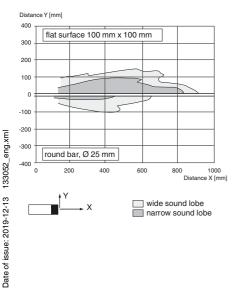


Model Number

UB500-18GM75-E4-V15


Single head system

Features

- Switch output
- 5 different output functions can be
- Selectable sound lobe width
- **Program input**
- Synchronization options
- **Deactivation option**
- **Temperature compensation**
- Very small unusable area

Diagrams

Characteristic response curve

Technical data

General specifications	
Sensing range	30 500 mm
Adjustment range	50 500 mm
Dead band	0 30 mm
Standard target plate	100 mm x 100 mm
Transducer frequency	approx. 380 kHz
Response delay	approx. 50 ms
Indicators/aparating maans	

ators/operating means

Operating voltage U_B

LED yellow indication of the switching state flashing: program function object detected

I FD red

solid red: Error red, flashing: program function, object not detected

Electrical specifications

No-load supply current I₀ ≤ 50 mA

Input/Output

1 synchronous connection, bi-directional Synchronization

0-level: -U_B...+1 V 1-level: +4 V...+U_B input impedance: > 12 k Ω

10 ... 30 V DC , ripple 10 %SS

synchronization pulse: ≥ 100 μs, synchronization interpulse

period: ≥ 2 ms

Synchronization frequency Common mode operation ≤ 95 Hz

Multiplex operation \leq 95 Hz / n, n = number of sensors, n \leq 5

Input

Input type 1 program input, operating range 1: -U $_{\rm B}$... +1 V, operating range 2: +4 V ...

input impedance: > 4.7 k Ω ; program pulse: \geq 1 s Output

Output type 1 switch output NPN Normally open/closed , programmable Rated operating current I_e 200 mA, short-circuit/overload protected

Voltage drop U_d ≤3 V Repeat accuracy < 1 % Switching frequency f max. 8 Hz

Range hysteresis H 1 % of the set operating distance Temperature influence ± 1.5 % of full-scale value

Ambient conditions

-25 ... 70 °C (-13 ... 158 °F) Ambient temperature -40 ... 85 °C (-40 ... 185 °F) Storage temperature

Mechanical specifications

Connection type Connector plug M12 x 1, 5-pin

Degree of protection IP67

Material Housing brass, nickel-plated

Transducer epoxy resin/hollow glass sphere mixture; foam polyurethane,

cover PBT

60 g

Factory settings Output Switch point A1: 50 mm

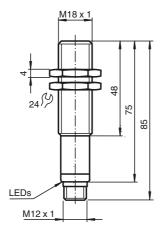
Switch point A2: 500 mm output function: Window mode output behavior: NO contact

Beam width wide

Compliance with standards and directives

Standard conformity

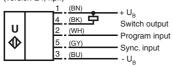
Standards EN 60947-5-2:2007+A1:2012 IEC 60947-5-2:2007 + A1:2012


Approvals and certificates

cULus Listed, General Purpose **UL** approval CSA approval cCSAus Listed, General Purpose

CCC approval CCC approval / marking not required for products rated ≤36 V

Release date: 2019-12-13 15:25


Dimensions

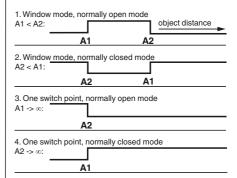
Electrical Connection

Standard symbol/Connections:

(version E4, npn)

Wire colors in accordance with EN 60947-5-2.

Pinout



Wire colors in accordance with EN 60947-5-2

1	BN	(brown)
2	WH	(white)
3	BU	(blue)
4	BK	(black)
5	GY	(gray)

Additional Information

Programmable output modes

5. A1 -> ∞, A2 -> ∞: Object presence detection mode Object detected: Switch output closed No object detected: Switch output open

Accessories

UB-PROG2

Programming unit

OMH-04

Mounting aid for round steel ø 12 mm or sheet 1.5 mm ... 3 mm

BF 18

Mounting flange, 18 mm

BF 18-F

Plastic mounting adapter, 18 mm

BF 5-30

Universal mounting bracket for cylindrical sensors with a diameter of 5 ... 30 mm

UVW90-K18

Ultrasonic -deflector

V15-G-2M-PVC

Female cordset, M12, 5-pin, PVC cable

M18K-VE

Description of Sensor Functions

Programming procedure

The sensor features a programmable switch output with two programmable switch points. Programming the switch points and the operating mode is done by applying the supply voltage $-U_B$ or $+U_B$ to the Teach-In input. The supply voltage must be applied to the Teach-In input for at least 1 s. LEDs indicate whether the sensor has recognized the target during the programming procedure.

Note:

Switching points may only be specified directly after Power on. A time lock secures the adjusted switching points against unintended modification 5 minutes after Power on. To modify the switching points later, the user may specify the desired values only after a new Power On.

Note:

If a programming adapter UB-PROG2 is used for the programming procedure, button A1 is assigned to -UB and button A2 is assigned to +UB.

Programming of the switch output

Window Modes

Normally open (NO) output

- 1. Place the target at the near end of the desired switch window
- 2. Program the window boundary by applying -U_B to the Teach-In input (yellow LED flashes)
- 3. Disconnect the Teach-In input from $-U_B$ to save the switch point
- 4. Place the target at the far end of the desired switch window
- 5. Program the window boundary by applying +U_B to the Teach-In input (yellow LED flashes)
- 6. Disconnect the Teach-In input from +U_B to save the switch point

Normally closed (NC) output

- 1. Place the target at the near end of the desired switch window
- 2. Program the window boundary by applying +U_B to the Teach-In input (yellow LED flashes)
- 3. Disconnect the Teach-In input from +U_B to save the switch point
- 4. Place the target at the far end of the desired switch window
- 5. Program the window boundary by applying -U_B to the Teach-In input (yellow LED flashes)
- 6. Disconnect the Teach-In input from -UB to save the switch point

Switch Point Modes

133052_eng.xml

Date of issue: 2019-12-13

2019-12-13 15:25

Release date:

Normally open (NO) output

- 1. Place the target at the desired switch point position
- 2. Program the switch point by applying $+U_B$ to the Teach-In input (yellow LED flashes)
- 3. Disconnect the Teach-In input from +U_B to save the switch point
- 4. Cover the sensor face with hand or remove all objects from sensing range
- 5. Apply -U_B to the Teach-In input (red LED flashes)
- 6. Disconnect the Teach-In input from -U_B to save the setting

Normally closed (NC) output

- 1. Place the target at the desired switch point position
- 2. Program the switch point by applying -U_B to the Teach-In input (yellow LED flashes)
- 3. Disconnect the Teach-In input from -U_B to save the switch point
- 4. Cover the sensor face with hand or remove all objects from sensing range
- 5. Apply +U_B to the Teach-In input (red LED flashes)
- 6. Disconnect the Teach-In input from +U_B to save the setting

Object Detection Mode

- 1. Cover the sensor face with hand or remove all objects from sensing range
- 2. Apply -U_B to the Teach-In input (red LED flashes)
- 3. Disconnect the Teach-In input from -UB to save the setting
- 4. Apply +U_B to the Teach-In input (red LED flashes)
- 5. Disconnect the Teach-In input from -UB to save the setting

Adjusting the sound cone characteristics:

The ultrasonic sensor enables two different shapes of the sound cone, a wide angle sound cone and a small angle sound cone.

Refer to "General Notes Relating to Pepperl+Fuchs Product Information"

1. Small angle sound cone

- switch off the power supply
- connect the Teach-In input wire to -U_B
- switch on the power supply
- the red LED flashes once with a pause before the next.
- yellow LED: permanently on: indicates the presence of an object or disturbing object within the sensing range

· disconnect the Teach-In input wire from -UB and the changing is saved

2. Wide angle sound cone

- switch off the power supply
- connect the Teach-In input wire with +U_B
- switch on the power supply
- the red LED double-flashes with a long pause before the next.
- yellow LED: permanently on: indicates an object or disturbing object within the sensing range
- disconnect the Teach-In input wire from +U_B and the changing is saved

Factory settings

See technical data.

Display

The sensor provides LEDs to indicate various conditions.

	Red LED	Yellow LED
During Normal operation		
Proper operation	Off	Switching state
Interference (e.g. compressed air)	On	remains in previous state
During sensor programming		
Object detected	Off	Flashes
No object detected	Flashes	Off
Object uncertain (programming invalid)	On	Off

Synchronization

This sensor features a synchronization input for suppressing ultrasonic mutual interference ("cross talk"). If this input is not connected, the sensor will operate using internally generated clock pulses. It can be synchronized by applying an external square wave. The pulse duration must be \geq 100 μ s. Each falling edge of the synchronization pulse triggers transmission of a single ultrasonic pulse. If the synchronization signal remains low for \geq 1 second, the sensor will revert to normal operating mode. Normal operating mode can also be activated by opening the signal connection to the synchronization input (see note below).

If the synchronization input goes to a high level for > 1 second, the sensor will switch to standby mode. In this mode, the outputs will remain in the last valid output state.

Note:

If the option for synchronization is not used, the synchronization input has to be connected to ground (0 V) or the sensor must be operated via a V1 cordset (4-pin).

The synchronization function cannot be activated during programming mode and vice versa.

The following synchronization modes are possible:

- 1. Several sensors (max. number see technical data) can be synchronized together by interconnecting their respective synchronization inputs. In this case, each sensor alternately transmits ultrasonic pulses in a self multiplexing mode. No two sensors will transmit pulses at the same time (see note below).
- 2. Multiple sensors can be controlled by the same external synchronization signal. In this mode the sensors are triggered in parallel and are synchronized by a common external synchronization pulse.
- 3. A separate synchronization pulse can be sent to each individual sensor. In this mode the sensors operate in external multiplex mode (see note below).
- 4. A high level (+U_B) on the synchronization input switches the sensor to standby mode.

Note:

Sensor response times will increase proportionally to the number of sensors that are in the synchronization string. This is a result of the multiplexing of the ultrasonic transmit and receive signal and the resulting increase in the measurement cycle time.

Installation conditions

If the sensor is installed at places, where the environment temperature can fall below 0 °C, for the sensors fixation, one of the mounting flanges BF18, BF18-F or BF 5-30 must be used.

In case of direct mounting of the sensor in a through hole using the steel nuts, it has to be fixed at the middle of the housing thread. If a fixation at the front end of the threaded housing is required, plastic nuts with centering ring (accessories) must be used.