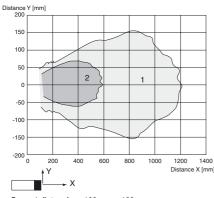


Model Number

UB500-18GM40A-I-V1-Y70103911


Single head system

Features

- Short design, 40 mm
- Function indicators visible from all directions
- Analog output 4 mA ... 20 mA
- Measuring window adjustable
- **Program input**
- **Temperature compensation**
- **Custom configuration**

Diagrams

Characteristic response curve

Curve 1: flat surface 100 mm x 100 mm Curve 2: round bar, Ø 25 mm

Technical data

LED yellow

Electrical specifications

General specifications	
Sensing range	40 500 mm
Adjustment range	40 500 mm
Dead band	0 35 mm
Standard target plate	100 mm x 100 mm
Transducer frequency	approx. 390 kHz
Response delay	approx. 50 ms
Indicators/operating means	
LED green	Power on

yellow, flashing: program function, object detected LED red solid red: Error red, flashing: program function, object not detected

Operating voltage U_B 10 ... 30 V DC , ripple 10 %SS ≤ 20 mA

No-load supply current I₀

Input 1 program input Input type

lower evaluation limit A1: -U $_{\rm B}$... +1 V, upper evaluation limit A2: +4 V ... +U_B

solid yellow: object in the evaluation range

input impedance: > 4.7 k Ω , pulse duration: \geq 1 s

Output

1 analog output 4 ... 20 mA, short-circuit/overload protected Output type Default setting evaluation limit A1: 40 mm evaluation limit A2: 420 mm Resolution 0.4 mm at max. sensing range Deviation of the characteristic curve ± 2 % of full-scale value

± 1 % of full-scale value Repeat accuracy Load impedance 0 ... 300 Ω at U_B > 10 V; 0 ... 500 Ω at $U_B > 15 \text{ V}$

Temperature influence ± 3 % of full-scale value **Ambient conditions**

-25 ... 50 °C (-13 ... 122 °F) Ambient temperature -40 ... 85 °C (-40 ... 185 °F) Storage temperature

Mechanical specifications Connection type Connector plug M12 x 1, 4-pin

Degree of protection IP67

Material

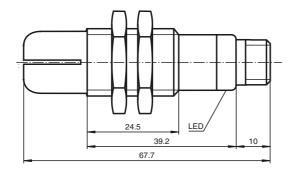
Housing brass, nickel-plated epoxy resin/hollow glass sphere mixture; foam polyurethane, cover PBT Transducer

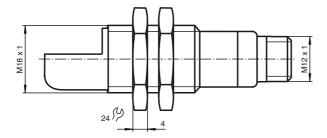
Mass 25 g

Compliance with standards and directives

Standard conformity

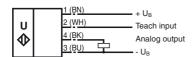
Standards EN 60947-5-2:2007+A1:2012


IEC 60947-5-2:2007 + A1:2012 EN 60947-5-7:2003 IEC 60947-5-7:2003


Approvals and certificates

UL approval cULus Listed, General Purpose

CCC approval CCC approval / marking not required for products rated ≤36 V

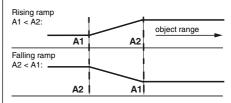

Dimensions

Electrical Connection

Standard symbol/Connections: (version I)

Core colors in accordance with EN 60947-5-2.

Pinout



Wire colors in accordance with EN 60947-5-2

1	BN	(brown)
2	WH	(white)
3	BU	(blue)
4	BK	(black)

Additional Information

Programmed analogue output function

A1 -> ∞ , A2 -> ∞ : Detection of object presence

Object detected: 20 mA No object detected: 4 mA

Accessories

UB-PROG2

Programming unit

OMH-04

Mounting aid for round steel ø 12 mm or sheet 1.5 mm ... 3 mm

BF 18

Mounting flange, 18 mm

BF 18-F

Plastic mounting adapter, 18 mm

BF 5-30

Universal mounting bracket for cylindrical sensors with a diameter of 5 ... 30 mm

V1-G-2M-PVC

Female cordset, M12, 4-pin, PVC cable

V1-W-2M-PUR

Female cordset, M12, 4-pin, PUR cable

Adjusting the evaluation limits

The ultrasonic sensor features an analogue output with two teachable evaluation limits. These are set by applying the supply voltage $-U_B$ or $+U_B$ to the TEACH-IN input. The supply voltage must be applied to the TEACH-IN input for at least 1 s. LEDs indicate whether the sensor has recognised the target during the TEACH-IN procedure. The lower evaluation limit A1 is taught with $-U_B$, A2 with $+U_B$.

Two different output functions can be set:

- 1. Analogue value increases with rising distance to object (rising ramp)
- 2. Analogue value falls with rising distance to object (falling ramp)

TEACH-IN rising ramp (A2 > A1)

- Position object at lower evaluation limit
- TEACH-IN lower limit A1 with UB
- Position object at upper evaluation limit
- TEACH-IN upper limit A2 with + UB

TEACH-IN falling ramp (A1 > A2):

- Position object at lower evaluation limit
- TEACH-IN lower limit A2 with + U_R
- Position object at upper evaluation limit
- TEACH-IN upper limit A1 with UR

Default setting

A1: unusable area

A2: nominal sensing range

Mode of operation: rising ramp

LED Displays

Displays in dependence on operating mode	Red LED	Yellow LED
TEACH-IN evaluation limit		
Object detected	off	flashes
No object detected	flashes	off
Object uncertain (TEACH-IN invalid)	on	off
Normal mode (evaluation range)	off	on
Fault	on	previous state