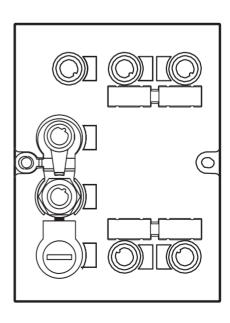


Gerätehandbuch Ergänzung RFID-Auswerteeinheit Modul RWH_CMD


DTE100

DTE101

DTE102

DTE103

DTE104

706456/00

Inhalt

1	1 AUSFÜHRLICHE BESCHREIBUNG VON MODUL RWH_CMD	4
	1.1 MODUL "RWH_CMD", ALLGEMEINE BESCHREIBUNG	5
	1.1.1 Kommandoaktivierung mit Bit TR im SPS-Prozessdatenausgangsabbild	
	1.2 MODUL "RWH_CMD", UID-/RSSI-WERT DES ID-TAGS ASYNCHRON LESEN	9
	1.3 MODUL "RWH_CMD", NUTZDATEN DES ID-TAGS SYNCHRON LESEN	11
	1.4 MODUL "RWH_CMD", NUTZDATEN DES ID-TAGS ASYNCHRON LESEN	13
	1.5 MODUL "RWH_CMD", NUTZDATEN SYNCHRON AUF DAS ID-TAG SCHREIBEN	16
	1.6 MODUL "RWH_CMD", NUTZDATEN ASYNCHRON AUF DAS ID-TAG SCHREIBEN	18
	1.7 MODUL "RWH_CMD", NUTZDATEN VERIFIZIERT, SYNCHRON AUF DAS ID-TAG SCHREIE	
	1.8 MODUL "RWH_CMD", NUTZDATEN VERIFIZIERT, ASYNCHRON AUF DAS ID-TAG SCHRE 1.9 MODUL "RWH_CMD". DIAGNOSE LESEN	IBEN 24 27
	1.9 MODUL "RWH_CMD", DIAGNOSE LESEN1.10 MODUL "RWH CMD", KOMMANDOS SYNCHRON AUSFÜHREN	27
	1.10 WIODUL KWH_CWID , KOMMANDOS SYNCHRON AUSFUHREN 1.10.1 Übersicht GET / SET-Kommandos	
	1.10.2 Kommando "GET IDENT DIAGNOSIS"	
	1.10.3 Kommando "GET MAC ADDRESS"	
	1.10.4 Kommando "GET HF POWER LIST"	
	1.10.5 Kommando "GET HF POWER SETTING"	
	1.10.6 Kommando "GET BARGRAPH STATE"	37
	1.10.7 Kommando "GET BLOCKS LOCKED"	38
	1.10.8 Kommando "GET DSFID"	39
	1.10.9 Kommando "GET AFI"	40
	1.10.10 Kommando "GET UID-RSSI"	41
	1.10.11 Kommando "SET HF POWER LEVEL"	
	1.10.12 Kommando "SET BARGRAPH STATE"	
	1.10.13 Kommando "SET BLOCKS LOCKED"	
	1.10.14 Kommando "SET DEVICE RESET"	
	1.10.15 Kommando "SET DSFID"	
	1.10.16 Kommando "SET AFI"	
	1.10.17 Kommando "SET DSFID LOCKED"	
	1.10.18 Kommando "SET AFI LOCKED"	49
2	2 BEISPIELE DATENNACHRICHT	50
	2.1 MODUL "RWH_CMD", UID- UND RSSI-WERT ASYNCHRON LESEN	51
	2.1.1 Anzeige des Nutzdatenverkehrs	_
	2.1.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen	
	2.2 MODUL "RWH CMD", NUTZDATEN DES ID-TAGS SYNCHRON LESEN	52
	2.2.1 Anzeige des Nutzdatenverkehrs	
	2.2.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen	
	2.3 MODUL "RWH_CMD", NUTZDATEN DES ID-TAGS ASYNCHRON LESEN	53
	2.3.1 Anzeige des Nutzdatenverkehrs	
	2.3.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen	
	2.4 MODUL "RWH_CMD", NUTZDATEN DES ID-TAGS SYNCHRON SCHREIBEN	54
	2.4.1 Anzeige des Nutzdatenverkehrs	54
	2.4.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen	
	2.5 MODUL "RWH_CMD", NUTZDATEN DES ID-TAGS ASYNCHRON SCHREIBEN	55
	2.5.1 Anzeige des Nutzdatenverkehrs	55
	2.5.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen	55
	2.6 MODUL "RWH_CMD", NUTZDATEN DES ID-TAGS VERIFIZIERT, SYNCHRON SCHREIBEN	
	2.6.1 Anzeige des Nutzdatenverkehrs	
	2.6.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen	57
	2.7 MODUL "RWH_CMD", KOMMANDOS SYNCHRON AUSFÜHREN	58
	2.7.1 Anzeige des Nutzdatenverkehrs	
	2.7.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen	58
3	3 FEHLERCODES DER AUSWERTEEINHEIT	59
	3.1 FEHLERGRUPPE ID-TAG (F1FE)	59
	3.2 FEHLERGRUPPE AUSWERTEEINHEIT (F4FE)	60
	3.3 FEHLERGRUPPE KOMMUNIKATION BENUTZER – AUSWERTEEINHEIT (F5FE)	61
4	4 GLOSSAR	62

Lizenzen und Warenzeichen

Microsoft® und Internet Explorer® sind eingetragene Warenzeichen der Microsoft Corporation. PROFIBUS® and PROFINET® sind eingetragene Marken der PROFIBUS and PROFINET International (PI).

EtherCAT® ist eine eingetragene Marke und patentierte Technik und lizenziert durch Beckhoff Automation GmbH, Deutschland.

Ethernet/IP™ ist eine eingetragene Marke der ODVA, Inc.

Alle benutzten Warenzeichen und Firmenbezeichnungen unterliegen dem Copyright der jeweiligen Firmen.

1 Ausführliche Beschreibung von Modul RWH_CMD

Folgende Funktionen stehen zur Verfügung:

- 1. Erfassung, ob sich ein ID-Tag vor dem Lese-/Schreibkopf befindet.
- 2. Ansteuerung des Lese-/Schreibkopfs, um das RFID-Antennenfeld an- und auszuschalten.
- 3. Lesen der Unique Identifier-Nummer (UID) des ID-Tags.
- 4. Lesen der Nutzdaten des ID-Tags.
 - -> Der Lesevorgang wird über das Steuerbit "RD" ausgelöst. Die maximale Leselänge pro Kommando hängt von der Größe des gewählten Moduls ab.
- 5. In die Nutzdaten des ID-Tags schreiben.
 - -> Der Schreibvorgang wird über das Steuerbit "WR" ausgelöst. Die maximale Schreiblänge pro Kommando hängt von der Größe des gewählten Moduls ab.
- 6. Verifiziert in die Nutzdaten des ID-Tags schreiben.
 - -> Der verifizierte Schreibvorgang wird über die Steuerbits "WR" und "RD" ausgelöst. Die maximale Schreiblänge pro Kommando hängt von der Größe des gewählten Moduls ab.
- 7. Einfache Diagnose der IO-Kanäle der Auswerteeinheit.
- 8. Einfache Benachrichtigung über Diagnosen der Auswerteeinheit.
- 9. Remote-Neustart der Auswerteeinheit

Modul-ID	Modulname	Beschreibung	Hinweis
0	Aus (0 Bytes In/Out)	Reservemodul	Keine Daten
1	Inaktiv (20 Bytes In/Out)	Zyklisches Senden	Hohe Impedanz
2	Eingang (20 Bytes In/Out)	Zyklisches Senden	IEC61131 Eingang
3	Ausgang (20 Bytes In/Out)	Zyklisches Senden	IEC61131 Ausgang
11	RWH_RW (20 Bytes In/Out)	Zyklischer Kommandokanal	Nutzdaten-Größe 16
12	RWH_CMD (26 Bytes In/Out)	Zyklischer Kommandokanal	Nutzdaten-Größe 20 Bytes
13	RWH_CMD (46 Bytes In/Out)	Zyklischer Kommandokanal	Nutzdaten-Größe 40 Bytes
14	RWH_CMD (66 Bytes In/Out)	Zyklischer Kommandokanal	Nutzdaten-Größe 60 Bytes
15	RWH_CMD (86 Bytes In/Out)	Zyklischer Kommandokanal	Nutzdaten-Größe 80 Bytes
16	RWH_CMD (106 Bytes In/Out)	Zyklischer Kommandokanal	Nutzdaten-Größe 100 Bytes
17	RWH_CMD (126 Bytes In/Out)	Zyklischer Kommandokanal	Nutzdaten-Größe 120 Bytes
18	RWH_CMD (146 Bytes In/Out)	Zyklischer Kommandokanal	Nutzdaten-Größe 140 Bytes
19	RWH_CMD (166 Bytes In/Out)	Zyklischer Kommandokanal	Nutzdaten-Größe 160 Bytes

Die Größe des SPS-Eingangs- und Ausgangsdatenabbilds hängt von dem vom Benutzer für den jeweiligen IO-Kanal gewählten Modul ab. Jeder IO-Kanal kann einzeln auf eins der verfügbaren Module eingestellt werden.

Beispiel:

Kanal IO-1	Kanal IO-2	Kanal IO-3	Kanal IO-4	Größe des SPS- Eingangs- /Ausgangsdatenabbilds [Bytes]
RWH_RW	RWH_RW	AUS	AUS	40
(20 Bytes In/Out)	(20 Bytes In/Out)	(0 Bytes In/Out)	(0 Bytes In/Out)	
RWH_RW	RWH_RW	Eingang	Ausgang	80
(20 Bytes In/Out)	(20 Bytes In/Out)	(20 Bytes In/Out)	(20 Bytes In/Out)	
RWH_CMD	RWH_CMD	AUS	AUS	252
(126 Bytes In/Out)	(126 Bytes In/Out)	(0 Bytes In/Out)	(0 Bytes In/Out)	
RWH_CMD	RWH_CMD	AUS	AUS	332
(166 Bytes In/Out)	(166 Bytes In/Out)	(0 Bytes In/Out)	(0 Bytes In/Out)	
RWH_CMD	RWH_CMD	RWH_CMD	RWH_CMD	504
(146 Bytes In/Out)	(146 Bytes In/Out)	(146 Bytes In/Out)	(146 Bytes In/Out)	

Hinweise:

- Wenn die Anzahl der Bytes aller IO-Kanäle die Grenzen der Auswerteeinheit überschreitet, wird die Konfiguration zurückgewiesen und ein Datenaustausch mit der SPS ist nicht möglich.
- Es liegt in der Verantwortung des SPS-Programmierers, die korrekten Adress-Offsets und die maximal mögliche Datengröße der IO-Kanäle innerhalb des SPS-Eingangs-/Ausgangsdatenabbilds zu berechnen, siehe Kapitel "Modul RWH_CMD, allgemeine Beschreibung".

1.1 Modul "RWH_CMD", allgemeine Beschreibung

Dieses Modul erlaubt es dem Benutzer

 den UID- und RSSI-Wert des ID-Tags über den Lese-/Schreibkopf an Prozessschnittstelle IO-1...IO-4 zu lesen.

Zwei Modi stehen zur Auswahl:

UID einmalig auf Anforderung über den Kommandokanal lesen (synchroner Modus) UID automatisch lesen, wenn die Auswerteeinheit eine Veränderung der UID-Daten erfasst (asynchroner Modus).

 Beschleunigtes Lesen der Nutzdaten des ID-Tags über den Lese-/Schreibkopf an Prozessschnittstelle IO-1...IO-4.

Zwei Modi stehen zur Auswahl:

Nutzdaten des ID-Tags einmalig auf Anforderung lesen (synchroner Modus). Nutzdaten des ID-Tags automatisch lesen, wenn die Auswerteeinheit eine Veränderung der UID-Daten erfasst (asynchroner Modus).

 Beschleunigtes Schreiben in die Nutzdaten des ID-Tags über den Lese-/Schreibkopf an Prozessschnittstelle IO-1...IO-4.

Zwei Modi stehen zur Auswahl:

Nutzdaten des ID-Tags einmalig auf Anforderung schreiben (synchroner Modus). Nutzdaten des ID-Tags automatisch schreiben, wenn die Auswerteeinheit eine Veränderung der UID-Daten erfasst (asynchroner Modus).

• Beschleunigt verifiziert in die Nutzdaten des ID-Tags schreiben.

Zwei Modi stehen zur Auswahl:

Nutzdaten des ID-Tags einmalig auf Anforderung verifiziert schreiben (synchroner Modus). Nutzdaten des ID-Tags automatisch verifiziert schreiben, wenn die Auswerteeinheit eine Veränderung der UID-Daten erfasst (asynchroner Modus).

- Diagnoseinformationen der Auswerteeinheit lesen.
- Antennenfeld des Lese-/Schreibkopfs an-/ausschalten.
- Ausführung von Kommandos, um verschiedene Parameter der Auswerteeinheit und des Lese-/Schreibkopfs zu lesen oder zu schreiben.

Hinweis: Um den Arbeitsspeicher des ID-Tags so schnell wie möglich auszulesen/zu beschreiben, sollte die Modulgröße des IO-Kanals auf den Maximalwert gesetzt werden.

Verfügbare Modulgrößen N pro IO-Kanal (1)	Übertragbare Anzahl der Blöcke mit ID-Tag- Blockgröße 4 Bytes	Übertragbare Anzahl der Blöcke mit ID-Tag- Blockgröße 8 Bytes	Übertragbare Anzahl der Blöcke mit ID-Tag- Blockgröße 32 Bytes
26	6	2	-
46	10	5	1
66	15	7	1
86	20	10	2
106	25	12	3
126	30	15	3
146	35	17	4
166	40	20	5

- (1) Bitte stellen Sie sicher, dass die Anzahl der Bytes, die von allen aktivierten IO-Kanälen übertragen werden, nicht das Limit des SPS-Dateneingangs- und Ausgangsabbilds überschreitet.
- (2) Außerdem müssen die folgenden Grenzen der unterschiedlichen Auswerteeinheiten beachtet werden:

	DTE100	DTE101	DTE102	DTE103	DTE104
Maximale Größe der Eingangs- oder Ausgangsdaten [Bytes]	144	1024	504	80	1454

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte Nr.		Bit						
	7	7 6 5 4 3 2 1 0						
1	Res	DR	ER	UR	RD	WR	AO	Res
2	CM	Res	Res	Res	Res	Res	Res	TR
3		Datenbyte 1						
N-1	Datenbyte (N-3)							
N		Datenbyte (N-2)						

Beschreibung Byte 1, "Steuerbyte 1":

Bit	Bitname	Beschreibung
0	Res	Reserviert. Muss auf Voreinstellung 0 gesetzt werden.
1	AO	Anforderung "Antenna field Off" (Antennenfeld aus)
2	WR	Modus "WRite data" (Daten schreiben) auf Auswerteeinheit
3	RD	Modus "ReaD data" (Daten lesen) der Auswerteeinheit
4	UR	Modus "UseR data access" (Zugriff auf Nutzdaten) des ID-Tags
5	ER	Modus "Event controlled Reading" (Event-gesteuertes Lesen) des Arbeitsspeichers des ID-Tags
6	DR	Modus "Diagnostics Read" (Diagnose lesen) Von der Steuerung gesetzt, um Diagnosedaten abzufragen, von der Auswerteeinheit im Diag-Statusbit angezeigt
7	Res	Reserviert. Muss auf Voreinstellung 0 gesetzt werden.

Hinweis:

Die Bits WR, RD, DR und ER sind pegelgesteuerte Bits, mit denen die entsprechenden Modi aktiviert werden. Der Status "1" überträgt den Modus an die Auswerteeinheit, aber aktiviert keine Kommandoanforderung. Dies passiert durch das Steuerbit TR in Steuerbyte 2. Sobald diese Bits in den Steuerbytes gesetzt sind, werden die entsprechenden Bits in den Statusbytes bestätigt, unabhängig von der Einstellung des Bits TR.

Beschreibung Byte 2, "Steuerbyte 2":

Bit	Bitname	Beschreibung
0	TR (1)	Toggle Request (Toggle-Anforderung)
16	Res	Reserviert. Muss auf Voreinstellung 0 gesetzt werden.
7	СМ	Modus "Command Mode" (Kommandomodus) Aktiviert den Kommandokanal der Auswerteeinheit. Wenn dieses Bit gesetzt wird, müssen alle anderen Modi deaktiviert werden.

⁽¹⁾ Bit TR ist das Hauptsteuerbit, um die Kommandos des gewählten Modus zu starten. Wenn die Steuerung das Bit TR auf den invertierten Zustand von Bit TA in Statusbyte 2 des SPS-Prozessdatenabbilds setzt, wird das Kommando gestartet.

Beispiel:

Bit TA	BIT TR	Beschreibung
0	0	Keine Toggle-Anforderung, Kommandoausführung nicht gestartet
0	1	Toggle-Anforderung, Kommandoausführung gestartet
1	1	Keine Toggle-Anforderung, Kommandoausführung nicht gestartet
1	0	Toggle-Anforderung, Kommandoausführung gestartet

Das Bit CR aktiviert den Kommandokanal-Modus der Auswerteeinheit. Mehrere Kommandos können ausgeführt werden, um verschiedene Parameter des Geräts oder des Lese-/Schreibkopfs auszulesen oder einzustellen. Die Ausführung des Kommandos wird von Bit TR des Steuerbytes 2 überwacht.

Beschreibung Byte 3...n, "Datenbyte 1...(N-2)":

Je nach ausgewähltem Modus enthält dieser Datenbereich Kommandodaten zum Senden an die Auswerteeinheit.

Voreinstellung "Steuerbyte 1 und 2": 0x00 Modus: UID automatisch lesen, Antennenfeld an

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte Nr.		Bit						
	7	7 6 5 4 3 2 1 0						
1	DIAG	DA	EA	UA	RA	WA	Al	TP
2	CA	Res	Res	Res	Res	Res	Res	TA
2		Datenbyte 1						
3		Datenbyte 2						
N-1	Datenbyte (N-3)							
N		Datenbyte (N-2)						

Beschreibung Byte 1, "Statusbyte 1":

Bit	Bitname	Beschreibung
0	TP ⁽¹⁾	ID-Tag vorhanden Solange der ID-Tag von dem Lese-/Schreibkopf erfasst wird, ist das Bit auf 1 gesetzt. Mit dem Kanalparameter "data hold time" (Datenhaltezeit) kann der Status des Bits verlängert werden.
1	AI ⁽¹⁾	Antenna field Inactive (Antennenfeld inaktiv)
2	WA ⁽²⁾	Modus "Write data" auf die Auswerteeinheit aktiv
3	RA ⁽²⁾	Modus "Read data" von der Auswerteeinheit aktiv
4	UA ⁽²⁾	Modus "User data access" aktiv
5	EA (2)	Modus "Receive User data on Event change" (Nutzdaten bei Änderungsereignis empfangen) aktiv
6	DA (2)	Modus "Diagnostics read" aktiv
7	DIAG (1)	DIAGnosedaten verfügbar, aber noch nicht in den Antwortpuffer geschrieben. Der Antwortpuffer enthält immer noch ID-Tagdaten. Die Diagnosedaten werden in den Antwortpuffer kopiert, sobald erfasst wurde, dass das Steuerbit DR gesetzt wurde und das Bit TR von der Steuerung getoggelt wurde.

Die Bits TP, Al und DIAG zeigen den aktuellen Zustand des ID-Tags / des Antennenfelds / der Diagnosedaten.

Die Bits WA, RA, UA, EA und DA werden automatisch gesetzt, sobald die Auswerteeinheit die Einstellung der entsprechenden Bits in Steuerbyte 1 und 2 des SPS-Datenausgangsabbilds erfasst. Jegliche Änderung in den Einstellungen dieser Bits auf zuvor empfangene Zustände setzt die Datenbytes 1 .(n- 2) auf die Voreinstellung 0x00. Das Bit TR hat keinen Einfluss auf dieses Verhalten.

Beschreibung Byte 2, "Statusbyte 2":

Bit	Bitname	Beschreibung
0	TA ⁽¹⁾	Toggle request Acknowledge (Bestätigung Toggle-Anforderung)
16	Res	Reserviert. Wird auf Voreinstellung 0 gesetzt
7	CA	Modus "Command mode Active" (Kommandomodus aktiv)

(1) Bit TA zeigt den Zustand der Kommandoausführung der Auswerteeinheit an. Wenn die Auswerteeinheit das Bit TR mit einem invertierten Zustand von Bit TA von der Steuerung empfängt, wird eine Anforderung der Steuerung, das Kommando des gewählten Modus zu starten, empfangen. Während die Kommandoausführung läuft, ändert das Bit TA nicht seinen Zustand. Sobald das Kommando von der Auswerteeinheit abgearbeitet wurde, wird das Bit TA in denselben Zustand versetzt wie Bit TR

Beispiel:

Bit TR	BIT TA	Beschreibung
0	0	Die Kommandoausführung wurde nicht gestartet oder die Kommandoausführung ist beendet
1	0	Toggle-Anforderung, Kommandoausführung gestartet
1	1	Die Kommandoausführung wurde nicht gestartet oder die Kommandoausführung ist beendet
1	0	Toggle-Anforderung, Kommandoausführung gestartet

Beschreibung Byte 3...N, "Datenbyte 1...(N-2)":

Je nach ausgewähltem Modus enthält dieser Datenbereich die Antwortdaten, die von der Auswerteeinheit gelesen werden oder die Diagnoseinformationen.

1.1.1 Kommandoaktivierung mit Bit TR im SPS-Prozessdatenausgangsabbild

Hinweis: Es ist zulässig, den Kommandomodus und den Kommandoparameter zusammen mit Bit TR = NOT (TA) innerhalb eines SPS-Zyklus zu setzen, um das Kommando zu aktivieren.

1.2 Modul "RWH_CMD", UID-/RSSI-Wert des ID-Tags asynchron lesen

In diesem Modus können der UID- und RSSI-Wert des ID-Tags automatisch gelesen werden, ohne Senden einer Leseanforderung. Dieser Modus ist geeignet, wenn der Anwender nicht weiß, wann das ID-Tag vor dem Lese-/Schreibkopf ist. Außerdem ermöglicht dieser Modus die schnellste Erfassung des ID-Tags, da keine Kommandoanforderung an die Auswerteeinheit gesendet werden muss. Bitte beachten Sie, dass der UID in Echtzeit übertragen wird und dass die SPS-Zykluszeit ca. um den Faktor 2 kürzer sein muss als die Zeit, die zur Erfassung des ID-Tags durch den Lese-/Schreibkopf benötigt wird. Die Einstellung des IO-Kanal-Parameters "Data hold time" beeinflusst, wie lange der RSSI-Wert und die UID-Datenbytes stabil im Prozessdateneingangsabbild gehalten werden.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte Nr.	Bit							
	7	6	5	4	3	2	1	0
1	0	0	0	0	0	0	AO = 0	0
2	0	0	0	0	0	0	0	0
3				Nicht	verwendet			
N-1				Nicht	verwendet			
N				Nicht	verwendet			

Beschreibung Byte 1, "Steuerbyte 1":

Bit	Wert	Beschreibung	Hinweis
AO	0	Anforderung "Antenna field on" (Antennenfeld an)	Antennenfeld aktivieren. Dies ist für die Kommunikation mit dem ID-Tag notwendig.

Diagnoseinformationen sind nur verfügbar, wenn das Bit "Diag" innerhalb der Antwortdaten gesetzt ist. Ansonsten geben die Antwortdaten die Standarddaten "0x00" innerhalb von Byte 3...n zurück. Das Setzen von Bit DR auf 1 ist nur erlaubt, wenn das Bit RD auf 0 gesetzt ist.

Beschreibung Byte 2, "Steuerbyte 2":

Nicht verwendet.

Beschreibung Byte 3...N:

Muss auf Voreinstellung 0x00 gesetzt werden.

UK

SPS Prozessdateneingangsabbild (Modul RWH CMD)

Byte Nr.					Bit					
	7	6	5	4	3	2	1	0		
1	DIAG	0	0	0	0	0	Al	TP		
2	0	0	0	0	0	0	0	0		
3	0x00									
4	Gelesene RSSI + UID-Datenlänge									
5	0x00									
6				RS	SI-Wert					
7				UID-Date	nbyte 1 (MS	By)				
8				UID-D	atenbyte 2					
10/14//18/2		UID-Datenbyte 4/8/12/16 (LSBy)								
N			·		0x00					

Beschreibung Byte 1, "Statusbyte 1":

Bit	Wert	Beschreibung	Hinweis		
TP	0	Kein ID-Tag vor dem Lese- /Schreibkopf erkannt	-		
	1	ID-Tag wird vor dem Lese- /Schreibkopf erkannt	Solange der ID-Tag von dem Lese-/Schreibkopf erfasst wird, ist das Bit auf 1 gesetzt. Mit dem Kanalparameter "data hold time" kann der Status des Bits verlängert werden.		
Al	0	"Antenna field on" aktiv	-		
Diag	0	Kein Fehler erkannt	-		
	1	Diagnoseinformationen der Auswerteeinheit verfügbar	Ein kanalabhängiger oder kanalunabhängiger Fehler ist aufgetreten.		

Beschreibung Byte 2, "Statusbyte 2":

Nicht verwendet.

Beschreibung Byte 3...4, "Gelesene UID + RSSI-Datenlänge":

Gelesene RSSI und UID-Datenlänge. Vom ID-Tag gelesene Gesamtdatenlänge des RSSI-Werts plus Datenlänge des UID [Bytes].

Typische Werte: [6, 10, 14, 18] Bytes

Hinweis: Wenn der Lese-/Schreibkopf keinen ID-Tag erkennt, werden diese Bytes auf 0x00 gesetzt.

Beschreibung Byte 5...6, "RSSI-Wert":

RSSI-Wert des ID-Tags. Zeigt die Qualität des empfangenen ID-Tag-Signals an. Je höher die Werte, desto besser ist der Empfang des ID-Tag-Signals.

Hinweis: Wenn der Lese-/Schreibkopf keinen RSSI-Wert erfasst, werden diese Bytes auf 0x00 gesetzt.

Beschreibung Byte 7...10/14/18/22, "UID Datenbyte":

Gelesener UID des ID-Tags mit einer Länger von 32/64/96/128 Bits. Nicht benutzte Bytes werden auf 0x00 gesetzt. Wenn der Lese-/Schreibkopf keinen ID-Tag erkennt, wird dieses Datenfeld auf 0x00 gesetzt.

Beschreibung Byte 11/15/19/23...N:

Steht immer auf Voreinstellung 0x00.

Hinweis:

Die Einstellung des IO-Kanal-Parameters "Data hold time" beeinflusst, wie lange der RSSI-Wert und die UID-Datenbytes stabil im Prozessdateneingangsabbild gehalten werden.

1.3 Modul "RWH_CMD", Nutzdaten des ID-Tags synchron lesen

Durch Setzen des Bits TR im SPS-Prozessdatenausgangsabbild auf den invertierten Zustand von Bit TA im SPS-Prozessdateneingangsabbild können in diesem Modus die Nutzdaten des ID-Tags gelesen werden. Dieser Modus ist geeignet, wenn der Anwender weiß, wann das ID-Tag vor dem Lese-/Schreibkopf ist. Die gelesenen Nutzdaten werden stabil in den Datenbytes 3...N gehalten, solange Bit TR nicht geändert wird.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte Nr.	Bit								
	7	6	5	4	3	2	1	0	
1	0	0	0	UR = 1	RD = 1	0	AO = 0	0	
2	0	0	0	0	0	0	0	TR	
3			16 E	Bit gelesen	e Datenläng	e [D15D7]			
4			16 E	Bit gelesene	e Datenläng	e [D7D0]			
5			16 E	Bit Startadro	esse [D15D8	3]			
6			16 E	Bit Startadro	esse [D7D0]				
7N					0x00				

Beschreibung Byte 1, "Steuerbyte 1":

Bit	Wert	Beschreibung	Hinweis
AO	0	Anforderung "Antenna field on"	Antennenfeld aktivieren. Dies ist für die Kommunikation mit dem ID-Tag notwendig.
RD ⁽¹⁾	1	Modus "Read data" aktivieren	Das Kommando wird gestartet, nachdem das Bit TR in Statusbyte 2 des SPS-Dateneingangsabbilds auf NOT (TA) gesetzt wurde.
UR ⁽¹⁾	1	Modus "User data access" aktivieren	

Die Bits RD und UR müssen auf 1 gesetzt sein, wenn sich der Zustand von Bit TR ändert. Die Bits RD, UR und TR können gleichzeitig im selben SPS-Zyklus gesetzt werden.

Beschreibung Byte 2, "Steuerbyte 2":

Bit	Bitname	Beschreibung
0	TR ⁽²⁾	Toggle Request. Steuert die Ausführung des gewählten Modus
17	-	Muss auf Voreinstellung 0 gesetzt werden

⁽²⁾ Bit TR = NOT (TA): Kommandoausführung wird gestartet.

Beschreibung Byte 3...4, "16 Bit gelesene Datenlänge":

Gelesene Datenlänge, auf maximal (N-6) Bytes begrenzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wo die Daten gelesen werden sollen.

Beschreibung Byte 7...N, "Nicht verwendet":

Muss auf Voreinstellung 0x00 gesetzt werden.

UK

SPS Prozessdateneingangsabbild (Modul RWH CMD)

Byte Nr.		Bit							
	7	6	5	4	3	2	1	0	
1	DIAG	0	0	UA = 1	RA = 1	0	Al	TP	
2	0	0	0	0	0	0	0	TA	
3	16 Bit gelesene Datenlänge [D15D7]								
4			16	Bit gelese	ne Datenlän	ge [D7D0]			
5			16	Bit Startac	lresse [D15[08]			
6			16	Bit Startac	resse [D7D	0]			
7.(7+X)				Datenby	te 1X lese	n			
(8+X)N.					0x00				

Beschreibung Byte 1, "Statusbyte 1":

Bit	Wert	Beschreibung	Hinweis		
TP	0	Kein ID-Tag vor dem Lese- /Schreibkopf erkannt	-		
	1	ID-Tag wird vor dem Lese- /Schreibkopf erkannt	Solange der ID-Tag von dem Lese-/Schreibkopf erfasst wird, ist das Bit auf 1 gesetzt. Mit dem Kanalparameter "data hold time" kann der Status des Bits verlängert werden.		
Al	0	"Antenna field on" aktiv	Zeigt den aktuellen Zustand der Antennenfeld-Einstellung.		
RA	1	Modus "Read data" von der Auswerteeinheit aktiv	Zeigt den Zustand von Bit RD.		
UA	1	Modus "User data" (Nutzdaten) aktiv	Zeigt den Zustand von Bit UR.		
Diag	0	Kein Fehler erkannt	-		
	1	Diagnoseinformationen der Auswerteeinheit verfügbar	Diagnoseinformationen können im Modus "Diagnostics read" ausgelesen werden		

Beschreibung Byte 2, "Statusbyte 2":

Bit	Bitname	Beschreibung				
0	TA ⁽¹⁾	Toggle request Acknowledge				
17	-	Wird von der Auswerteeinheit auf den voreingestellten Wert 0 gesetzt				
	Bit TA = NOT (TR): gesetzt.	Kommandoausführung läuft. Bytes 3N werden auf Voreinstellung 0x00				
E	Bit TA = TR:	Das Kommando wurde von der Auswerteeinheit abgearbeitet. Bytes 3N enthalten die Kommandoantwort-Daten.				

Beschreibung Byte 3...4, "16 Bit gelesene Datenlänge X":

Anzahl der Bytes, die erfolgreich vom ID-Tag gelesen wurden. Wenn ein Fehler auftritt, werden die gelesene Datenlänge und das Bit DIAG auf 1 gesetzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wo die Daten gelesen werden.

Beschreibung Byte 7...(7+X), "Gelesenes Datenbyte 1...X":

Dieser Datenbereich enthält die Daten der Nutzdaten des ID-Tags. Nicht benutzte Bytes werden auf 0x00 gesetzt.

Beschreibung Byte (8+X)...N:

Wird auf Voreinstellung 0x00 gesetzt.

Hinweis:

Wenn kein ID-Tag erfasst wird oder ein Fehler auftritt, während das Kommando ausgeführt wird, werden Bytes (3...N) auf Voreinstellung 0x00 gesetzt.

1.4 Modul "RWH_CMD", Nutzdaten des ID-Tags asynchron lesen

In diesem Modus können die Nutzdaten des ID-Tags automatisch gelesen werden. Dieser Modus ist geeignet, wenn der Anwender nicht weiß, wann das ID-Tag vor dem Lese-/Schreibkopf ist.

Nach der Aktivierung des Modus via Bit TR = NOT (TA) beginnt die Auswerteeinheit sofort, durch Setzen von TA = TR die Nutzdaten des ID-Tags zu lesen, unabhängig davon, ob ein ID-Tag erfasst wird oder nicht. Wenn die Auswerteeinheit eine Änderung des Status des ID-Tags auf TP = 0->1 erfasst, wird ein Leseprozess gestartet. Wenn sich der Status des ID-Tags von TP=1->0 ändert, werden die Datenlänge, der Adresswert und die gelesenen Daten des SPS-Dateneingangsabbilds auf Voreinstellung = 0x0 gesetzt. Die Einstellung des IO-Kanal-Parameters "Data hold time" beeinflusst, wie lange das Bit TP und die gelesenen Daten des ID-Tags stabil im Prozessdateneingangsabbild gehalten werden.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte Nr.	Bit								
	7	6	5	4	3	2	1	0	
1	0	0	ER = 1	UR = 1	RD = 1	0	AO = 0	0	
2	0	0	0	0	0	0	0	TR	
3	16 Bit gelesene Datenlänge [D15D7]								
4			16 E	Bit gelesene	e Datenlänge	e [D7D0]			
5			16 E	Bit Startadre	esse [D15D8	3]			
6			16 E	Bit Startadre	esse [D7D0]				
7N.					0x00				

Beschreibung Byte 1, "Steuerbyte 1":

Bit	Wert	Beschreibung	Hinweis
AO	0	Anforderung "Antenna field on"	Antennenfeld aktivieren. Dies ist für die Kommunikation mit dem ID-Tag notwendig.
RD ⁽¹⁾	1	Modus "Read data" aktivieren	Das Kommando wird gestartet, nachdem das Bit TR in Statusbyte 2 des SPS-Dateneingangsabbilds auf NOT (TA) gesetzt wurde.
UR (1)	1	Modus "User data access" aktivieren	
ER (1)	1	Modus "Receive User data automatically" (Nutzdaten automatisch empfangen) aktivieren	

Die Bits RD, UR und ER müssen auf 1 gesetzt sein, wenn sich der Zustand von Bit TR ändert. Die Bits RD, UR, ER und TR können gleichzeitig im selben SPS-Zyklus gesetzt werden.

Beschreibung Byte 2, "Steuerbyte 2":

Bit	Bitname	Beschreibung
0	TR ⁽¹⁾	Toggle Request. Steuert die Ausführung des gewählten Modus
17	-	Muss auf Voreinstellung 0 gesetzt werden

⁽¹⁾ Bit TR = NOT (TA): Kommandoausführung wird gestartet. Dies muss nur einmal gemacht werden. Weitere Kommandos werden automatisch ausgeführt, wenn die Auswerteeinheit einen Statuswechsel des ID-Tags von "not present" (nicht vorhanden) auf "present" (vorhanden) erkennt.

Beschreibung Byte 3...4, "16 Bit gelesene Datenlänge":

Gelesene Datenlänge, auf maximal (N-6) Bytes begrenzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wo die Daten gelesen werden sollen.

Beschreibung Byte 7...N, "Nicht verwendet":

Muss auf Voreinstellung 0x00 gesetzt werden.

Hinweis: Das Kommando wird kontinuierlich ausgeführt, bis es durch eine andere Kommando-Anforderung mit Einstellung TR = NOT (TA) beendet wird. Wenn die Kommandoparameter "16 bit read length" (16 Bit-Leselänge) und "16 bit start address" (16 Bit Startadresse) geändert werden sollen, muss das Bit TR auf NOT (TA) gesetzt werden, um das Kommando mit dem geänderten Kommandoparameter neu zu starten.

SPS Prozessdateneingangsabbild (Modul RWH CMD)

Byte Nr.		Bit							
	7	6	5	4	3	2	1	0	
1	DIAG	0	EA = 1	UA = 1	RA = 1	0	Al	TP	
2	0	0 0 0 0 0 0 TA							
3	16 Bit gelesene Datenlänge [D15D7]								
4	16 Bit gelesene Datenlänge [D7D0]								
5	16 Bit Startadresse [D15D8]								
6	16 Bit Startadresse [D7D0]								
7.(7+X)	Datenbyte 1X lesen								
(8+X)N.					0x00				

Beschreibung Byte 1, "Statusbyte 1":

Bit	Wert	Beschreibung	Hinweis
TP	0	Kein ID-Tag vor dem Lese- /Schreibkopf erkannt	-
	1	ID-Tag wird vor dem Lese- /Schreibkopf erkannt	Solange der ID-Tag von dem Lese-/Schreibkopf erfasst wird, ist das Bit auf 1 gesetzt. Mit dem Kanalparameter "data hold time" kann der Status des Bits verlängert werden.
Al	0	"Antenna field on" aktiv	Zeigt den aktuellen Zustand der Antennenfeld-Einstellung.
RA	1	Modus "Read data" von der Auswerteeinheit aktiv	Zeigt den Zustand von Bit RD.
UA	1	Modus "User data" aktiv	Zeigt den Zustand von Bit UR.
EA	1	Modus "Receive User data automatically" aktiv	Zeigt den Zustand von Bit ER.
Diag	0	Kein Fehler erkannt	-
	1	Diagnoseinformationen der Auswerteeinheit verfügbar	Diagnoseinformationen können im Modus "Diagnostics read" ausgelesen werden

Beschreibung Byte 2, "Statusbyte 2":

Bit	Bitname	Beschreibung				
0	TA ⁽¹⁾	Toggle request Acknowledge				
17	-	Wird von der Auswerteeinheit auf den voreingestellten Wert 0 gesetzt				

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.

Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet.

Bytes 3...N enthalten die Kommandoantwort-Daten.

Beschreibung Byte 3...4, "16 Bit gelesene Datenlänge X":

Anzahl der Bytes, die erfolgreich vom ID-Tag gelesen wurden. Wenn ein Fehler auftritt, werden die gelesene Datenlänge und das Bit DIAG auf 1 gesetzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wo die Daten gelesen werden.

Beschreibung Byte 7...(7+X), "Gelesenes Datenbyte 1...X":

Dieser Datenbereich enthält die Daten der Nutzdaten des ID-Tags. Nicht benutzte Bytes werden auf 0x00 gesetzt.

Beschreibung Byte (8+X)...N:

Wird auf Voreinstellung 0x00 gesetzt.

Hinweise:

Wenn kein ID-Tag erfasst wird oder ein Fehler auftritt, während das Kommando ausgeführt wird, werden Bytes (3...N) auf Voreinstellung 0x00 gesetzt. Die Einstellung des IO-Kanal-Parameters "Data hold time" beeinflusst, wie lange das Bit TP und die gelesenen Daten des ID-Tags stabil im Prozessdateneingangsabbild gehalten werden.

1.5 Modul "RWH_CMD", Nutzdaten synchron auf das ID-Tag schreiben

Durch Setzen des Bits TR im SPS-Prozessdatenausgangsabbild auf den invertierten Zustand von Bit TA im SPS-Prozessdateneingangsabbild können in diesem Modus die Nutzdaten des ID-Tags geschrieben werden. Dieser Modus ist geeignet, wenn der Anwender weiß, wann das ID-Tag vor dem Lese-/Schreibkopf ist.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte Nr.	Bit								
	7	6	5	4	3	2	1	0	
1	0	0	0	UR = 1	0	WR = 1	AO = 0	0	
2	0	0	0	0	0	0	0	TR	
3	16 Bit geschriebene Datenlänge [D15D7]								
4			16 E	Bit geschrie	bene Daten	änge [D7D0]			
5		16 Bit Startadresse [D15D8]							
6	16 Bit Startadresse [D7D0]								
7.(7+X)	Schreiben von Datenbyte 1X								
(8+X)N.					0x00				

Beschreibung Byte 1, "Steuerbyte 1":

Bit	Wert	Beschreibung	Hinweis
AO	0	Anforderung "Antenna field on"	Antennenfeld aktivieren. Dies ist für die Kommunikation mit dem ID-Tag notwendig.
WR ⁽¹⁾	1	Modus "Write data" aktivieren	Das Kommando wird gestartet, nachdem das Bit TR in Statusbyte 2 des SPS-Dateneingangsabbilds auf NOT (TA) gesetzt wurde.
UR ⁽¹⁾	1	Modus "User data access" aktivieren	

Die Bits WR und UR müssen auf 1 gesetzt sein, wenn sich der Zustand von Bit TR ändert. Die Bits WR, UR und TR können gleichzeitig im selben SPS-Zyklus gesetzt werden.

Beschreibung Byte 2, "Steuerbyte 2":

Bit	Bitname	Beschreibung
0	TR ⁽¹⁾	Toggle Request. Steuert die Ausführung des gewählten Modus
17	-	Muss auf Voreinstellung 0 gesetzt werden

⁽¹⁾ Bit TR = NOT (TA): Kommandoausführung wird gestartet.

Beschreibung Byte 3...4, "16 Bit geschriebene Datenlänge X":

Geschriebene Datenlänge, auf maximal (N-6) Bytes begrenzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wohin die Daten geschrieben werden sollen.

Beschreibung Byte 7...(7+X), "Schreiben von Datenbyte 1...X":

Dieser Datenbereich enthält die in die Nutzdaten des ID-Tags zu schreibenden Daten.

Beschreibung Byte (8+X)...N:

Muss auf Voreinstellung 0x00 gesetzt werden.

UK

SPS Prozessdateneingangsabbild (Modul RWH CMD)

Byte Nr.	Bit							
	7	6	5	4	3	2	1	0
1	DIAG	0	0	UA = 1	RA = 1	0	Al	TP
2	0	0	0	0	0	0	0	TA
3	16 Bit geschriebene Datenlänge [D15D7]							
4	16 Bit geschriebene Datenlänge [D7D0]							
5	16 Bit Startadresse [D15D8]							
6	16 Bit Startadresse [D7D0]							
7N.					0x00			

Beschreibung Byte 1, "Statusbyte 1":

Bit	Wert	Beschreibung	Hinweis
TP	0	Kein ID-Tag vor dem Lese- /Schreibkopf erkannt	-
	1	ID-Tag wird vor dem Lese- /Schreibkopf erkannt	Solange der ID-Tag von dem Lese-/Schreibkopf erfasst wird, ist das Bit auf 1 gesetzt. Mit dem Kanalparameter "data hold time" kann der Status des Bits verlängert werden.
Al	0	"Antenna field on" aktiv	Zeigt den aktuellen Zustand der Antennenfeld-Einstellung.
WA	1	Modus "Write data" auf die Auswerteeinheit aktiv	Zeigt den Zustand von Bit WR.
UA	1	Modus "User data" aktiv	Zeigt den Zustand von Bit UR.
Diag	0	Kein Fehler erkannt	-
	1	Diagnoseinformationen der Auswerteeinheit verfügbar	Diagnoseinformationen können im Modus "Diagnostics read" ausgelesen werden

Beschreibung Byte 2, "Statusbyte 2":

Bit	Bitname	Beschreibung
0	TA ⁽¹⁾	Toggle request Acknowledge
17	-	Wird von der Auswerteeinheit auf den voreingestellten Wert 0 gesetzt

Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.
 Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet. Bytes 3...N enthalten die Kommandoantwort-Daten.

Beschreibung Byte 3...4, "16 Bit geschriebene Datenlänge":

Anzahl der Bytes, die erfolgreich auf das ID-Tag geschrieben wurden. Wenn ein Fehler auftritt, werden die geschriebene Datenlänge auf 0x0000 und das Bit DIAG auf 1 gesetzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wohin die Daten geschrieben werden.

Beschreibung Byte 7...(N):

Wird auf Voreinstellung 0x00 gesetzt.

Hinweis:

Wenn kein ID-Tag erfasst wird oder ein Fehler auftritt, während das Kommando ausgeführt wird, werden Bytes (3...N) auf Voreinstellung 0x00 gesetzt.

1.6 Modul "RWH_CMD", Nutzdaten asynchron auf das ID-Tag schreiben

In diesem Modus können die Nutzdaten des ID-Tags automatisch geschrieben werden. Dieser Modus ist geeignet, wenn der Anwender nicht weiß, wann das ID-Tag vor dem Lese-/Schreibkopf ist.

Nach der Aktivierung des Modus via TR = NOT (TA) beginnt die Auswerteeinheit sofort, durch Setzen von TA = TR die Nutzdaten des ID-Tags zu schreiben, unabhängig davon, ob ein ID-Tag erfasst wird oder nicht. Wenn die Auswerteeinheit eine Änderung des Status des ID-Tags auf TP = 0->1 erfasst, wird ein Schreibprozess gestartet. Wenn sich der Status des ID-Tags von TP=1->0 ändert, werden die Datenlänge und der Adresswert des SPS-Dateneingangsabbilds auf Voreinstellung = 0x0 gesetzt.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte Nr.	Bit								
	7	6	5	4	3	2	1	0	
1	0	0	ER = 1	UR = 1	0	WR = 1	AO = 0	0	
2	0	0	0	0	0	0	0	TR	
3	16 Bit geschriebene Datenlänge [D15D7]								
4	16 Bit geschriebene Datenlänge [D7D0]								
5		16 Bit Startadresse [D15D8]							
6	16 Bit Startadresse [D7D0]								
7.(7+X)	Schreiben von Datenbyte 1X								
(8+X)N.					0x00				

Beschreibung Byte 1, "Steuerbyte 1":

Bit	Wert	Beschreibung	Hinweis
AO	0	Anforderung "Antenna field on"	Antennenfeld aktivieren. Dies ist für die Kommunikation mit dem ID-Tag notwendig.
WR ⁽¹⁾	1	Modus "Write data" aktivieren	Das Kommando wird gestartet, nachdem das Bit TR in Statusbyte 2 des SPS-Dateneingangsabbilds auf NOT (TA) gesetzt wurde.
UR (1)	1	Modus "User data access" aktivieren	
ER (1)	1	Modus "Receive User data automatically" aktivieren	

Die Bits WR, UR und ER müssen auf 1 gesetzt sein, wenn sich der Zustand von Bit TR ändert. Die Bits WR, UR, ER und TR können gleichzeitig im selben SPS-Zyklus gesetzt werden.

Beschreibung Byte 2, "Steuerbyte 2":

Bit	Bitname	Beschreibung
0	TR ⁽¹⁾	Toggle Request.
		Steuert die Ausführung des gewählten Modus
17	-	Muss auf Voreinstellung 0 gesetzt werden

⁽¹⁾ Bit TR = NOT (TA): Kommandoausführung wird gestartet. Dies muss nur einmal gemacht werden. Weitere Kommandos werden automatisch ausgeführt, wenn die Auswerteeinheit einen Statuswechsel des ID-Tags von "not present" auf "present" erkennt.

Beschreibung Byte 3...4, "16 Bit geschriebene Datenlänge X":

Geschriebene Datenlänge, auf maximal (N-6) Bytes begrenzt.

Beschreibung Byte 56, "16 Bit Startadr esse":

Startadresse des ID-Tag-Nutzdatenbereichs, wohin die Daten geschrieben werden sollen.

Beschreibung Byte 7...(7+X), "Schreiben von Datenbyte 1...X":

Dieser Datenbereich enthält die in die Nutzdaten des ID-Tags zu schreibenden Daten.

Beschreibung Byte (8+X)...N:

Muss auf Voreinstellung 0x00 gesetzt werden.

Hinweis: Das Kommando wird kontinuierlich ausgeführt, bis es durch eine andere Kommando-Anforderung mit Einstellung TR = NOT (TA) beendet wird. Wenn die Kommandoparameter "16 bit read length" und "16 bit start address" geändert werden sollen, muss das Bit TR auf NOT (TA) gesetzt werden, um das Kommando mit dem geänderten Kommandoparameter neu zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte Nr.		Bit						
	7	6	5	4	3	2	1	0
1	DIAG	0	EA = 1	UA = 1	RA = 1	0	Al	TP
2	0	0	0	0	0	0	0	TA
3			16	Bit geschr	iebene Date	nlänge [D15	D7]	
4		16 Bit geschriebene Datenlänge [D7D0]						
5		16 Bit Startadresse [D15D8]						
6	16 Bit Startadresse [D7D0]							
7N.					0x00			

Beschreibung Byte 1, "Statusbyte 1":

Bit	Wert	Beschreibung	Hinweis
TP	0	Kein ID-Tag vor dem Lese- /Schreibkopf erkannt	-
	1	ID-Tag wird vor dem Lese- /Schreibkopf erkannt	Solange der ID-Tag von dem Lese-/Schreibkopf erfasst wird, ist das Bit auf 1 gesetzt. Mit dem Kanalparameter "data hold time" kann der Status des Bits verlängert werden.
Al	0	"Antenna field on" aktiv	Zeigt den aktuellen Zustand der Antennenfeld-Einstellung.
WA	1	Modus "Write data" auf die Auswerteeinheit aktiv	Zeigt den Zustand von Bit WR.
UA	1	Modus "User data" aktiv	Zeigt den Zustand von Bit UR.
EA	1	Modus "Receive User data automatically" aktiv	Zeigt den Zustand von Bit ER.
Diag	0	Kein Fehler erkannt	-
	1	Diagnoseinformationen der Auswerteeinheit verfügbar	Diagnoseinformationen können im Modus "Diagnostics read" ausgelesen werden

Beschreibung Byte 2, "Statusbyte 2":

Bit	Bitname	Beschreibung
0	TA ⁽¹⁾	Toggle request Acknowledge
17	-	Wird von der Auswerteeinheit auf den voreingestellten Wert 0 gesetzt

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.

Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet.

Bytes 3...N enthalten die Kommandoantwort-Daten.

Beschreibung Byte 3...4, "16 Bit geschriebene Datenlänge":

Anzahl der Bytes, die erfolgreich auf das ID-Tag geschrieben wurden. Wenn ein Fehler auftritt, werden die geschriebene Datenlänge auf 0x0000 und das Bit DIAG auf 1 gesetzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wohin die Daten geschrieben werden.

Beschreibung Byte 7...(N):

Wird auf Voreinstellung 0x00 gesetzt.

Hinweis:

Wenn kein ID-Tag erfasst wird oder ein Fehler auftritt, während das Kommando ausgeführt wird, werden Bytes (3...N) auf Voreinstellung 0x00 gesetzt.

1.7 Modul "RWH_CMD", Nutzdaten verifiziert, synchron auf das ID-Tag schreiben

In diesem Modus können die Nutzdaten des ID-Tags mit einer einzigen Kommandoanforderung geschrieben und zurückgelesen werden.

Im ersten Schritt werden die Kommandodaten auf das ID-Tag geschrieben, im zweiten Schritt werden sie vom ID-Tag zurückgelesen. Im dritten Schritt vergleicht die Auswerteeinheit die geschriebenen Daten mit den gelesenen Daten und sendet das Ergebnis zurück an die SPS. Wenn die geschriebenen Daten den zurückgelesenen Daten entsprechen, wird die gelesene Datenlänge im SPS-Dateneingangsabbild auf die geschriebene Datenlänge des SPS-Prozessdatenausgangsabbilds gesetzt; ansonsten wird eine Diagnosemeldung erzeugt.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte Nr.		Bit						
	7	6	5	4	3	2	1	0
1	0	0	0	UR = 1	RD = 1	WR = 1	AO = 0	0
2	0	0	0	0	0	0	0	TR
3			16 E	Bit geschrie	bene Daten	länge [D15D	7]	
4			16 E	Bit geschrie	bene Daten	länge [D7D0]]	
5			16 E	Bit Startadre	esse [D15D8	3]		
6			16 E	Bit Startadre	esse [D7D0]			
7				Schreiben	von Datenby	/te 1		
7 + (X-1)	Schreiben von Datenbyte X							
N					0x00			

Beschreibung Byte 1, "Steuerbyte 1":

Bit	Wert	Beschreibung	Hinweis
AO	0	Anforderung "Antenna field on"	Antennenfeld aktivieren. Dies ist für die
			Kommunikation mit dem ID-Tag
WR (1)	1	Modus "Write data" aktivieren	notwendig. Das Kommando wird gestartet, nachdem das Bit TR in Statusbyte 2 des SPS-Dateneingangsabbilds auf NOT (TA) gesetzt wurde.
RD ⁽¹⁾	1	Modus "Read data" aktivieren	
UR ⁽¹⁾	1	Modus "User data access" aktivieren	

Die Bits WR, RD und UR müssen auf 1 gesetzt sein, wenn sich der Zustand von Bit TR ändert. Die Bits WR, RD, UR und TR können gleichzeitig im selben SPS-Zyklus gesetzt werden.

Beschreibung Byte 2, "Steuerbyte 2":

Bit	Bitname	Beschreibung
0	TR ⁽¹⁾	Toggle Request. Steuert die Ausführung des gewählten Modus
17	-	Muss auf Voreinstellung 0 gesetzt werden

⁽¹⁾ Bit TR = NOT (TA): Kommandoausführung wird gestartet.

Beschreibung Byte 3...4, "16 Bit geschriebene Datenlänge X":

Geschriebene Datenlänge, auf maximal (N-6) Bytes begrenzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wohin die Daten geschrieben werden sollen.

Beschreibung Byte 7...(7+X), "Schreiben von Datenbyte 1...X":

Dieser Datenbereich enthält die in die Nutzdaten des ID-Tags zu schreibenden Daten.

Beschreibung Byte (8+X)...N:

Muss auf Voreinstellung 0x00 gesetzt werden.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte Nr.		Bit						
	7	6	5	4	3	2	1	0
1	DIAG	0	0	UA = 1	RA = 1	WA = 1	Al	TP
2	0	0	0	0	0	0	0	TA
3			16	Bit geschr	iebene Date	nlänge [D15	D7]	
4		16 Bit geschriebene Datenlänge [D7D0]						
5		16 Bit Startadresse [D15D8]						
6	16 Bit Startadresse [D7D0]							
7N.					0x00			

Beschreibung Byte 1, "Statusbyte 1":

Bit	Wert	Beschreibung	Hinweis
TP	0	Kein ID-Tag vor dem Lese- /Schreibkopf erkannt	-
	1	ID-Tag wird vor dem Lese- /Schreibkopf erkannt	Solange der ID-Tag von dem Lese-/Schreibkopf erfasst wird, ist das Bit auf 1 gesetzt. Mit dem Kanalparameter "data hold time" kann der Status des Bits verlängert werden.
Al	0	"Antenna field on" aktiv	Zeigt den aktuellen Zustand der Antennenfeld-Einstellung.
WA	1	Modus "Write data" auf die Auswerteeinheit aktiv	Zeigt den Zustand von Bit WR.
RA	1	Modus "Read data" von der Auswerteeinheit aktiv	Zeigt den Zustand von Bit RD.
UA	1	Modus "User data" aktiv	Zeigt den Zustand von Bit UR.
Diag	0	Kein Fehler erkannt	-
	1	Diagnoseinformationen der Auswerteeinheit verfügbar	Diagnoseinformationen können im Modus "Diagnostics read" ausgelesen

Beschreibung Byte 2, "Statusbyte 2":

Bit	Bitname	Beschreibung				
0	TA ⁽¹⁾	Toggle request Acknowledge				
17	-	Wird von der Auswerteeinheit auf den voreingestellten Wert 0 gesetzt				

Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.
 Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet.
 Bytes 3...N enthalten die Kommandoantwort-Daten.

Beschreibung Byte 3...4, "16 Bit gelesene Datenlänge X":

Anzahl der Bytes, die erfolgreich auf das ID-Tag geschrieben und vom ID-Tag gelesen wurden. Wenn ein Fehler auftritt, werden die gelesene Datenlänge und das Bit DIAG auf 1 gesetzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wohin die Daten geschrieben werden und wo sie gelesen werden.

Beschreibung Byte 7...(7+X), "Gelesenes Datenbyte 1...X":

Dieser Datenbereich enthält die Daten der Nutzdaten des ID-Tags. Nicht benutzte Bytes werden auf 0x00 gesetzt.

Beschreibung Byte (8+X)...N: Wird auf Voreinstellung 0x00 gesetzt.

Hinweis:

Wenn kein ID-Tag erfasst wird oder ein Fehler auftritt, während das Kommando ausgeführt wird, werden Bytes (3...N) auf Voreinstellung 0x00 gesetzt.

1.8 Modul "RWH_CMD", Nutzdaten verifiziert, asynchron auf das ID-Tag schreiben

In diesem Modus können die Nutzdaten des ID-Tags automatisch geschrieben und zurückgelesen werden. Dieser Modus ist geeignet, wenn der Anwender nicht weiß, wann das ID-Tag vor dem Lese-/Schreibkopf ist.

Im ersten Schritt werden die Kommandodaten auf das ID-Tag geschrieben, im zweiten Schritt werden sie vom ID-Tag zurückgelesen. Im dritten Schritt vergleicht die Auswerteeinheit die geschriebenen Daten mit den gelesenen Daten und sendet das Ergebnis zurück an die SPS. Wenn die geschriebenen Daten den zurückgelesenen Daten entsprechen, wird die gelesene Datenlänge im SPS-Dateneingangsabbild auf die geschriebene Datenlänge des SPS-Prozessdatenausgangsabbilds gesetzt; ansonsten wird eine Diagnosemeldung erzeugt.

Nach der Aktivierung des Modus via TR = NOT (TA) beginnt die Auswerteeinheit sofort, durch Setzen von TA = TR die Nutzdaten des ID-Tags zu schreiben, unabhängig davon, ob ein ID-Tag erfasst wird oder nicht. Wenn die Auswerteeinheit eine Änderung des Status des ID-Tags auf TP = 0->1 erfasst, wird ein Schreibprozess gestartet. Wenn sich der Status des ID-Tags von TP=1->0 ändert, werden die Datenlänge, der Adresswert und die gelesenen Daten des SPS-Dateneingangsabbilds auf Voreinstellung = 0x0 gesetzt.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte Nr.	Bit								
	7	6	5	4	3	2	1	0	
1	0	0	ER = 1	UR = 1	RD = 1	WR = 1	AO = 0	0	
2	0	0	0	0	0	0	0	TR	
3			16 E	Bit geschrie	bene Daten	länge [D15D]	7]		
4			16 E	Bit geschrie	bene Daten	länge [D7D0]]		
5		16 Bit Startadresse [D15D8]							
6	16 Bit Startadresse [D7D0]								
7.(7+X)	Schreiben von Datenbyte 1X								
(8+X)N.					0x00				

Beschreibung Byte 1, "Steuerbyte 1":

Bit	Wert	Beschreibung	Hinweis
AO	0	Anforderung "Antenna field on"	Antennenfeld aktivieren. Dies ist für die Kommunikation mit dem ID-Tag notwendig.
WR ⁽¹⁾	1	Modus "Write data" aktivieren	Das Kommando wird gestartet, nachdem das Bit TR in Statusbyte 2 des SPS-Dateneingangsabbilds auf NOT (TA) gesetzt wurde.
RD ⁽¹⁾	1	Modus "Read data" aktivieren	
UR (1)	1	Modus "User data access" aktivieren	
ER (1)	1	Modus "Receive User data automatically" aktivieren	

Die Bits WR, RD, UR und ER müssen auf 1 gesetzt sein, wenn sich der Zustand von Bit TR ändert. Die Bits WR. RD. UR. ER und TR können gleichzeitig im selben SPS-Zyklus gesetzt werden.

Beschreibung Byte 2, "Steuerbyte 2":

Bit	Bitname	Beschreibung
0	TR ⁽¹⁾	Toggle Request.
		Steuert die Ausführung des gewählten Modus
17	-	Muss auf Voreinstellung 0 gesetzt werden

(1) Bit TR = NOT (TA): Kommandoausführung wird gestartet.

IIK

Beschreibung Byte 3...4, "16 Bit geschriebene Datenlänge X":

Geschriebene Datenlänge, auf maximal (N-6) Bytes begrenzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wohin die Daten geschrieben werden sollen.

Beschreibung Byte 7...(7+X), "Schreiben von Datenbyte 1...X":

Dieser Datenbereich enthält die in die Nutzdaten des ID-Tags zu schreibenden Daten.

Beschreibung Byte (8+X)...N:

Muss auf Voreinstellung 0x00 gesetzt werden.

Hinweis: Das Kommando wird kontinuierlich ausgeführt, bis es durch eine andere Kommando-Anforderung mit Einstellung TR = NOT (TA) beendet wird. Wenn die Kommandoparameter "16 bit read length" und "16 bit start address" geändert werden sollen, muss das Bit TR auf NOT (TA) gesetzt werden, um das Kommando mit dem geänderten Kommandoparameter neu zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte Nr.		Bit						
	7	6	5	4	3	2	1	0
1	DIAG	0	EA = 1	UA = 1	RA = 1	WA = 1	Al	TP
2	0	0	0	0	0	0	0	TA
3			16	Bit gelese	ne Datenlän	ge [D15D7]		
4			16	Bit gelese	ne Datenlän	ge [D7D0]		
5		16 Bit Startadresse [D15D8]						
6	16 Bit Startadresse [D7D0]							
7.(7+X)	Datenbyte 1X lesen							
(8+X)N.					0x00			

Beschreibung Byte 1, "Statusbyte 1":

Bit	Wert	Beschreibung	Hinweis
TP	0	Kein ID-Tag vor dem Lese- /Schreibkopf erkannt	-
	1	ID-Tag wird vor dem Lese- /Schreibkopf erkannt	Solange der ID-Tag von dem Lese-/Schreibkopf erfasst wird, ist das Bit auf 1 gesetzt. Mit dem Kanalparameter "data hold time" kann der Status des Bits verlängert werden.
Al	0	"Antenna field on" aktiv	Zeigt den aktuellen Zustand der Antennenfeld-Einstellung.
WA	1	Modus "Write data" auf die Auswerteeinheit aktiv	Zeigt den Zustand von Bit WR.
RA	1	Modus "Read data" von der Auswerteeinheit aktiv	Zeigt den Zustand von Bit RD.
UA	1	Modus "User data" aktiv	Zeigt den Zustand von Bit UR.
EA	1	Modus "Receive User data automatically" aktiv	Zeigt den Zustand von Bit ER.
Diag	0	Kein Fehler erkannt	-
	1	Diagnoseinformationen der Auswerteeinheit verfügbar	Diagnoseinformationen können im Modus "Diagnostics read" ausgelesen werden.

Beschreibung Byte 2, "Statusbyte 2":

Bit	Bitname	Beschreibung				
0	TA ⁽¹⁾	Toggle request Acknowledge				
17	-	Wird von der Auswerteeinheit auf den voreingestellten Wert 0 gesetzt				

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00

gesetzt.

Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet.

Bytes 3...N enthalten die Kommandoantwort-Daten.

Beschreibung Byte 3...4, "16 Bit gelesene Datenlänge X":

Anzahl der Bytes, die erfolgreich vom ID-Tag gelesen wurden. Wenn ein Fehler auftritt, werden die gelesene Datenlänge und das Bit DIAG auf 1 gesetzt.

Beschreibung Byte 56, "16 Bit Startadresse":

Startadresse des ID-Tag-Nutzdatenbereichs, wohin die Daten geschrieben werden und wo sie gelesen werden.

Beschreibung Byte 7...(7+X), "Gelesenes Datenbyte 1...X":

Dieser Datenbereich enthält die aus den Nutzdaten des ID-Tags zurückgelesenen Daten. Nicht benutzte Bytes werden auf 0x00 gesetzt.

Beschreibung Byte (8+X)...N:

Wird auf Voreinstellung 0x00 gesetzt.

Hinweis:

Wenn kein ID-Tag erfasst wird oder ein Fehler auftritt, während das Kommando ausgeführt wird, werden Bytes (3...N) auf Voreinstellung 0x00 gesetzt.

1.9 Modul "RWH_CMD", Diagnose lesen

In diesem Modus können die Diagnoseinformationen der Auswerteeinheit gelesen werden.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte Nr.	Bit							
	7	6	5	4	3	2	1	0
1	0	DR	ER	UR	0	0	AO	0
2	0	0	0	0	0	0	0	TR
3				Nicht	verwendet			
N-1	Nicht verwendet							
N				Nicht	verwendet			

Beschreibung Byte 1, "Steuerbyte 1":

Bit	Wert	Beschreibung	Hinweis
AO	0/1	Anforderung "Antenna field on"	Kann unverändert bleiben, so lange der Modus "Diagnostics Read" aktiviert ist
UR	0/1	Modus "Zugriff auf Nutzdaten" des ID- Tags	Kann unverändert bleiben, so lange der Modus "Diagnostics Read" aktiviert ist
ER	0/1	Modus "Event controlled reading" des Arbeitsspeichers des ID-Tags	Kann unverändert bleiben, so lange der Modus "Diagnostics Read" aktiviert ist
DR ⁽¹⁾	1	Modus "Diagnostics read" aktiv	Das Lesen der Diagnose wird gestartet, nachdem Bit TR in Statusbyte 2 des SPS-Dateneingangsabbilds auf NOT (TA) gesetzt wurde.

⁽¹⁾ Diagnoseinformationen sind nur verfügbar, wenn das Bit "Diag" innerhalb der Antwortdaten gesetzt ist. Ansonsten geben die Antwortdaten die Standarddaten "0x00" innerhalb von Byte 3...n zurück.

Beschreibung Byte 2, "Steuerbyte 2":

Bit	Bitname	Beschreibung
0	TR ⁽¹⁾	Toggle Request. Steuert die Ausführung des gewählten Modus
17	-	Muss auf Voreinstellung 0 gesetzt werden

⁽¹⁾ Bit TR = NOT (TA): Kommandoausführung wird gestartet.

Beschreibung Byte 3...N:

Nicht verwendet. Dieser Datenbereich kann unverändert bleiben, um eine schnellere Rückkehr zum zuvor ausgeführten Modus zu ermöglichen.

UK

SPS Prozessdateneingangsabbild (Modul RWH CMD)

Byte Nr.		Bit						
	7	6	5	4	3	2	1	0
1	DIAG	DA	EA	UA	0	0	Al	TP
2	0	0	0	0	0	0	0	TA
3					0x00			
4				Anzahl de	er Fehlercod	es		
5					0x00			
6		0x00						
710	Fehlercode 1							
11x	Fehlercode 24							
(X+1)N					0x00			

Beschreibung Byte 1, "Statusbyte 1":

Bit	Wert	Beschreibung	Hinweis		
TP	0	Kein ID-Tag vor dem Lese- /Schreibkopf erkannt	-		
	1	ID-Tag wird vor dem Lese- /Schreibkopf erkannt	Solange der ID-Tag von dem Lese-/Schreibkopf erfasst wird, ist das Bit auf 1 gesetzt. Mit dem Kanalparameter "data hold time" kann der Status des Bits verlängert werden.		
Al	0/1	"Antenna field on" aktiv	Zeigt den aktuellen Zustand der Antennenfeld-Einstellung.		
UA	0/1	Modus "User data" aktiv	Zeigt den aktuellen Zustand.		
EA	0/1	Modus "Receive User data on Event change" aktiv	Zeigt den aktuellen Zustand.		
DA	0	Modus "Diagnostics Read" inaktiv	-		
	1	Modus "Diagnostics Read" aktiv	-		
Diag	0	Kein Fehler erkannt	-		
	1	Diagnoseinformationen der Auswerteeinheit verfügbar	Wenn mehr als 4 Fehlercodes vorliegen, bleibt das Bit in Zustand 1. Um die Fehlercodes auszulesen muss der Benutzer einen neue Diagnose-Lesevorgang starten.		

Beschreibung Byte 2, "Statusbyte 2":

Bit	Bitname	Beschreibung			
0	TA ⁽¹⁾	Toggle request Acknowledge			
17	-	Wird von der Auswerteeinheit auf den voreingestellten Wert 0 gesetzt			

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.
 Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet.
 Bytes 3...N enthalten die Kommandoantwort-Daten.

Beschreibung Byte 3...4, "Anzahl der Fehlercodes":

Anzahl der in der Auswerteeinheit vorliegenden Fehlercodes. Pro Diagnose-Leseanforderung können max. 4 Fehlercodes gelesen werden.

Beschreibung Byte 5...6:

Steht immer auf Voreinstellung 0x00.

Beschreibung Byte 7...X, "Fehlercode 1...4":

Fehlercodes der Auswerteeinheit. Zu Details siehe Kapitel "Fehlercodes der Auswerteeinheit". Ein Fehlercode hat immer eine Länge von 4 Bytes

Hinweis: Wenn weniger als 4 Fehlercodes vorliegen, werden die ungenutzten Bytes auf Voreinstellung 0x00 gesetzt.

Beschreibung Byte (X+1)...N:

Steht immer auf Voreinstellung 0x00.

1.10 Modul "RWH CMD", Kommandos synchron ausführen

In diesem Modus können mehrere Kommandos an die Auswerteeinheit gesendet werden, um Daten auszulesen oder auf die Auswerteeinheit zu schreiben. .

SPS Prozessdatenausgangsabbild (Modul RWH CMD)

Byte Nr.		Bit						
	7	6	5	4	3	2	1	0
1	0	0	0	0	RD	WR	0	0
2	CM	0	0	0	0	0	0	TR
3			16 E	Bit Kommar	ndolänge, M	SBy		
4			16 E	Bit Kommar	ndolänge, LS	SBy		
5			16 E	Bit Kommar	ndocode, MS	SBy		
6			16 E	Bit Kommar	ndocode, LS	Ву		
7			Kon	nmandopar	ameter 1, M	SBy		
8		Kommandoparameter 1, LSBy						
9	Kommandoparameter 2, MSBy							
10	Kommandoparameter 2, LSBy							
N					0x00			

Beschreibung Byte 1, "Steuerbyte 1":

Bit	Wert	Beschreibung	Hinweis
WR ⁽¹⁾	1	Modus "PUT" (Kommando senden) aktivieren	Das Kommando wird gestartet, nachdem das Bit TR in Statusbyte 2 des SPS- Dateneingangsabbilds auf NOT (TA) gesetzt wurde.
RD (1)	1	Modus "GET" (Antwort empfangen) aktivieren	Das Kommando wird gestartet, nachdem das Bit TR in Statusbyte 2 des SPS- Dateneingangsabbilds auf NOT (TA) gesetzt wurde.

Bit WR oder RD muss auf 1 gesetzt sein, wenn sich der Zustand von Bit TR ändert. Die Bits WR und TR oder RD und TR können gleichzeitig im selben SPS-Zyklus gesetzt werden.

Beschreibung Byte 2, "Steuerbyte 2":

Bit	Bitname	Beschreibung	
0	TR ⁽¹⁾	Toggle Request.	
		Steuert die Ausführung des gewählten Modus	
16	-	Muss auf Voreinstellung 0 gesetzt werden	
7	CM	Command Mode aktiv	
		Muss auf 1 gesetzt werden, um den "command mode" zu aktivieren	

⁽¹⁾ Bit TR = NOT (TA): Kommandoausführung wird gestartet

Beschreibung 3...4, "16 Bit Kommandolänge X":

Kommando-Datenlänge, einschließlich Länge des Kommandocodes. Begrenzt auf eine maximale Anzahl von (N-6) Bytes.

Beschreibung Byte 5...6, "16 Bit Kommandocode":

Kommandocode. Verfügbare Kommandos finden Sie im Abschnitt "Übersicht der zur Verfügung stehenden Kommandos".

Beschreibung Byte 7...N, "16 Bit Kommandoparameter 1...X":

Kommandoparameter. Nicht benutzte Bytes werden auf 0x00 gesetzt.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte Nr.		Bit						
	7	6	5	4	3	2	1	0
1	DIAG	0	0	0	RA	WA	Al	TP
2	CA	0	0	0	0	0	0	TA
3			16	Bit Antwor	tdaten-Läng	e, MSBy		
4			16	Bit Antwor	tdaten-Läng	e, LSBy		
5			16	Bit Antwor	tcode, MSB	У		
6		16 Bit Antwortcode, LSBy						
7		16 Bit Antwortdaten 1, MSBy						
8	16 Bit Antwortdaten 1, LSBy							
9	16 Bit Antwortdaten 2, MSBy							
10	16 Bit Antwortdaten 2, LSBy							
N					0x00			_

Beschreibung Byte 1, "Statusbyte 1":

Bit	Wert	Beschreibung	Hinweis
TP ⁽¹⁾	0	Kein ID-Tag vor dem Lese- /Schreibkopf erkannt	-
	1	ID-Tag wird vor dem Lese- /Schreibkopf erkannt	Solange der ID-Tag von dem Lese-/Schreibkopf erfasst wird, ist das Bit auf 1 gesetzt. Mit dem Kanalparameter "data hold time" kann der Status des Bits verlängert werden.
AI (1)	0	"Antenna field on" aktiv	Zeigt den aktuellen Zustand der Antennenfeld-Einstellung.
WA	1	Modus "PUT" (Senden) eines Kommandos an die Auswerteeinheit	Zeigt den Zustand von Bit WR.
RA	1	Modus "GET" (Empfangen) der Daten von der Auswerteeinheit aktiv	Zeigt den Zustand von Bit RD.
DIAG (1)	0	Kein Fehler erkannt	-
	1	Diagnoseinformationen der Auswerteeinheit verfügbar	Diagnoseinformationen können im Modus "Diagnostics read" ausgelesen

Die Bits TP, Al und DIAG zeigen den aktuellen Zustand des ID-Tags / des HF-Antennenfelds / der Diagnosedaten, unabhängig von der Einstellung von Bit TR.

Beschreibung Byte 2, "Statusbyte 2":

Bit	Bitname	Beschreibung
0	TA ⁽¹⁾	Toggle request Acknowledge
16	-	Wird von der Auswerteeinheit auf den voreingestellten Wert 0 gesetzt
7	CA (2)	Kommandomodus aktiv

⁽¹⁾ Bit TA = NOT (TR): Kommandoausführung läuft
Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet

Die Bits WA und RA werden automatisch gesetzt, sobald die Auswerteeinheit das Setzen der entsprechenden Bits WR und RD in Steuerbyte 1 des SPS-Datenausgangsabbilds erfasst. Jegliche Änderung in den Einstellungen dieser Bits auf zuvor empfangene Zustände setzt die Datenbytes 3 .(N) auf die Voreinstellung 0x00. Das Bit TR hat keinen Einfluss auf dieses Verhalten.

⁽²⁾ Bit CA wird automatisch gesetzt, sobald die Auswerteeinheit das Setzen des Bits CR in den Steuerbytes 2 des SPS-Datenausgangsabbilds erfasst. Jegliche Änderung des Bits CR auf einen zuvor empfangenen Zustand setzt die Datenbytes 3 .(N) auf die Voreinstellung 0x00. Das Bit TR

hat keinen Einfluss auf dieses Verhalten.

Beschreibung Byte 3...4, "16 Bit Antwortdaten-Länge X":

Antwort-Datenlänge, einschließlich Antwortcode. Begrenzt auf eine maximale Anzahl von (N-4) Bytes.

Beschreibung Byte 5...6, "16 Bit Antwortcode":

Antwortcode der Kommandoanforderung.

Beschreibung Byte 7...(N), "16 Bit Antwortdaten 1...X":
Dieser Datenbereich enthält die Antwortdaten des Kommandos. Nicht benutzte Bytes werden auf 0x00 gesetzt.

Hinweis:

Wenn ein Fehler auftritt, werden die Bytes 7...N auf 0x0000 und das Bit DIAG auf 1 gesetzt.

1.10.1 Übersicht GET / SET-Kommandos

Kommando	Steuerwort	Kommando-	Kommando-	Parameter 1	Parameter 2	Parameter 3
	(1)	länge	code			(N-6)
GET IDENT	0x0880	0x0002	0x62C8	0x0000	0x0000	0x0000
DIAGNOSIS						
GET MAC	0x0880	0x0002	0x62C9	0x0000	0x0000	0x0000
ADDRESS						
GET UID-RSSI	0x0880	0x0002	0x62CD	0x0000	0x0000	0x0000
GET HF POWER	0x0880	0x0002	0x62CE	0x0000	0x0000	0x0000
LIST						
GET HF POWER	0x0880	0x0002	0x62CF	0x0000	0x0000	0x0000
SETTING						
GET BARGRAPH	0x0880	0x0002	0x62D0	0x0000	0x0000	0x0000
STATE						
GET BLOCKS	0x0880	0x0006	0x62D1	Startblock	Anzahl der	0x0000
LOCKED					Blöcke	
GET DSFID	0x0880	0x0006	0x62D2	0x0000	0x0000	0x0000
GET AFI	0x0880	0x0006	0x62D3	0x0000	0x0000	0x0000
SET HF POWER	0x0480	0x0004	0x65D6	Leistungspeg	0x0000	0x0000
LEVEL				el		
SET BARGRAPH	0x0480	0x0004	0x65D7	Status	0x0000	0x0000
STATE						
SET BLOCKS	0x0480	0x0006	0x65D8	Startblock	Anzahl der	0x0000
LOCKED					Blöcke	
SET DEVICE	0x0480	0x0004	0x65D9	Countdown-	0x0000	0x0000
RESET				Wert		
SET DSFID	0x0480	0x0004	0x65DA	DSFID-Wert	0x0000	0x0000
SET AFI	0x0480	0x0004	0x65DB	AFI-Wert	0x0000	0x0000
SET DSFID	0x0480	0x0002	0x65DC	0x0000	0x0000	0x0000
LOCKED						
SET AFI LOCKED	0x0480	0x0002	0x65DD	0x0000	0x0000	0x0000

 $^{^{(1)}}$ = Bit TR im Steuerbyte muss auf NOT (TA) gesetzt sein, um das Kommando zu aktivieren.

1.10.2 Kommando "GET IDENT DIAGNOSIS"

Mit diesem Kommando werden die Diagnosedaten der Auswerteeinheit von der Steuerung ausgelesen.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x02	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xC8	Kommandocode (LSBy)
7N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04 + (4*X)	Antwortlänge (LSBy), X = Anzahl der Fehlercodes
5	0x62	Antwortcode (MSBy)
6	0xC8	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	0x00	Anzahl der Fehlercodes [X= 0x00x4]
	(4*X)	
91.2	Fehlercode 1	Fehlercode 1. Siehe Kapitel "Fehlercodes der Auswerteeinheit"
13X.		
(X+1)N	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.

Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet.

1.10.3 Kommando "GET MAC ADDRESS"

Mit diesem Kommando wird die MAC-Adresse der Auswerteeinheit von der Steuerung ausgelesen.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x02	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xC9	Kommandocode (LSBy)
7N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x08	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xC9	Antwortcode (LSBy)
7	Oktett 1	MAC-Adresse, Oktett 1
8	Oktett 2	MAC-Adresse, Oktett 2
9	Oktett 3	MAC-Adresse, Oktett 3
10	Oktett 4	MAC-Adresse, Oktett 4
11	Oktett 5	MAC-Adresse, Oktett 5
12	Oktett 6	MAC-Adresse, Oktett 6
13N	0x00	Nicht verwendet

⁽¹⁾ Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.

Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet.

1.10.4 Kommando "GET HF POWER LIST"

Mit diesem Kommando werden die verfügbaren HF-Leistungspegel des Lese-/Schreibkopfes von der Steuerung ausgelesen.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x02	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xCE	Kommandocode (LSBy)
7N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x02 + (n)	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xCE	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	0x00 .X	Anzahl der Leistungspegel. X =[05] 0x0 = Kein Eintrag in der HF-Leistungsliste 0x1 = ein Pegel (z.B. 100%)n 0x2 = zwei Pegel (z.B. 0% und 100%)
9	PWR1	Erster verfügbarer Leistungspegel [%] z.B. 0x0 = 0% => HF-Feld aus
10	PWR2	Zweiter verfügbarer Leistungspegel [%] e.g. 0x64 = 100% => HF-Feld an.
11X.		
(X+1)N	0x00	Nicht verwendet

Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.
 Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet

Hinweis: Wird das Kommando nicht vom Lese-/Schreibkopf unterstützt, setzt die Auswerteeinheit das Flag DIAG in Statusbyte 2. Der Fehlercode kann mit dem Kommando "GET IDENT DIAGNOSIS" ausgelesen werden.

1.10.5 Kommando "GET HF POWER SETTING"

Mit diesem Kommando wird die aktuelle HF-Leistungspegel-Einstellung des Lese-/Schreibkopfes von der Steuerung ausgelesen.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x02	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xCF	Kommandocode (LSBy)
7N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xCF	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	PWR1	Aktueller HF-Leistungspegel im Lese-/Schreibkopf [%] z.B. 0x32 = 50%
9N.	0x00	Nicht verwendet

Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.
 Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet

Hinweis: Wird das Kommando nicht vom Lese-/Schreibkopf unterstützt, setzt die Auswerteeinheit das Flag DIAG in Statusbyte 2. Der Fehlercode kann mit dem Kommando "GET IDENT DIAGNOSIS" ausgelesen werden.

1.10.6 Kommando "GET BARGRAPH STATE"

Mit diesem Kommando wird der LED Balkenanzeige-Status des Lese-/Schreibkopfes von der Steuerung ausgelesen.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Steuerbyte 1
2	0x80 (1)	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x02	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xD0	Kommandocode (LSBy)
7N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xD0	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	Status	Aktuelle Einstellung der LED Balkenanzeige des Lese-/Schreibkopfs
		0x00 = Off
		0x01 = On
9N.	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.

Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet.

1.10.7 Kommando "GET BLOCKS LOCKED"

Mit diesem Kommando wird von der Steuerung überprüft, welche Speicherbereiche des ID-Tags schreibgeschützt sind.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x06	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xD1	Kommandocode (LSBy)
7	0x00	Nicht verwendet
8	STB	Blocknummer des ersten Blocks, der auf den Zustand "Block locked" überprüft werden soll. X = [0x0nn] Hinweise: nn darf nicht größer sein als die Modulgröße – 8 und nicht größer als die Anzahl der Blöcke des ID-Tags – 1.
9	0x00	Nicht verwendet
10	NOB	Anzahl der zu überprüfenden Blöcke [0x10xFF] Hinweise: Die Anzahl der Blöcke darf nicht (N-8) Bytes übersteigen. STB + NOB dürfen nicht die Anzahl der Blöcke des ID-Tags überschreiten.
11N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04 + X	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xD1	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	NOB	Anzahl der auf den Status "Block locked" (Block gesperrt) überprüften Blöcke. X = [0x1nn]
9	BS1	Status des Blocks mit Nummer STB: 0x0 = Block ist entriegelt 0x1 = Block ist verriegelt
9 + (X-1)	BSX	Status des Blocks mit Nummer STB+(X-1): 0x0 = Block ist entriegelt 0x1 = Block ist verriegelt,
(9+X)N.	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.

Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet

1.10.8 Kommando "GET DSFID"

Mit diesem Kommando wird der Datenstrukturformat-Identifier (DSFID) des ID-Tags von der Steuerung ausgelesen.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Steuerbyte 1
2	0x80 (1)	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x02	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xD2	Kommandocode (LSBy)
7N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xD2	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	DSFID	Datenstrukturformat-Identifier des ID-Tags
		[0x00xFF]
(9N)	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.

1.10.9 Kommando "GET AFI"

Mit diesem Kommando wird der Anwendungsfamilien-Identifier (AFI) des ID-Tags von der Steuerung ausgelesen.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x02	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xD3	Kommandocode (LSBy)
7N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xD3	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	AFI	Anwendungsfamilien-Identifier des ID-Tags
		[0x00xFF]
(9N)	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00

gesetzt.

1.10.10 Kommando "GET UID-RSSI"

Mit diesem Kommando werden der UID des ID-Tags und der RSSI-Wert des Lese-/Schreibkopfes von der Steuerung ausgelesen.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x02	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xCD	Kommandocode (LSBy)
7N.	0x00	Nicht verwendet

⁽²⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x08	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x0E	Antwortlänge (LSB). Fest eingestellt auf 14 Bytes, unabhängig von der UID-Länge.
5	0x62	Antwortcode (MSBy)
6	0xCD	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	0x06 / 0x0A	RSSI und UID-Datenlänge [6,10]
9	0x00	Nicht verwendet
10	RSSI	RSSI-Wert des ID-Tags. Zeigt die Qualität des empfangenen ID-Tag- Signals an. Je höher die Werte, desto besser ist der Empfang des ID- Tag-Signals. Wenn der Lese-/Schreibkopf keinen ID-Tag erkennt, wird dieses Datenfeld auf 0x00 gesetzt.
11X	UID	UID des ID-Tags mit einer Länger von 4/8/16/32 Bytes lesen. Nicht benutzte Bytes werden auf 0x00 gesetzt. Wenn der Lese-/Schreibkopf keinen ID-Tag erkennt, wird dieses Datenfeld auf 0x00 gesetzt.
11X.		
(X+1)N	0x00	Nicht verwendet

Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.
 Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet

1.10.11 Kommando "SET HF POWER LEVEL"

Mit diesem Kommando wird der HF-Leistungspegel des Lese-/Schreibkopfes von der Steuerung eingestellt.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x04	Kommandolänge (LSBy)
5	0x65	Kommandocode (MSBy)
6	0xD6	Kommandocode (LSBy)
7	0x00	Nicht verwendet
8	PWR	Im Lese-/Schreibkopf zu aktivierender HF-Leistungspegel [%] z.B. 0x32 = 50%
8N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04	Antwortlänge (LSBy)
5	0x65	Antwortcode (MSBy)
6	0xD6	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	PWR	Aktueller HF-Leistungspegel im Lese-/Schreibkopf [%]
		z.B. 0x32 = 50%
9N.	0x00	Nicht verwendet

Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.
 Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet

1.10.12 Kommando "SET BARGRAPH STATE"

Mit diesem Kommando wird der LED Balkenanzeige-Status des Lese-/Schreibkopfes von der Steuerung eingestellt.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x04	Kommandolänge (LSBy)
5	0x65	Kommandocode (MSBy)
6	0xD7	Kommandocode (LSBy)
7	0x00	Nicht verwendet
8	Status	Einstellung der LED Balkenanzeige des Lese-/Schreibkopfs 0x00 = Off 0x01 = On
9N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04	Antwortlänge (LSBy)
5	0x65	Antwortcode (MSBy)
6	0xD7	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	Status	Aktuelle Einstellung der LED Balkenanzeige des Lese-/Schreibkopfs 0x00 = Off 0x01 = On
9N.	0x00	Nicht verwendet

Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.
 Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet

1.10.13 Kommando "SET BLOCKS LOCKED"

Mit diesem Kommando wird ein Schreibschutz für einen bestimmten Arbeitsspeicherbereich des ID-Tags von der Steuerung eingerichtet.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis	
1	0x04	Steuerbyte 1	
2	0x80 ⁽¹⁾	Steuerbyte 2	
3	0x00	Kommandolänge (MSBy)	
4	0x06	Kommandolänge (LSBy)	
5	0x65	Kommandocode (MSBy)	
6	0xD8	Kommandocode (LSBy)	
7	0x00	Nicht verwendet	
8	STB	Blocknummer des ersten Blocks, der in den Zustand "Block locked" gesetzt werden soll. [0x0nn] Hinweis: nn darf nicht größer sein als die Anzahl der Blöcke des ID-Tags - 1.	
9	0x00	Nicht verwendet	
10	NOB	Anzahl der Blöcke, die in den Status "Block locked" versetzt werden sollen. [0x10xFF] Hinweis: STB + NOB dürfen nicht die Anzahl der Blöcke des ID-Tags überschreiten.	
11N.	0x00	Nicht verwendet	

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04	Antwortlänge (LSBy)
5	0x65	Antwortcode (MSBy)
6	0xD8	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	Status	0x0 = Verriegelung fehlgeschlagen
		0x1 = Verriegelung erfolgreich
9N.	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.

Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet.

1.10.14 Kommando "SET DEVICE RESET"

Mit diesem Kommando wird der LED Balkenanzeige-Status des Lese-/Schreibkopfes von der Steuerung ausgelesen.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x04	Kommandolänge (LSBy)
5	0x65	Kommandocode (MSBy)
6	0xD9	Kommandocode (LSBy)
7	0x00	Nicht verwendet
8	RDT	Restart Delay Time [ms*10]
		0x00 = Neustart der Auswerteeinheit ohne Verzögerung
		0x01.0xXX = Neustart der Auswerteeinheit innerhalb von XX * 10 ms
9N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04	Antwortlänge (LSBy)
5	0x65	Antwortcode (MSBy)
6	0xD9	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	CRT	Countdown Restart delay Time [ms*10] Wert wird von der in Byte RTD des SPS-Prozessdatenausgangsabbilds gesetzten"Wiedereinschaltzeit" dekrementiert auf 0x0. Anschließend wird eine Neustartsequenz ausgeführt.
9N.	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.

Bit TA = TR: Das Kommando wurde von der Auswerteeinheit abgearbeitet.

Hinweise:

Es genügt, dieses Kommando auf einem IO-Kanal auszuführen. Ist das Kommando einmal gestartet, werden die übrigen aktiven IO-Kanäle nicht im Prozessdateneingangsabbild aktualisiert.

1.10.15 Kommando "SET DSFID"

Mit diesem Kommando wird der Datenstrukturformat-Identifier (DSFID) des ID-Tags von der Steuerung geschrieben.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis	
1	0x04	Steuerbyte 1	
2	0x80 ⁽¹⁾	Steuerbyte 2	
3	0x00	Kommandolänge (MSBy)	
4	0x04	Kommandolänge (LSBy)	
5	0x62	Kommandocode (MSBy)	
6	0xDA	Kommandocode (LSBy)	
7	0x00	Nicht verwendet	
8	DSFID	Auf das ID-Tag zu schreibender Datenstrukturformat-Identifier	
		[0x00xFF]	
9N.	0x00	Nicht verwendet	

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xDA	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	DSFID	Datenstrukturformat-Identifier des ID-Tags (Echo des Kommandos) [0x00xFF]
9N.	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00 gesetzt.

1.10.16 Kommando "SET AFI"

Mit diesem Kommando wird der Anwendungsfamilien-Identifier (AFI) des ID-Tags von der Steuerung geschrieben.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x04	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xDB	Kommandocode (LSBy)
7	0x00	Nicht verwendet
8	AFI	Auf das ID-Tag zu schreibender Anwendungsfamilien-Identifier
		[0x00xFF]
7N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x04	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xDB	Antwortcode (LSBy)
7	0x00	Nicht verwendet
8	AFI	Anwendungsfamilien-Identifier des ID-Tags (Echo des Kommandos) [0x00xFF]
9N.	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00

gesetzt.

1.10.17 Kommando "SET DSFID LOCKED"

Mit diesem Kommando wird der Datenstrukturformat-Identifier (DSFID) des ID-Tags von der Steuerung vor Manipulationen geschützt.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Steuerbyte 1
2	0x80 ⁽¹⁾	Steuerbyte 2
3	0x00	Kommandolänge (MSBy)
4	0x02	Kommandolänge (LSBy)
5	0x62	Kommandocode (MSBy)
6	0xDC	Kommandocode (LSBy)
7N.	0x00	Nicht verwendet

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x02	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xDC	Antwortcode (LSBy)
7N.	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00

gesetzt.

1.10.18 Kommando "SET AFI LOCKED"

Mit diesem Kommando wird der Anwendungsfamilien-Identifier (AFI) des ID-Tags von der Steuerung vor Manipulationen geschützt.

SPS Prozessdatenausgangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis	
1	0x04	Steuerbyte 1	
2	0x80 ⁽¹⁾	Steuerbyte 2	
3	0x00	Kommandolänge (MSBy)	
4	0x02	Kommandolänge (LSBy)	
5	0x62	Kommandocode (MSBy)	
6	0xDD	Kommandocode (LSBy)	
7N.	0x00	Nicht verwendet	

⁽¹⁾ Bit TR muss auf NOT (TA) gesetzt sein, um das Kommando zu starten.

SPS Prozessdateneingangsabbild (Modul RWH_CMD)

Byte-Nr.	Inhalt	Hinweis
1	0x04	Statusbyte 1
2	0x80 ⁽¹⁾	Statusbyte 2
3	0x00	Antwortlänge (MSBy)
4	0x02	Antwortlänge (LSBy)
5	0x62	Antwortcode (MSBy)
6	0xDD	Antwortcode (LSBy)
7N.	0x00	Nicht verwendet

(1) Bit TA = NOT (TR): Kommandoausführung läuft. Bytes 3...N werden auf Voreinstellung 0x00

gesetzt.

2 Beispiele Datennachricht

In den folgenden Beispielen ist die Auswerteeinheit für 2 Lese-/Schreibköpfe auf Kanal IO-1 und Kanal IO-2 konfiguriert. Die Lese-/Schreibköpfe sind an beide Kanäle angeschlossen. Kanal 3 und Kanal 4 sind nicht angeschlossen.

Hinweis: Die in der Anzeige des Nutzdatenverkehrs angezeigten Werte sind hexadezimal dargestellt. **30** = 0x30 = 48 dezimal

2.1 Modul "RWH CMD", UID- und RSSI-Wert asynchron lesen

Das Beispiel zeigt zwei IO-Kanäle mit einer Länge von 26 Bytes pro Kanal.

2.1.1 Anzeige des Nutzdatenverkehrs

Letzte Antwort der Auswerteeinheit:

Hinweis: Die Auswertung der Antwort der Auswerteeinheit ist notwendig, um den Status von Bit TA in Byte 2 für Kanal IO-1 und Byte 28 für Kanal IO-2 im Prozessdateneingangsabbild darzustellen.

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: "Read UID of the ID tag" (UID des ID-Tags lesen) auf Kanal IO-1 und IO-2. Die TR-Bits beider Kanäle bleiben unverändert.

Von der Auswerteeinheit gesendete Antwort:

Auswerteeinheit: "Tag is in field" (Tag im Feld) mit RSSI-Wert und UID-Daten mit einer Länge von 8 Bytes von Kanal IO-1 und IO-2 senden.

2.1.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Diagnoseinformationen von Kanal IO-1 lesen, "Read UID of the ID tag" von Kanal IO-2. Modus durch Senden von Bit TR = NOT (TA) aktivieren.

Auswerteeinheit: Auf Kanal IO-1 lagen Diagnoseinformationen mit einem Element vor. Diagnose "Lese-/Schreibkopf funktioniert nicht, weil ein Time-out aufgetreten ist". Kanal IO-1 erfasst ein ID-Tag und verfügt über keine Diagnoseinformationen.

Hinweis:

Bevor der UID erneut ausgelesen werden kann, muss das Bit DR innerhalb des Steuerbytes zurückgesetzt werden.

Hier ein Beispiel dafür, wie das Bit DR auf beiden Kanälen zurückgesetzt werden kann

Steuerung: Anforderung "Diagnostics read" auf Kanal IO-1 und IO-2 entfernen. Modus durch Senden von Bit TR = NOT (TA) aktivieren.

2.2 Modul "RWH_CMD", Nutzdaten des ID-Tags synchron lesen

Das Beispiel zeigt zwei IO-Kanäle mit einer Länge von 26 Bytes pro Kanal.

2.2.1 Anzeige des Nutzdatenverkehrs

Letzte Antwort der Auswerteeinheit:

Hinweis: Die Auswertung der Antwort der Auswerteeinheit ist notwendig, um den Status von Bit TA in Byte 2 für Kanal IO-1 und Byte 28 für Kanal IO-2 im Prozessdateneingangsabbild darzustellen.

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: "Read User data of the ID tag" (Nutzdaten des ID-Tags lesen) auf Kanal IO-1 und IO-2.

Während der Abarbeitung des Kommandos von der Auswerteeinheit gesendete Antwort:

Auswerteeinheit: "Tag is in field" senden, Antwortdaten in Kanal IO-1 und IO-2 auf Voreinstellung gesetzt.

Von der Auswerteeinheit gesendete Antwort wenn das Kommando abgearbeitet wurde:

Auswerteeinheit: "Tag is in field" zusammen mit den von Kanal IO-1 und IO-2 gelesenen Nutzdaten senden.

2.2.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Diagnoseinformationen von Kanal IO-1 lesen, "Read UID of the ID tag" von Kanal IO-2. Modus durch Senden von Bit TR = NOT (TA) aktivieren.

Von der Auswerteeinheit gesendete Antwort wenn das Kommando abgearbeitet wurde:

Auswerteeinheit: Auf Kanal IO-1 lagen Diagnoseinformationen mit einem Element vor. Diagnose "Lese-/Schreibkopf funktioniert nicht, weil ein Time-out aufgetreten ist". Kanal IO-1 erfasst ein ID-Tag und verfügt über keine Diagnoseinformationen.

Hinweis:

Bevor die Nutzdaten erneut ausgelesen werden können, muss das Bit DR innerhalb des Steuerbytes zurückgesetzt werden.

Hier ein Beispiel dafür, wie das Bit DR auf beiden Kanälen zurückgesetzt werden kann:

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Anforderung "Diagnostics read" auf Kanal IO-1 und IO-2 entfernen. Modus "Read User data of the ID tag synchronously" (Nutzdaten des ID-Tags synchron lesen) durch Senden des Bits TR = NOT (TA) reaktivieren.

2.3 Modul "RWH CMD", Nutzdaten des ID-Tags asynchron lesen

Das Beispiel zeigt zwei IO-Kanäle mit einer Länge von 26 Bytes pro Kanal.

2.3.1 Anzeige des Nutzdatenverkehrs

Letzte Antwort der Auswerteeinheit:

Hinweis: Die letzte Antwort der Auswerteeinheit ist notwendig, um den Status von Bit TA in Byte 2 für Kanal IO-1 und Byte 28 für Kanal IO-2 im SPS-Prozessdateneingangsabbild darzustellen, damit die TR-Bits korrekt gesetzt werden können.

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: "Read User data of the ID tag asynchronously" (Nutzdaten des ID-Tags asynchron lesen) auf Kanal IO-1 und IO-2.

Auswerteeinheit: Kein ID-Tag auf Kanal IO-1 erkannt. Neues ID-Tag auf Kanal IO-2 erkannt, Nutzdaten gelesen.

...

Auswerteeinheit: Neues ID-Tag auf Kanal IO-1 erkannt, Nutzdaten gelesen. Die Daten auf Kanal IO-2 werden nicht geändert.

Hinweis: Solange das Kommando nicht beendet ist, können keine anderen Kommandos gestartet werden.

2.3.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Diagnoseinformationen von Kanal IO-1 lesen, "Read UID of the ID tag" von Kanal IO-2. Modus durch Senden von Bit TR = NOT (TA) aktivieren.

Von der Auswerteeinheit gesendete Antwort wenn das Kommando abgearbeitet wurde:

Auswerteeinheit: Auf Kanal IO-1 lagen Diagnoseinformationen mit einem Element vor. Diagnose "Lese-/Schreibkopf funktioniert nicht, weil ein Time-out aufgetreten ist". Kanal IO-1 erfasst ein ID-Tag und verfügt über keine Diagnoseinformationen.

Hinweis:

Bevor die Nutzdaten erneut ausgelesen werden können, muss das Bit DR innerhalb des Steuerbytes zurückgesetzt werden.

Hier ein Beispiel dafür, wie das Bit DR auf beiden Kanälen zurückgesetzt werden kann:

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Anforderung "Diagnostics read" auf Kanal IO-1 und IO-2 entfernen. Modus "Read User data of the ID tag asynchronously" durch Senden des Bits TR = NOT (TA) reaktivieren.

2.4 Modul "RWH_CMD", Nutzdaten des ID-Tags synchron schreiben

Das Beispiel zeigt zwei IO-Kanäle mit einer Länge von 26 Bytes pro Kanal.

2.4.1 Anzeige des Nutzdatenverkehrs

Letzte Antwort der Auswerteeinheit:

Hinweis: Die Auswertung der Antwort der Auswerteeinheit ist notwendig, um den Status von Bit TA in Byte 2 für Kanal IO-1 und Byte 28 für Kanal IO-2 im Prozessdateneingangsabbild darzustellen.

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Schreibt 4 Bytes unter Adresse 0x0008 in die Nutzdaten des ID-Tags auf Kanal IO-1 und 10 Bytes unter Adresse 0x0020 auf das ID-Tag auf Kanal IO-2

Während der Abarbeitung des Kommandos von der Auswerteeinheit gesendete Antwort:

Auswerteeinheit: "Tag is in field" senden, Antwortdaten in Kanal IO-1 und IO-2 auf Voreinstellung gesetzt.

Von der Auswerteeinheit gesendete Antwort wenn das Kommando abgearbeitet wurde:

Auswerteeinheit: "Tag is in field" zusammen mit den von Kanal IO-1 und IO-2 gelesenen Nutzdaten senden.

2.4.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Diagnoseinformationen von Kanal IO-1 lesen, "Read UID of the ID tag" von Kanal IO-2. Modus durch Senden von Bit TR = NOT (TA) aktivieren.

Von der Auswerteeinheit gesendete Antwort wenn das Kommando abgearbeitet wurde:

Auswerteeinheit: Auf Kanal IO-1 lagen Diagnoseinformationen mit einem Element vor. Diagnose "Lese-/Schreibkopf funktioniert nicht, weil ein Time-out aufgetreten ist". Kanal IO-1 erfasst ein ID-Tag und verfügt über keine Diagnoseinformationen.

Hinweis:

Bevor die Nutzdaten erneut ausgelesen werden können, muss das Bit DR innerhalb des Steuerbytes zurückgesetzt werden.

Hier ein Beispiel dafür, wie das Bit DR auf beiden Kanälen zurückgesetzt werden kann:

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Anforderung "Diagnostics read" auf Kanal IO-1 und IO-2 entfernen. Modus "Write User data to the ID tag" (Nutzdaten auf das ID-Tag schreiben) durch Senden des Bits TR = NOT (TA) reaktivieren.

2.5 Modul "RWH_CMD", Nutzdaten des ID-Tags asynchron schreiben

Das Beispiel zeigt zwei IO-Kanäle mit einer Länge von 26 Bytes pro Kanal.

2.5.1 Anzeige des Nutzdatenverkehrs

Letzte Antwort der Auswerteeinheit:

Hinweis: Die letzte Antwort der Auswerteeinheit ist notwendig, um den Status von Bit TA in Byte 2 für Kanal IO-1 und Byte 28 für Kanal IO-2 im SPS-Prozessdateneingangsabbild darzustellen, damit die TR-Bits korrekt gesetzt werden können.

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Schreibt 4 Bytes unter Adresse 0x0008 in die Nutzdaten des ID-Tags auf Kanal IO-1 und 10 Bytes unter Adresse 0x0020 auf das ID-Tag auf Kanal IO-2

Von der Auswerteeinheit gesendete Antwort:

Auswerteeinheit: "ID tag detected" (ID-Tag erkannt) auf Kanal IO-1, "No ID tag detected" (Kein ID-Tag erkannt) auf Kanal IO-2 senden. Die Antwortdaten in Kanal IO-1 und IO-2 werden auf die Voreinstellung gesetzt.

...

Von der Auswerteeinheit gesendete Antwort:

Auswerteeinheit: "Command processed" (Kommando abgearbeitet) auf Kanal IO-1, "ID tag detected" auf Kanal IO-2 senden.

...

Von der Auswerteeinheit gesendete Antwort:

Auswerteeinheit: "Command processed" auf Kanal IO-2 senden.

2.5.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Diagnoseinformationen von Kanal IO-1 lesen, "Read UID of the ID tag" von Kanal IO-2. Modus durch Senden von Bit TR = NOT (TA) aktivieren.

Von der Auswerteeinheit gesendete Antwort wenn das Kommando abgearbeitet wurde:

Auswerteeinheit: Auf Kanal IO-1 lagen Diagnoseinformationen mit einem Element vor. Diagnose "Lese-/Schreibkopf funktioniert nicht, weil ein Time-out aufgetreten ist". Kanal IO-1 erfasst ein ID-Tag und verfügt über keine Diagnoseinformationen.

Hinweis:

Bevor die Nutzdaten erneut ausgelesen werden können, muss das Bit DR innerhalb des Steuerbytes zurückgesetzt werden.

Hier ein Beispiel dafür, wie das Bit DR auf beiden Kanälen zurückgesetzt werden kann:

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Anforderung "Diagnostics read" auf Kanal IO-1 und IO-2 entfernen. Modus "Write User data to the ID tag asynchronously" durch Senden des Bits TR = NOT (TA) reaktivieren.

2.6 Modul "RWH CMD", Nutzdaten des ID-Tags verifiziert, synchron schreiben

Das Beispiel zeigt zwei IO-Kanäle mit einer Länge von 26 Bytes pro Kanal.

2.6.1 Anzeige des Nutzdatenverkehrs

Letzte Antwort der Auswerteeinheit:

Hinweis: Die Auswertung der Antwort der Auswerteeinheit ist notwendig, um den Status von Bit TA in Byte 2 für Kanal IO-1 und Byte 28 für Kanal IO-2 im Prozessdateneingangsabbild darzustellen.

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Schreibt verifiziert 4 Bytes unter Adresse 0x0008 in die Nutzdaten des ID-Tags auf Kanal IO-1 und 10 Bytes unter Adresse 0x0020 auf das ID-Tag auf Kanal IO-2

Während der Abarbeitung des Kommandos von der Auswerteeinheit gesendete Antwort:

Auswerteeinheit: "Tag is in field" senden, Antwortdaten in Kanal IO-1 und IO-2 auf Voreinstellung gesetzt.

Von der Auswerteeinheit gesendete Antwort wenn das Kommando abgearbeitet wurde:

Auswerteeinheit: "Tag is in field" zusammen mit den von Kanal IO-1 und IO-2 gelesenen Nutzdaten senden.

2.6.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Diagnoseinformationen von Kanal IO-1 lesen, "Read UID of the ID tag" von Kanal IO-2. Modus durch Senden von Bit TR = NOT (TA) aktivieren.

Von der Auswerteeinheit gesendete Antwort wenn das Kommando abgearbeitet wurde:

Auswerteeinheit: Auf Kanal IO-1 lagen Diagnoseinformationen mit einem Element vor. Diagnose "Lese-/Schreibkopf funktioniert nicht, weil ein Time-out aufgetreten ist". Kanal IO-1 erfasst ein ID-Tag und verfügt über keine Diagnoseinformationen.

Hinweis:

Bevor die Nutzdaten erneut ausgelesen werden können, muss das Bit DR innerhalb des Steuerbytes zurückgesetzt werden.

Hier ein Beispiel dafür, wie das Bit DR auf beiden Kanälen zurückgesetzt werden kann:

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Anforderung "Diagnostics read" auf Kanal IO-1 und IO-2 entfernen. Modus "Write verified User data to the ID tag" (Nutzdaten verifiziert auf das ID-Tag schreiben) durch Senden des Bits TR = NOT (TA) reaktivieren.

2.7 Modul "RWH CMD", Kommandos synchron ausführen

Das Beispiel zeigt zwei IO-Kanäle mit einer Länge von 26 Bytes pro Kanal.

2.7.1 Anzeige des Nutzdatenverkehrs

Letzte Antwort der Auswerteeinheit:

Hinweis: Die letzte Antwort der Auswerteeinheit ist notwendig, um den Status von Bit TA in Byte 2 für Kanal IO-1 und Byte 28 für Kanal IO-2 im SPS-Prozessdateneingangsabbild darzustellen, damit die TR-Bits korrekt gesetzt werden können.

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Kommando "Get Blocks locked" (Blöcke sperren) des ID-Tags von Block Nummer 6 bis Block Nummer 15 auf Kanal IO-1 senden. Keine Kommandoausführung auf Kanal IO-2.

Von der Auswerteeinheit gesendete Antwort:

Auswerteeinheit: "ID tag detected" auf Kanal IO-1 senden, während das Kommando abgearbeitet wird, werden die Antwortdaten in Kanal IO-1 auf Voreinstellung gesetzt. "No ID tag detected" auf Kanal IO-2.

2.7.2 Anzeige des Nutzdatenverkehrs, Diagnose lesen

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Kommando "Get Ident diagnosis" von Kanal IO-1 senden. Keine Kommandoausführung auf Kanal IO-2.

Von der Auswerteeinheit gesendete Antwort:

Auswerteeinheit: Auf Kanal IO-1 lagen Diagnoseinformationen mit einem Element vor. Diagnose "Lese-/Schreibkopf funktioniert nicht, weil ein Time-out aufgetreten ist". "No ID tag detected" auf Kanal IO-2.

Hinweis:

Bevor die Nutzdaten erneut ausgelesen werden können, muss das Bit DR innerhalb des Steuerbytes zurückgesetzt werden.

Hier ein Beispiel dafür, wie das Bit DR auf beiden Kanälen zurückgesetzt werden kann:

Von der Steuerung gesendete Kommando-Anforderung:

Steuerung: Anforderung "Diagnostics read" auf Kanal IO-1 und IO-2 entfernen. Modus "Read User data of the ID tag asynchronously" durch Senden des Bits TR = NOT (TA) reaktivieren.

3 Fehlercodes der Auswerteeinheit

Fehlercodes werden mit Bit "Diag" innerhalb des Statusbytes der Antwortdaten der Auswerteeinheit angezeigt.

Wenn mehr Diagnosemeldungen verfügbar sind, kann der Kanal bis zu 4 Diagnosen gleichzeitig übertragen. Die

Hardware-Diagnosemeldungen, die geräterelevant sind, werden durch das Diag-Bit auf allen Kanälen angezeigt.

Hinweis: Inaktive Kanäle können nur Hardware-Diagnoseereignisse übertragen.

Beispiel:

Kommandoantwort der Auswerteeinheit für das Kommando "DR" C001**F4FE9000**

3.1 Fehlergruppe ID-Tag (F1FE)

Fehlergruppe	Fehlercode	Beschreibung
ID-Tag	F1FE0200	Fehler bei der Erfassung des ID-Tags oder Fehler in der Kommunikation von Schreib-/Lesekopf und ID-Tag
ID-Tag	F1FE0300	Adresse oder Kommando passt nicht zu den ID- Tageigenschaften, Speichergröße ungültig
ID-Tag	F1FE0400	ID-Tag ist defekt, ID-Tag oder Batterie austauschen
ID-Tag	F1FE0500	Überlauf des ID-Tagspeichers. UID > 16 Bytes
ID-Tag	F1FE0900	Kommando wird nicht von dem ID-Tag unterstützt
ID-Tag	F1FE0A00	Zugriffsfehler, z.B. Block verriegelt. Siehe ISO18000-x
ID-Tag	F1FE0B00	Allgemeiner ID-Tag-Fehler, der nicht ausführlich spezifiziert wird
ID-Tag	F1FE0C00	Unbekannter interner Fehler

3.2 Fehlergruppe Auswerteeinheit (F4FE)

Fehlergruppe	Fehlercode	Beschreibung
Auswerteeinheit	F4FE0100	Fehler in der Spannungsversorgung
Auswerteeinheit	F4FE0200	Hardware-Fehler, Kurzschluss und Überlast
Auswerteeinheit	F4FE0201	Zulässige Temperatur überschritten
Auswerteeinheit	F4FE0300	Lese-/Schreibkopf funktioniert nicht, weil ein Time-out aufgetreten ist
Auswerteeinheit	F4FE0400	Kommandopufferüberlauf IO-Serverschlange (interner Fehler)
Auswerteeinheit	F4FE0500	Überlauf des Datenpuffers, Speicheraufteilung (interner Fehler)
Auswerteeinheit	F4FE0600	Kommando wird in diesem Modus nicht unterstützt (interner Fehler)
Auswerteeinheit	F4FE8100	IO-Link-Master inaktiv, z.B. nach dem Einschalten (interner Fehler)
Auswerteeinheit	F4FE8200	Interner IO-Port Server Fehler (interner Fehler)
Auswerteeinheit	F4FE8300	IO-Port ungültiger Parameter, z.B. Kanal (interner Fehler)
Auswerteeinheit	F4FE8400	Herstellerspezifischer Fehler beim Kommando PUT
Auswerteeinheit	F4FE8500	IO-Port-Server setzt Kanal zurück
Auswerteeinheit	F4FE8600	Daten für verzögerte C/Q-Eingänge oder verzögerten UID nicht verfügbar (interner Fehler)
Auswerteeinheit	F4FE8700	IO-Port-Kanal-Neukonfiguration derzeit noch nicht erlaubt (interner Fehler)
Auswerteeinheit	F4FE8800	IO-Port Parameter-Selector-Flag nicht gesetzt (interner Fehler)
Auswerteeinheit	F4FE8900	Allgemeiner Fehler vom ID-Link-Master erkannt
Auswerteeinheit	F4FE8A00	CRC-Fehler vom ID-Link-Master erkannt
Auswerteeinheit	F4FE8B00	"Object not found" (Objekt nicht gefunden) von ID-Link-Master erkannt
Auswerteeinheit	F4FE8C00	Größe der zu lesenden/schreibenden Daten innerhalb des Kommandos ungültig
Auswerteeinheit	F4FE8D00	IO-Port-Kanal wurde neu konfiguriert
Auswerteeinheit	F4FE8E00	Lese-/Schreibkopf konnte das Kommando nicht verarbeiten, z.B. Lese-/Schreiblänge überschritten, ID-Tag-Speicherfehler, auf verriegelten Block schreiben
Auswerteeinheit	F4FE8F00	ID-Tagdatenlänge überschritten (Blockgröße * Blocknummer)
Auswerteeinheit	F4FE9001	Kurzschluss am Ausgangstreiber erkannt
Auswerteeinheit	F4FE9002	Unterspannung am Ausgangstreiber erkannt
Auswerteeinheit	F4FE9003	Überlast am Ausgangstreiber erkannt
Auswerteeinheit	F4FE9004	Übertemperatur am Ausgangstreiber erkannt
Auswerteeinheit	F4FE9005	Kabelbruch zum Lese-/Schreibkopf
Auswerteeinheit	F4FE9006	Oberer Grenzwert am Ausgangstreiber erreicht
Auswerteeinheit	F4FE9007	Unterspannung an C/Qo erkannt
Auswerteeinheit	F4FE9008	Schreib-/Lesekopf-Fehler erkannt
Auswerteeinheit	F4FE9009	Lese-/Schreibkopf-Kommunikationsfehler
Auswerteeinheit	F4FE900A	I ² C-Kommunikationsfehler (interner Fehler)
Auswerteeinheit	F4FE900B	I ² C-Kommunikations-Paritätsfehler (interner Fehler)
Auswerteeinheit	F4FE900C	Befehl zurückgewiesen, weil das Antennenfeld abgeschaltet ist
Auswerteeinheit Auswerteeinheit	F4FE900D F4FE900E	Interne Daten des PROFINET-Stacks korrupt (interner Fehler) Schreib-/Lesekopf unterstützt dieses Objekt nicht
Auswerteeinheit	F4FE9401	Frontend-Fehler vom Lese-/Schreibkopf erkannt
Auswerteeinheit	F4FE9401	Allgemeiner Fehler vom Lese-/Schreibkopf erkannt
Auswerteeinheit	F4FE9403	ID-Link-Fehler vom Lese-/Schreibkopf erkannt
Auswerteeinheit	F4FE9404	Pufferüberlauf-Fehler vom Lese-/Schreibkopf erkannt
Auswerteeinheit	F4FEA000	Ungültiger Kommandocode erkannt
Auswerteeinheit	F4FEA001	Ungültiger Kommandoparameter erkannt
aowortoonnioit	1 11 11 100 1	Singurage Normandoparameter entarm

Aus	werteeinheit	F4FEA002	Ungültige Kommandodaten erkannt
Aus	werteeinheit	F4FEA003	Ticketnummer oder Ticketlänge erkannt

Fehlergruppe	Fehlercode	Beschreibung
Auswerteeinheit	F4FEA100	Konfiguration der Auswerteeinheit fehlgeschlagen (CR1 / CR2)
Auswerteeinheit	F4FEA200	Konfiguration des IO-Kanals fehlgeschlagen (interner Fehler)
Auswerteeinheit	F4FEA300	Lesen der Eingänge C/Qi/IQ fehlgeschlagen (interner Fehler)
Auswerteeinheit	F4FEA400	Schreiben von Ausgang C/Qo fehlgeschlagen (interner Fehler)
Auswerteeinheit	F4FEA500	Einstellen des Hochstroms fehlgeschlagen (interner Fehler)
Auswerteeinheit	F4FEA600	Lesen von UID fehlgeschlagen (interner Fehler)
Auswerteeinheit	F4FEA700	Lesen des Nutzdatenspeichers des ID-Tags fehlgeschlagen (interner Fehler)
Auswerteeinheit	F4FEA800	Schreiben in den Arbeitsspeicher des ID-Tags fehlgeschlagen, Kommando WU (interner Fehler)
Auswerteeinheit	F4FEA900	Schreiben in den Arbeitsspeicher des ID-Tags fehlgeschlagen, Kommando WV (interner Fehler)
Auswerteeinheit	F4FEAA00	Verifizierung des Arbeitsspeichers des ID-Tags fehlgeschlagen, Kommandos "WV" (interner Fehler)
Auswerteeinheit	F4FEAB00	Ein-/Ausstellen des Antennenfelds fehlgeschlagen, Kommando "AN"
Auswerteeinheit	F4FEAC00	ID-Link-Master konnte nicht die ID-Tag-Blöcke lesen (interner Fehler)

3.3 Fehlergruppe Kommunikation Benutzer – Auswerteeinheit (F5FE)

Fehlergruppe	Fehlercode	Beschreibung
Kommunikation Benutzer - Auswerteeinheit	F5FE0800	Kommando von einem anderen Benutzer wird ausgeführt (von Auswerteeinheit angezeigt)
Kommunikation Benutzer - Auswerteeinheit	F5FE8000	Mehr als ein Kommando von Benutzer angefordert (DR, WR, Diag)
Kommunikation Benutzer - Auswerteeinheit	F5FE8100	Es wird versucht, das Kommando für synchrones Lesen oder Schreiben abzubrechen
Kommunikation Benutzer - Auswerteeinheit	F5FE8300	Der Kommandoparameter für asynchrones Lesen ist ungültig
Kommunikation Benutzer - Auswerteeinheit	F5FE8400	Ungültige Kommando-Anforderung in Modul RWH_CMD erkannt

4 Glossar

Definition	Hinweis
Antenne	In einen Lese-/Schreibkopf verbaute RFID-Antenne
Asynchron	Daten der Kommandoantwort werden aktualisiert, wenn die Auswerteeinheit eine Statusänderung des ID-Tags von "not present" auf "present" oder umgekehrt erkennt.
Blockgröße	Größe eines Blocks des ID-Tags, z.B. 4/8/32 Bytes
Verbindung	Beschreibt die logische Verbindung zwischen zwei Objekten, z.B. Steuerung und Slave
Steuerung	Siehe Definition SPS
Notsystem	Webserver mit reduzierter Funktionalität um die Firmware der Auswerteeinheit herunterzuladen
Auswerteeinheit	RFID-Identifikationseinheit DTE100, DTE101, DT102, DTE103, DTE104
Hexadezimal	Zahlenformat, bei dem 16 Werte benutzt werden, um einen Zahlenwert darzustellen. 09, A, B, C, D, E, F
ID-Tag, Transponder	RFID ID-Tag, z.B. E80360, E80370
N	Gewählte Modulgröße des IO-Kanals
PC	Personal Computer, e.g. Desktop-PC, Notebook
PermData	Nichtflüchtiger Datenbereich der Auswerteeinheit zum Speichern von benutzerspezifischen Einstellungen, z.B. Feldbus-Parameter, Adresseinstellungen etc.
SPS	Speicherprogrammierbare Steuerung, z.B. Allen Bradley Compact Logix, Beckhoff CX5020, Siemens CPU 315-2 DP/PN
Prozessdateneingangsabbild	Datenbereich, in dem die SPS die Ausgänge der externen Peripheriegeräte lesen kann. (%IBx)
Prozessdatenausgangsabbild	Datenbereich, in dem die SPS in die Eingänge der externen Peripheriegeräte schreiben kann. (%QBx)
Lese-/Schreibkopf	RFID Schreib-/Lesekopf, z.B. ANT411, ANT513
RSSI	Receive Signal Strength Indicator. Zeigt die Qualität des empfangenen ID- Tag-Signals an. Je höher die Werte, desto besser ist der Empfang des ID- Tag-Signals.
Synchron	Die Daten der Kommandoantwort werden sofort auf Basis des aktuell erfassten Status des ID-Tags aktualisiert.
Nutzdaten	Datenbereich des ID-Tags, der beliebig gelesen und beschrieben werden kann
Webclient	PC-Programm, um "http protocol" (http-Protokoll)-Anforderungen zu senden, z.B. Firefox, Internet Explorer
Webserver	Eingebauter "http protocol"-Server, um http-Anfragen von einem PC zu verarbeiten