройки:

Таблица 10-1		
	[CM]	[дюйм]
LKx022	2.0	0.8
LKx023	3.5	1.4
LKx024	5.0	2.0

Положение защиты от переполнения ОР можно определить вызвав параметр [ОР]. Запишите смещение, если необходимо.

Текущий уровень должен быть задан вручную, так как до начала настройки прибор не готов к работе.

При настройке [MEdI] = [Auto] или [OP] = [OFF], параметр [сOP] недоступен.

- !
- Когда защита от переполнения включена ([OP] = [значение...]), настройка [сOP] должна производиться каждый раз:
- [MEdI] или [OP] было изменено. В данном случае ==== появляется на дисплее.
- положение установки (высота, ориентация) была изменена.
- соединение между датчиком и заземлением резервуара (напр. длина соединительного кабеля) была изменена.
- При отключенной защите от переполнения [OP] = [OFF] или [MEdI] = [Auto]:

Чтобы назначить основные настройки и адаптировать датчик на среду и установку, его необходимо заново инициализировать.

▶ Выключите и снова включите рабочее напряжение.

10.3 Настройка выходных сигналов

10.3.1 Настройка функции выхода [oux] для OUTx

► Выберите [oux] и настройте коммутационную функцию:	
[Hno] = функция гистерезиса / нормально открытый	ou1
[Hnc] = функция гистерезиса / нормально закрытый	ou2
[Fno] = функция окна / нормально открытый	
[Fnc] = функция окна / нормально закрытый	
Если верхняя точка переключения используется для защиты от переполнения, то рекомендуется установить [oux] = [Hnc] (функция: нормально закрытый). Принцип работы в режиме "нормально закрытый" гарантирует своевременное обнаружение обрыва провода или кабеля.	

10.3.2 Настройка пределов переключения [SPx] /[rPx] (функция гистерезиса)

	▶ Убедитесь, что для [oux] настроена функция [Hno] или [Hnc].	SP1
	► Сначала настройте [SPx], затем [rPx].	SP2
ין	▶ Выберите [SPx] и установите значение, при котором выходной сигнал включается.	01 2
1	► Выберите [rPx] и установите значение, при котором выход	rP1
	сбрасывается.	rP2

[rPx] всегда ниже, чем [SPx]. Датчик принимает только значения, которые ниже значения [SPx]. Если [SPx] сдвинуто, [rPx] также сдвигается при условии, что нижний предел диапазона настройки не достигнут.

10.3.3 Настройка пределов переключения [FHx] / [FLx] (функция окна)

► Убедитесь, что для [oux] настроена функция [Fno] или [Fnc].	FH1
► Сначала установите [FHx], затем [FLx].	FH2
▶ Выберите [FHx] и настройте верхний предел допустимого	
диапазона.	
В Риборито [El v] и постройто ниминий пропол полустимого лисли	FL1
▶ Выберите [FLx] и настройте нижний предел допустимого диапа	FL2

[FLx] всегда ниже [FHx]. Датчик принимает только значения, которые ниже значения [FHx]. Если [FHx] сдвинуто, [FLx] также сдвигается при условии, что нижний предел диапазона настройки не достигнут.

10.3.4 Настройка задержки срабатывания [dSx] для коммутационных выходов

► Выберите [dSx] и установите значение между 0.0 и 60 с.	dS1
Задержка срабатывания происходит в соответствии с VDMA.	dS2

10.3.5 Настройка задержки выключения [drx]

► Выберите [drx] и установите значение между 0.0 и 60 с.	dr1
Задержка срабатывания происходит в соответствии с VDMA.	dr2

10.3.6 Настройка логики выхода [Р-п]

•	Выберите [P-n] и установите [PnP] или [nPn].	P-n
----------	--	-----

ВΠ

10.3.7 Поведение выходов в случае ошибки или неисправности

► Выберите [FOUx] и задайте значение:	
[On] = выход включается в случае ошибки	FOU1
[OFF] = выход выключается в случае ошибки.	FOU2
Ошибка аппаратного обеспечения или слишком низкое качество	
сигнала рассматривается как ошибка. Переполнение не считается	
ошибкой.	

10.3.8 Конфигурация дисплея [diS]

▶ Выбе	ерите [diS] и задайте значение:		_
[On] =	дисплей включен в рабочем режиме. Обновить измеренные значения каждые 500 мс	diS	
[OFF] =	дисплей выключен в рабочем режиме. При нажатой кнопке текущее измеренное значение отображается в течение 30 с. Светодиоды активны даже при отключенном дисплее.		

10.3.9 Сброс всех параметров к заводским настройкам [rES]

	Выберите [rES] Нажмите и удерживайте кнопку [Set] до тех пор, пока не отобразится [].	rES
•	Кратко нажмите кнопку [Mode/Enter].	
>	Прибор перезагружается и возобновляется заводская настройка.	

11 Эксплуатация

После включения рабочего напряжения, прибор находится в рабочем режиме (= нормальный режим работы). Датчик выполняет измерение и обработку результатов измерения, затем выдает выходные сигналы согласно заданным параметрам.

▶ Проверьте правильность функционирования прибора.

11.1 Рабочие индикаторы

[] (отображается постоянно)	Фаза инициализации после подачи напряжения питания.
[Цифровое значение] + Светодиод 1	Текущий уровень в см.
[Цифровое значение] + Светодиод 2	Текущий уровень в дюймах.
Светодиод 7 / Светодиод 8	Коммутационное состояние OUT2 / OUT1 (Светодиод х светится если выход х переключен).
[]	Уровень ниже активной зоны.
[FULL] + [цифровое значение] мигает попеременно	Достигнута защита от переполнения ОР (предупреждение о переполнении) или уровень находится выше активной зоны.
====	Необходимо настроить [cOP] защиту от переполнения OP.
[Loc]	Прибор заблокирован с помощью клавиш; настройка параметров невозможна. Для разблокировки нажимайте обе кнопки настройки в течение 10 с.
[uLoc]	Прибор в разблокированном состоянии / настройка параметров опять возможна.
[C.Loc]	Прибор временно заблокирован. Настройка параметров через IO-Link активна (временная блокировка).
[S.Loc]	Прибор постоянно заблокирован через программное обеспечение Прибор можно разблокировать только с помощью программного обеспечения для настройки параметров.

11.2 Просмотр установленных параметров

- ► Кратко нажмите [Mode/Enter] (если необходимо, повторите несколько раз).
- > Пункты меню прокручиваются до тех пор, пока не будет достигнут необходимый параметр.
- ► Кратко нажмите [Set].
- > Соответствующее значение параметра отображается на 30 с.

11.3 Индикация ошибок

	Возможная причина	Рекомендуемые меры
[Err]	Ошибка в электронике.	▶ Замените прибор.
[SEnS]	Источники помехНеисправная проводкаПроблемы с подачей напряжения питания	 Проверьте электрическое подключение. Проверьте присоединение между датчиком и заземлением резервуара.
[FAIL]	Ошибка в процессе настройки защиты от переполнения ОР: • Защита от переполнения покрыта средой во время настройки. • Защита от переполнения загрязнена. • Минимальное расстояние слишком короткое. • Монтажные приспособления обнаружены ниже защиты от переполнения. • Измеренное значение непостоянное.	 ▶ Если необходимо, уменьшите уровень. ▶ Очистите зонд. ▶ Соблюдайте примечания по установке. ▶ Откорректируйте положение защиты от переполнения. ▶ Повторите настройку. ▶ Отключите ОР (→ 5.2.2).
[SC1] + LED 8 [SC2] + LED 7	Мигает: Короткое замыкание на коммутационном выходе OUT1 или OUT2.	Устраните короткое замыкание.
[SC] + LED 7 + LED 8	Мигает: Короткое замыкание на обоих коммутационных выходах.	▶ Устраните короткое замыкание.
[PArA]	Ошибочная настройка данных.	► Возврат к заводским настройкам [rES].

11.4 Срабатывание выхода в разных эксплуатационных состояниях

Таблица 11-1						
	OUT1	OUT2				
Фаза инициализации	OFF	OFF				
Блокировка переполнения ОР не настроена	OFF	OFF				
Защита от переполнения ОР не настроена или деактивирована, нормальный режим работы	В соответствии с уровнем и настройкой [ou1]	В соответствии с уровнем и настройкой [ou2]				
Ошибка	OFF для FOU1 = [OFF] ON для FOU1 = [On]	OFF для [FOU2] = [OFF] ON для [FOU2] = [On]				

12 Технические данные

្ស្តិ Другие технические характеристики и чертежи на www.ifm.com.

12.1 Значения настройки [OFS]

Таблица 12-1							
	[см] [дюймы]						
Диапазон настройки	02	00.0	078.8				
	LKx022 LKx023 LKx024		LKx022 LKx023	LKx024			
Шаг приращения	0.5	1	0.2	0.5			

12.2 Значения настройки [ОР]

Таб. 12-2						
L	Kx022	Lł	<x023< td=""><td>L</td><td>Kx024</td></x023<>	L	Kx024	
[CM]	[дюймы]	[CM]	[дюймы]	[CM]	[дюймы]	
20,4	8,0	40,7	16,0	61	23,9	
19,1	7,5	38,3	15,1	57	22,4	
17,9	7,1	35,8	14,1	53	21,0	
16,7	6,6	33,4	13,1	50	19,5	
15,5	6,1	31,0	12,2	46	18,1	
14,3	5,6	28,5	11,2	42	16,7	
13,0	5,1	26,1	10,3	39	15,2	
11,8	4,7	23,6	9,3	35	13,8	
10,6	4,2	21,2	8,3	31	12,3	
9,4	3,7	18,8	7,4	28	10,9	
8,2	3,2	16,3	6,4	24	9,5	
6,9	2,7	13,9	5,5	20	8,0	

Отображенные значения для [OP] относятся к расстоянию между OP и нижней кромкой зонда. Значения действительны, если [OFS] = [0]. Если [OFS] > [0], то к этим параметрам прибавляется величина OFS.

Пример LK1022: В соответствии с Таблицей 12-2 ОР должно быть настроено на сегмент 20,4 см.[OFS] = 7.0 см [OP] должно быть настроено на 20.4 см + 7.0 см = 27.4 см.

12.3 Помощь для вычисления [ОР]

Для правильного срабатывания защиты от переполнения OP необходимо соблюдать расстояние (у) (Рис. 12-1) (\rightarrow 6.1).

Действует следующее правило (Рис. 12-1):

B = z + y

В: высота резервуара с: внешняя длина (максимальная → 6) v: требуемый уровень

у: требуемый уровень срабатывания ОР от люка (минимум → 6.1, максимум → 12.2)

L: длина зонда

u: расстояние между зондом и дном резервуара

z: требуемый уровень срабатывания OP со дна (максимум z < L - c - y or z < B - y)

12.3.1 Определение "от люка"

Необходимое расстояние (у) защиты от переполнения ОР "от люка" задано.

• Без смещения ([OFS] = [0]): [OP] = L - c - y

Со смещением ([OFS] = u): [OP] = L - c - y + u или [OP] = B - y

Пример:

c = 3.0 cm, y = 5.0 cm, u = 1.0 cm

Без смещения: [OP] = 26.4 см - 3.0 см - 5.0 см = 18.4 см

Со смещением: [OP] = 26.4 см - 3.0 см - 5.0 см - 1.0 см = 19.4 см

12.3.2 Определение "со дна"

Уровень срабатывания (z) функции защиты от переполнения OP со дна резервуара задано.

- Без смещения ([OFS] = [0]): [OP] = z u
- Co смещением ([OFS] = u): [OP] = z

Пример:

z = 18.0 см (со дна резервуара), u = 1.0 см

Без смещения: [ОР] = 18.0 см - 1.0 см = 17.0 см

Со смещением: [OP] = 18.0 см

Округлите вычисленное значение на следующее более низкое значение \rightarrow 11.2.

12.4 Диапазоны настройки [SPx] / [FHx] и [rPx] / [FLx]

Таблица 12-3							
	LKx022 LKx023 [см] [дюймы] [см] [дюймы]		023	LKx024			
			[CM]	[дюймы]	[CM]	[дюймы]	
[SPx / FHx]	2.520.0	1.08.0	3.539.0	1.415.4	6.059.0	2.523.5	
[rPx / FLx]	2.019.5	0.87.8	3.038.5	1.215.2	5.058.0	2.023.0	
Шаг приращения	0.5	0.2	0.5	0.2	1.0	0.5	

Значения действительны, если [OFS] = [0].

Если [OFS] > 0, то к этим параметрам прибавляется значение смещения.

13 Уход / очистка / изменение среды

При снятии или установке устройства для проведения работ по техническому обслуживанию и очистке:

- ▶ Убедитесь, что нержавеющий стальной хомут прикреплен к датчику.
- > Должна быть возможность точно воспроизвести высоту и положение установки!
- ▶ Снимите датчик и очистите его / выполните техническое обслуживание.
- ▶ Установите датчик точно в том же положении, что и раньше.
- ▶ Иначе проверьте параметр [OP] и снова произведите [сOP].

13.1 Информация об обслуживании для работы без защиты от переполнения

[MEdI] = [Auto] или [OP] = [OFF] (защита от переполнения отключена).

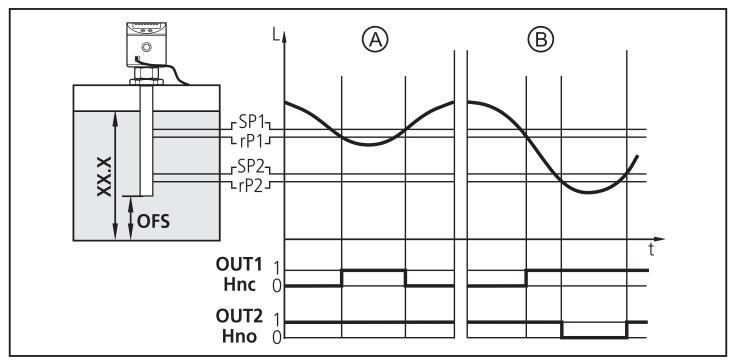
Прибор необходимо снова инициализировать в следующих случаях (быстро выключите и снова включите напряжение питания):

- После всех работ по техническому обслуживанию.
- После очистки (напр. очистка зонда датчика струей воды)
- Если датчик был удален из резервуара и вновь вставлен во время работы.

- Если активная зона датчика была затронута руками или заземленными объектами (напр. отверткой).
- Если соединение между датчиком и стенкой резервуара/противоположным электродом было заменено.
- После изменения среды с диэлектрическими постоянными, которые значительно отличаются. Для выбора среды в ручную, сначала необходимо настроить [MEdI].

14 Заводская настройка

	Заводская настройка		ройка	Настройка пользователя
	LKx022	LKx023	LKx024	
SP1	10.0	19.5	29.0	
rP1	9.5	19.0	28.0	
SP2	20.0	39.0	59.0	
rP2	19.5	38.5	58.0	
OP*	20.4	40.7	60.6	
MEdI	LK10xx: CLW.1 LK70xx: Auto			
сОР				
rES				
ou1	Hno			
ou2	Hnc			
dS1	0.0			
dr1	0.0			
dS2	0.0			
dr2	0.0			
uni	cm			
P-n	PnP			
OFS	0			
FOU1	OFF			
FOU2	OFF			
diS	On			


^{*} Недоступно / неактивно для LK70xx

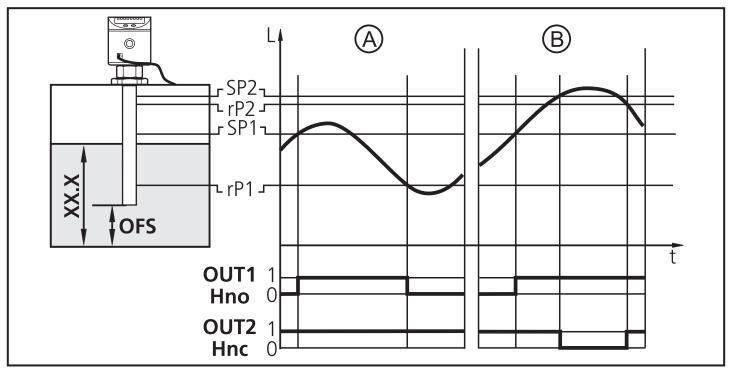
15 Области применения

15.1 Гидравлический резервуар

Контроль минимального уровня с помощью предварительного предупреждения и подачи сигнала тревоги

		_		
Ком	Коммутационный выход 1: предварительное предупреждение			
SP1	немного выше rP1 (для подавления волн)]		
rP1	ниже заданного уровня → предварительное предупреждение, начать заполнение]		
ou1	функция гистерезиса, нормально закрытый (Hnc)			
Комі	Коммутационный выход 2: аварийный сигнал			
SP2	снова достигнуто мин. значение → сброс сигнала тревоги			
rP2	ниже минимального значения → сигнал тревоги			
ou2	функция гистерезиса, нормально открытый (Hno)			

XX.X = отображаемое значение,


А = предварительное предупреждение, В = сигнал тревоги

- Если уровень ниже rP1, то выход 1 включён до тех пор, пока не произойдет повторное заполнение. Если SP1 снова достигается, то выход 1 выключается.
- Если уровень выше SP2, то выход 2 переключается. Если уровень падает ниже rPs или если произойдет обрыв провода, то выход 2 выключается.
- С помощью настройки SP1 осуществляется контроль/измерение максимального уровня: значение SP1 определяет максимально возможный уровень заполнения. Достижение максимального уровня сигнализируется погасанием светодиода OUT1 и выключением выхода 1.

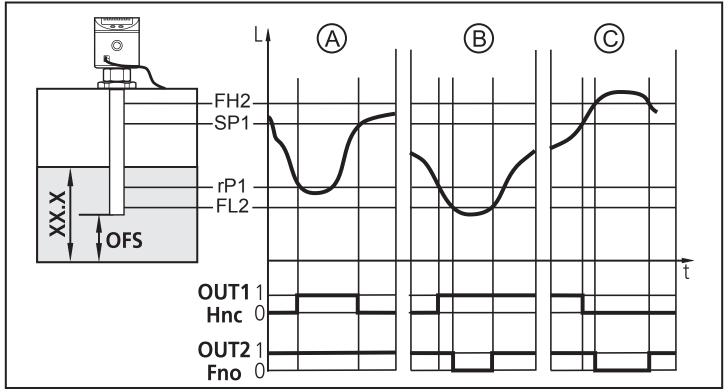
15.2 Насосная станция

Опустошиение резервуара с защитой от переполнения

Коммута	Коммутационный выход 1: контроль опустошения резервуара				
SP1	превышение верхнего предела значения → погружной насос включён				
rP1	достигнут нижний предел→ погружной насос выключен				
ou1	Функция гистерезиса, нормально открытый (Hno)				
1	Коммутационный выход 2: защита от переполнения (для LK10хх рекомендуется использовать встроенную защиту от переполнения (параметр [OP])				
SP2	превышено максимальное значение → сигнал тревоги				
rP2	немного ниже SP2 (для подавления волн)				
ou2	функция гистерезиса, нормально закрытый (Hnc)				
OP	защита от переполнения *)				

XX.X = отображаемое значение,

А = пустой, В = защита переполнения


- Если превышается SP1, то выход 1 переключается (погружной насос включён). Если уровень ниже rP1, то выход 1 выключается (погружной насос выключен).
- Если значение SP2 превышается или произошел обрыв провода, то выход 2 выключается.
- *) Рекомендуется использовать встроенную защиту от переполнения (параметр [OP]). Если SP2 настроено на максимальное значение, ответ защиты от переполнения (OP) немедленно приводит к процессу переключения. В данном случае, SP2 работает как непосредственно действующая точка переключения переполнения.

RU

15.3 Резервуар для хранения

Контроль допустимого диапазона (сигнал тревоги) и контроль уровня

Коммута	Коммутационный выход 1: заполнение				
SP1	достигнуто верхнее предельное значение → завершить заполнение				
rP1	ниже нижнего предельного значения → начать заполнение				
ou1	функция гистерезиса, нормально закрытый (Hnc)				
Коммута	Коммутационный выход 2: функция безопасности мин - макс				
SP2	превышено максимальное значение → сигнал тревоги				
rP2	ниже минимального значения → сигнал тревоги				
ou2	функция окна, нормально открытый (Fno)				

XX.X = отображаемое значение,

А = заполнить; В = контроль мин.; С = контроль макс.

- Если уровень ниже rP1, то выход 1 включён до тех пор, пока не произойдет перезаполнение. Если SP1 снова достигается, то выход 1 выключается.
- Если уровень ниже FL2 или выше FH2, а также в случае обрыва провода, выход 2 выключается (→ сигнал тревоги).
- Логическая операция над значениями выходов 1 и 2 показывает, произошло ли переполнение или уровень ниже минимального значения.
 - Переполнение: выход 1 и выход 2 выключены.
 - Ниже минимального значения: выход 1 включен и выход 2 выключен.