

RM30xx Profibus

Brief instructions efector400

Contents

The description may contain deviations from the user system, because different manufacturers or software versions may require different installations! The description was created based on Siemens S7 version V5.4 + SP4.

1	Installation	. 3
1.1	Software	. 3
1.2	Hardware	. 4
1.	2.1 Overview	. 4
1.	2.2 Connection	. 4
2	Setting the encoder function:	. 6
2.1	Selection of the correct encoder:	. 6
2.2	Multiturn encoder Class2 (standard):	. 7
3	Setting of the measuring units (measuring range):	. 8
3.1	Setting examples	. 9
3.2	Setting examples with high and low word	10
4	Hex parameter setting for multiturn class 2:	11
5	List of variables, reset and preset	12
5.1	Display variables	12
5.2	Reset	13
5.3	Preset:	13
6	Other:	14

Safety instructions

- Please read the product description prior to set-up of the unit. Ensure that the product is suitable for your application without any restrictions.
- The unit complies with the relevant regulations and EC directives.
- Improper or non-intended use may lead to malfunctions of the unit or to unwanted effects in your application.
- That is why installation, electrical connection, set-up, operation and maintenance of the unit must be carried out by qualified personnel authorised by the machine operator.

1 Installation

1.1 Software

Download the GSD file from www.ifm.com => Article => [More information] => [Software download] => Device master data (GSD) file
Example: RM3006 [gsd-DPV0]*

Absolute Winkelkodierer			
	Profibus (gsd)	ProfiNet (gsdml)	
Singleturn/ Multiturn	RN3001, RM3006, RM3007, RM3008 >> gsd-DPV0 (zip) >> gsd-DPV2 (zip) >> Handbuch (pdf)	RM3011 » gsdml-Datei (zip) » Handbuch (pdf)	
Singleturn/ Multiturn	RM3001, RM3004, RM3005 » gsd-DPV0 (zip) » Handbuch (pdf)		

2. Hardware catalogue => Install GSD (first, unzip the ZIP file)

3. Additional Field Devices => Encoder, select ifm Encoder (see chapter 2)

- 4. Drag the encoder into the project and assign a Profibus address
- 5. Parameter setting of the encoder (see chapter 3)
- 6. Set the requested variables (see chapter 5)

*DP-V0: cyclic exchange of data and diagnoses (standard)

DP-V2: isochronous data exchange, lateral communication between the slaves and time synchronisation.

1.2 Hardware

1.2.1 Overview

- 1: voltage supply +Ub /-GND
- 2: bus IN
- 3: bus OUT
- 4: addressing
- 5: terminating resistor

1.2.2 Connection

	Terminal	Description
Power Supply	B (left)	Signal cable B Incoming bus cable
↓ ↓	A (left)	Signal cable A Incoming bus cable
<u> </u>	-	0 V
لمام بهام امابها ا	+	1030 V
	B (right)	Signal cable B Outgoing bus cable
∎ ¥ Bus In Bus Out	A (right)	Signal cable A Outgoing bus cable
	-	0 V
	+	1030 V

2 Setting the encoder function:

2.1 Selection of the correct encoder:

Class1 Singleturn:

This setting enables only the setting of the direction of rotation at max. 8192 measuring units.

Class1 Multiturn:

This setting enables only the setting of the direction of rotation at max. 8192 measuring units x 4096 revolutions.

Class2 Singleturn:

This setting enables the setting of the direction of rotation, diagnostic function and scaling of the measuring units at 8192 units.

- Class2 Multiturn (standard):

This setting enables the setting of the direction of rotation, diagnostic function and scaling of the measuring units at 8192 units x 4096 revolutions.

ifm 2.1 Singleturn / Multiturn

Additionally to Class2: limit switch function, set-up mode. For details see operating instructions.

ifm 2.2 Singleturn / Multiturn

As in 2.1 but with provision of a speed value. For details see operating instructions.

Hardware catalogue:

2.2 Multiturn encoder Class2 (standard):

Configuration (HW Config) => DP Slave Properties => Assigning Parameters

Setting options:

Code sequence:	Counterclockwise / clockwise
Class 2 functionality:	Enable / disable
Scaling function control:	Enable scaling / disable scaling
Measuring units per rev.:	8192 (factory setting)
Total measuring range:	33554432 (factory setting)

3 Setting of the measuring units (measuring range):

The resolution per revolution are the pulses which are provided for a revolution. The revolutions are the further pulses for another <u>entire</u> revolution.

Example: 8192 x 2 revolutions = total: 16384 (1,2,...8192, 8193,...16383, 16384,1,2,...)

Input of the figures:

Maximum units:

8192 units x 4096 revolutions => total measuring range 33 554 432 The revolutions must never be more than 4096, therefore the number of total measuring units is irrelevant.

Example: **7096** units x 2048 revolutions = 14 532 608 total measuring range => OK. **196** units x <u>4097</u> revolutions = 803 012 total measuring range => <u>not OK.</u>

Integers:

Only integer values may be entered. Example: **8192** units x <u>2.5</u> revolutions = 20 480 total measuring range => <u>not OK.</u>

3.1 Setting examples

The value for the resolution (pulses for a revolution) must be entered for measuring units per revolution:

🗐 Measuring units / Revolution 🗌

2000

The total measuring range must be calculated. Example.: 2000 pulses x 9 revolutions = 18 000

Total measuring range

18000	

Standard: Scaling function disabled

Resolution per revolution 8192 x revolutions 4096 = total measuring range 33 554 432

- ■ Scaling function control
 - ■ Alarm channel control
 - ■ Compatibility Mode V3.1
 - ■ Measuring units / Revolution
 - ■ Total measuring range

disable
disable
disable
3192
33554432

100 units x 2 revolutions (total measuring range 200):

	
Scaling function control	enable
- 🗐 Alarm channel control	disable
–≝] Compatibility Mode V3.1	disable
— Measuring units / Revolution	100
—🗐 Total measuring range	200
number of the second second	

360 units x 1 revolution (total measuring range 360 singleturn):

Scaling function control	enable
🗐 Alarm channel control	disable
E Compatibility Mode V3.1	disable
🗐 Measuring units / Revolution	360
🗐 Total measuring range	360
E Tolerated sign of life faults	1

3.2 Setting examples with high and low word

For some controllers the value for the total measuring range must be converted to a high word and a low word.

Standard setting 8192 units x 4096 revolutions:

-El scaling rancion control	Disable Scaling
—Ⅲ Measuring units per rev.	8192
—🗉 Total measuring range(units)hi	512
—Ⅲ Total measuring range(units)lo	0

8192 units x 4096 revolutions

=> total measuring range 33 554 432

total measuring range 33 554 432 in hex	=> 0200 0000 hex
high word 0200 hex in decimal	=> 512
low word 0000 hex in decimal	=> 0

200 units x 24 revolutions - enable scaling:

Scaling function control	Enable Scaling
-🔲 Measuring units per rev.	200
–🖹 Total measuring range(units)hi	0
— Total measuring range(units)lo	4800
	100000000000000000000000000000000000000

200 units x 24 revolutions

=> total measuring range 4800

total measuring range 4800 in hex => 0000 12C0 hex high word 0000 hex in decimal => 0 low word 12C0 hex in decimal => 4800

200 units x 1 revolution - enable scaling:

— Scaling function control	Enable Scaling
– Measuring units per rev.	200
–📰 Total measuring range(units)hi	0
–📰 Total measuring range(units)lo	200

200 units x 1 revolution=> total measuring range 200total measuring range 200 in hex=> 0000 00C8 hexhigh word 0000 hex in decimal=> 0low word 00C8 hex in decimal=> 200

4 Hex parameter setting for multiturn class 2:

Hex parameter setting means that the device-specific parameters are written in HEX coding. These settings **<u>do not have to be</u>** made if already set in the device-specific parameters.

iotal measuring range(units)io	
🕂 🔄 Hex-Parametrierung	
User_Prm_Data (0 bis 7)	02,00,00,00,02,00
User Prm Data (8 bis 9)	
Octet 9	
Octet 10	┛
Octet 11	'
Octet 12	
Octet 13	
Octet 15	
Oc	tet 16
	Octet 17
,02 (HEX - CODE)	

Meaning (read from right to left):

Octet 9 bit 0 => 0 = clockwise // 1 counterclockwise Octet 9 bit 1 => 0 = class 2 disable // 1class 2 enable Octet 9 bit 2 => 0 = "optional" set-up diagnosis No // 1 Yes

5 List of variables, reset and preset

5.1 Display variables

Simatic Manager => CPU 315-2 (select) TAB → PLC => Monitor/control variable

	👪 Var - [VAT_2 @DP-Diag\D - SIMATIC 300\CPU 315-2 PN/DP\S7-Programm(6) ONLINE]						
B A	🌃 Tabelle Bearbeiten Einfügen Zielsystem Variable Ansicht Extras Fenster Hilfe						
ſ							
Ś							
		Оре	erand	Symbol	Anzeigeformat	Statuswert	Steuerwert
1	1 ED 100 DEZ L#33554431						
2		AD	100		HEX	DVV#16#80000000	DVV#16#80000000
3		ED	100		BIN	2#0000_0001_1111_1111_1111_1111_1111_111	
4							

Display measured value:

Operand ED 100 (for set input address 100...103), display format DEC, and monitor variables.

Attention: When the properties are changed, a reset must be carried out to display the current value.

Wort	Wo	Wort 0		
Funktion	Prozess-Istwert			
Bit	3130	2916	150	
	0	Х	Х	

5.2 Reset:

Operand AD 100 (for set E address 100...103), display format HEX, enter 8 at the first position in the control value (DW = Double Word) for a value change. Only a change of the status value from 0 to 8 is detected; no value change is carried out when the status value of 8 remains 8.

(Attention! Only to be carried out when the encoder is standing still)

Example reset:

OPERAND	DISPLAY FORMAT	STATUS VALUE	CONTROL VALUE
ED 100	Dec	L#5120	
AD 100	Hex.:	DW# 0 000 0000	8 <u>000 0000</u>

OPERAND	DISPLAY FORMAT	STATUS VALUE	CONTROL VALUE
ED 100	Dec	L#0 🔨	
AD 100	Hex.:	DW# 8 000 0000	8000 0000

5.3 Preset:

Operand AD 100 (for set E address 100...103), display format HEX, enter 8 at the first position in the control value (DW = Double Word) for a value change. Only a change of the status value from 0 to 8 is detected; no value change is carried out when the status value of 8 remains 8.

(Attention! Only to be carried out when the encoder is standing still)

Example Preset:

OPERAND	DISPLAY FORMAT	STATUS VALUE	CONTROL VALUE
ED 100	Dec	L#0	
AD 100	Hex.:	DW# 0 000 0000	8 <u>000 0E10</u>

OPERAND	DISPLAY FORMAT	STATUS VALUE	CONTROL VALUE
ED 100	Dec	L#3600 🔨	
AD 100	Hex.:	DW#80000E10	8000 0E10

3600 (decimal) = 0E10 (hex)

6 Other:

