

Bedienungsanleitung Elektronischer Füllstandsensor LR2350



# Inhalt

| 1  | Vorbemerkung                                    | 4          |
|----|-------------------------------------------------|------------|
|    | 1.1 Verwendete Symbole                          | 4          |
| 2  | Sicherheitshinweise                             | 4          |
| 3  | Lieferumfang                                    | 5          |
| 4  | Schnelleinstieg                                 | 5          |
| 5  | Bestimmungsgemäße Verwendung                    | 6          |
|    |                                                 | 1          |
| 6  | Funktion                                        | 7          |
|    | 6.1 Messprinzip                                 | )<br>0     |
|    | 6.2 1 Anzeigefunktionen                         | ٥<br>8     |
|    | 6.2.2 Analogfunktion                            | 8          |
|    | 6.2.3 Schaltfunktionen                          | .10        |
|    | 6.2.4 Dämpfungsfunktion                         | . 11       |
|    | 6.2.5 Definierter Zustand im Fehlerfall         | . 11       |
|    | 6.2.6 IO-Link                                   | .12        |
|    | 6.2.7 Simulationsfunktionen                     | .12        |
| 7  | Montage                                         | .12        |
|    | 7.1 Einbauort / Einbauumgebung                  | .12        |
|    | 7.1.1 Hinweise zum Behälter-Abgleich            | .16        |
|    | 7.2 Montage der Sonde                           | .17        |
|    | 7.3 Kürzen der Sonde, Bestimmen der Sondenlänge | .18        |
|    | 7.4 EINDAU des Gerals                           | . 19<br>10 |
|    | 7.4.1 Einbau in geschlossene Denalter           | . 19<br>20 |
|    | 7.4.3 Einbau in Kunststoffbehälter              | .20        |
| 8  | Elektrischer Anschluss                          | .22        |
| 9  | Bedien- und Anzeigeelemente                     | .23        |
| 1( | ) Menü                                          | .24        |
|    | 10.1 Menüstruktur                               | .24        |
|    | 10.2 Erläuterung zum Menü                       | .26        |
|    | 10.2.1 Hauptmenü [I]                            | .26        |

| 10.2.2 Ebene EF (Erweiterte Funktionen) [II]                           | 26       |
|------------------------------------------------------------------------|----------|
| 10.2.3 Ebene CFG (Konfiguration) [III]                                 | 27       |
| 10.2.4 Ebene ENV (Environment (Umgebung)) [IV]                         | 27       |
| 10.2.5 Ebene SIM (Simulation) [V]                                      | 27       |
| 11 Parametrieren                                                       | 28       |
| 11 1 Parametriervorgang allgemein                                      | 20<br>28 |
| 11.2 Fretinbetriebnahme (Gerät im Auslieferungszustand)                | 20<br>20 |
| 11.2 Listinbethebilanne (Gerat in Ausilererungszustand)                | 30 DE    |
| 11.2.2 Finstellen auf das Medium                                       |          |
| 11.2.2 Ensienen auf uas meulum<br>11.2.3 Rehälter_Δhaleich durchführen |          |
| 11.2.5 Denaler-Abyleich durchluhren                                    | 32       |
| 11 / Ausgangssignale einstellen                                        | 32       |
| 11 4 1 Ausgangssignate ciristenen                                      | 32       |
| 11.4.2 Ausgangsfunktion für OLIT2 festlegen                            |          |
| 11.4.3 Schaltgrenzen festlegen (Hysteresefunktion)                     |          |
| 11 4 4 Analogsignal skalieren                                          |          |
| 11.4.5 Schaltgrenzen festlegen (Fensterfunktion)                       |          |
| 11 4 6 Schaltverzögerung für Schaltausgänge einstellen                 | 34       |
| 11.4.7 Rückschaltverzögerung für Schaltausgänge einstellen             |          |
| 11.4.8 Verhalten der Ausgänge im Fehlerfall festlegen                  |          |
| 11.4.9 Schaltlogik für die Schaltausgänge festlegen                    |          |
| 11.4.10 Dämpfung für das Messsignal festlegen                          |          |
| 11.4.11 Verzögerungszeit für den Fehlerfall einstellen                 |          |
| 11.5 Alle Parameter auf Werkseinstellung zurücksetzen                  |          |
| 11.6 Grundeinstellungen ändern                                         |          |
| 11.6.1 Sondenlänge neu eingeben                                        |          |
| 11.6.2 Einstellen auf anderes Medium                                   |          |
| 11.7 Simulation                                                        |          |
| 11.7.1 Simulationswert einstellen                                      |          |
| 11.7.2 Simulationszeit einstellen                                      |          |
| 11.7.3 Simulation ein- / ausschalten                                   |          |
| 12 Retrieh                                                             | 37       |
| 12 1 Retriebsanzeigen                                                  |          |
| 12.7 Eutropounzoigen<br>12.7 Finstellung der Parameter ablesen         |          |
| 12.2 Wechsel der Anzeigeeinheit im Retriehsmodus                       | 38       |
| 12.4 Fehleranzeigen                                                    |          |
|                                                                        |          |

| 12.5 Ausgangsverhalten in verschiedenen Betriebszuständen |          |
|-----------------------------------------------------------|----------|
| 13 Technische Daten                                       |          |
| 14 Wartung / Transport<br>14.1 Transport                  | 40<br>40 |
| 15 Werkseinstellung                                       | 41       |

# 1 Vorbemerkung

# 1.1 Verwendete Symbole

- Handlungsanweisung
- > Reaktion, Ergebnis
- [...] Bezeichnung von Tasten, Schaltflächen oder Anzeigen

# $\rightarrow$ Querverweis

- Wichtiger Hinweis
  - Fehlfunktionen oder Störungen sind bei Nichtbeachtung möglich.

|   | 9  |  |
|---|----|--|
|   | 51 |  |
| L |    |  |

Information

Ergänzender Hinweis.

# 2 Sicherheitshinweise

- Lesen Sie vor der Inbetriebnahme des Gerätes dieses Dokument. Vergewissern Sie sich, dass sich das Produkt uneingeschränkt für die betreffenden Applikationen eignet.
- Die Missachtung von Anwendungshinweisen oder technischen Angaben kann zu Sach- und/oder Personenschäden führen.
- Unsachgemäßer oder nicht bestimmungsgemäßer Gebrauch können zu Funktionsstörungen des Gerätes oder zu unerwünschten Auswirkungen in Ihrer Applikation führen. Deshalb dürfen Montage, elektrischer Anschluss, Inbetriebnahme, Bedienung und Wartung des Gerätes nur durch ausgebildetes, vom Anlagenbetreiber autorisiertes Fachpersonal durchgeführt werden.
- Um den einwandfreien Zustand des Gerätes f
  ür die Betriebszeit zu gew
  ährleisten, ist es notwendig, das Ger
  ät nur f
  ür Messstoffe einzusetzen, gegen die die prozessber
  ührenden Materialien hinreichend best
  ändig sind (→ Technische Daten).

- Die Verantwortung, ob das Gerät f
  ür den jeweiligen Verwendungszweck in Frage kommt, liegt beim Betreiber. Der Hersteller 
  übernimmt keine Haftung f
  ür Folgen von Fehlgebrauch durch den Betreiber.
- Eine unsachgemäße Installation und Bedienung der Geräts führt zum Verlust der Gewährleistungsansprüche
- In Haushaltsumgebungen kann das Gerät Rundfunkstörungen verursachen. Sollten Störungen auftreten, muss der Anwender durch geeignete Ma
  ßnahmen f
  ür Abhilfe sorgen.
- Das Gerät entspricht der Norm EN 61000-6-4 und ist ein Produkt der Klasse A. Die abgestrahlte Energie der Mikrowellen unterschreitet beispielsweise die von Mobilfunktelefonen um ein Vielfaches. Nach dem aktuellen Stand der Wissenschaft kann der Betrieb des Gerätes als gesundheitlich unbedenklich eingestuft werden.

# 3 Lieferumfang

- Füllstandsensor LR2350
- Bedienungsanleitung

Für Montage und Betrieb sind zusätzlich notwendig:

- Sondenstab
- Montageadapter / Einschweißadapter (bei Bedarf eine Einkoppelplatte  $\rightarrow$  7.4)

Verfügbares Zubehör: www.ifm.com



Verwenden Sie ausschließlich Zubehör der ifm electronic gmbh. Bei Verwendung von Komponenten anderer Hersteller wird optimale Funktion nicht gewährleistet.

# 4 Schnelleinstieg

Zur schnellen Inbetriebnahme und sofern keine besonderen Anforderungen vorliegen, ist für die meisten Anwendungen der nachfolgend beschriebene Schnelleinstieg möglich. Der Schnelleinstieg ersetzt nicht die Beachtung der weiteren Kapitel.

- ► Gerät ordnungsgemäß installieren ( $\rightarrow$  7.1 und  $\rightarrow$  8).
- ► Grundeinstellungen vornehmen ( $\rightarrow$  11.2).
- > Das Gerät ist betriebsbereit.
- ► Bei Bedarf Behälterabgleich durchführen (Parameter [tREF]  $\rightarrow$  11.2.33).

- ▶ Bei Bedarf Schaltgrenzen für OUT1 einstellen (Parameter [SP1] / [rP1] → 11.4.3).
- ► Bei Bedarf Analogausgang OUT2 skalieren (Parameter [ASP2] / [AEP2] → 11.4.4)

# 5 Bestimmungsgemäße Verwendung

Das Gerät erfasst kontinuierlich den Füllstand flüssiger und pastöser Medien in Behältern und erzeugt Ausgangssignale entsprechend der Parametrierung.

Es stehen 2 Ausgänge zur Verfügung. Sie sind unabhängig voneinander parametrierbar.

| OUT1 | Schaltsignal für Füllstand-Grenzwert / IO-Link          |
|------|---------------------------------------------------------|
| OUT2 | • Füllstandsproportionales Analogsignal 420 mA / 204 mA |
|      | oder                                                    |
|      | Schaltsignal für Füllstand-Grenzwert                    |

Zur ordnungsgemäßen Funktion benötigt das Gerät eine ausreichend große Einkoppelfläche / Einkoppelplatte aus Metall ("Antenne"). Sie ist Voraussetzung dafür, dass der Mikrowellenimpuls mit optimaler Sendeleistung in den Behälter eingekoppelt wird.

(Zu geeigneten Einkoppelplatten  $\rightarrow$  7.4).

Bei Einbau in geschlossene Metallbehälter / metallische Bypassrohre dient der Behälterdeckel / der obere Rohrabschnitt als Einkoppelfläche. Bei Einbau in offene Metallbehälter, Behälter aus Kunststoff oder Metallbehälter mit Kunststoffdeckeln muss ein ausreichend großes Halteblech, eine metallische Auflage oder Ähnliches verwendet werden  $(\rightarrow 7.4.2 / \rightarrow 7.4.3)$ .

Desweiteren müssen Mindestabstände zu Behälterwänden, Objekten im Behälter, Behälterboden und weiteren Füllstandsensoren eingehalten werden ( $\rightarrow$  7.1).

## 5.1 Einsatzbereich

- Wasser, wasserbasierte Medien
- Soll das Gerät in Säuren und Laugen / im Galvanikbereich eingesetzt werden:
  - ► Verträglichkeit der Produktwerkstoffe (→ Technisches Datenblatt) mit den zu überwachenden Medien prüfen.
- Kompatibel zu Prozessanschlüssen 3/4" NPT

Anwendungsbeispiele:

- Erfassung von Reinigungsflüssigkeit in einer Teile-Reinigungsanlage
- Erfassung von Kühlwasser in einer Industriekühlanlage
- Erfassung von Heißkleber in der Wellpappeherstellung

# 6 Funktion

# 6.1 Messprinzip



Das Gerät arbeitet nach dem Prinzip der geführten Mikrowelle. Es misst den Füllstand mit Hilfe elektromagnetischer Impulse im Nanosekundenbereich.

Die Impulse werden vom Kopf des Sensors ausgesendet und entlang des Sondenstabs geführt (Abb. 6-1). Treffen sie auf das zu detektierende Medium, werden sie reflektiert und zum Sensor zurückgeführt (Abb. 6-2). Die Zeitdauer zwischen Senden und Empfangen des Impulses ist ein direktes Maß für die zurückgelegte Distanz (D) und somit für den aktuellen Füllstand. Bezugsebene für Distanzmessung ist die Unterkante des Prozessanschlusses.



Eine Beeinflussung der Signalqualität kann auftreten bei:

- Stark absorbierenden Oberflächen (z. B. starke Schaumbildung)
- Stark sprudelnden Oberflächen
- Medien, die stark inhomogen sind, sich entmischen und dadurch Trennschichten ausbilden (z. B. Öl auf Wasser)
- ► Die Funktion durch einen Applikationstest prüfen

### 6.2 Weitere Gerätemerkmale

- Hoher Temperaturbereich (→ Technisches Datenblatt)
- Spezieller Betriebsmodus für Medien mit erhöhter Schaumbildung  $\rightarrow$  11.2.22
- Behälter-Abgleich ermöglicht das Ausblenden unerwünschter Störeinflüsse (z. B. verursacht durch Tankeinbauten oder bei Montage in Stutzen (→ 11.2.3))
- Anzeige des Füllstands und des Schaltzustands durch Display / LED's
- IO-Link Funktionalität ( $\rightarrow$  6.2.6)



Technisches Datenblatt unter www.ifm.com  $\rightarrow$  Neue Suche  $\rightarrow$  Artikelnummer eingeben

### 6.2.1 Anzeigefunktionen

Das Gerät zeigt den aktuellen Füllstand im Display an, wahlweise in mm, inch oder in Prozent des skalierten Messbereichs. Werkseinstellung: inch. Die Anzeigeeinheit wird durch Programmierung festgelegt ( $\rightarrow$  11.3). Im Betriebsmodus kann vorübergehend zwischen mm, inch und Prozentwert gewechselt werden ( $\rightarrow$  12.3).

Die eingestellte Maßeinheit und der Schaltzustand der Ausgänge werden durch LEDs angezeigt ( $\rightarrow$  9).

### 6.2.2 Analogfunktion

Das Gerät gibt ein füllstandsproportionales Analogsignal aus. Der Analogausgang (OUT2) ist parametrierbar ( $\rightarrow$  11.4).

- [ou2] legt die Ausgangsfunktion des Analogausgangs fest ( $\rightarrow$  11.4.2).
- Analogstartpunkt [ASP2] legt fest, bei welchem Messwert das Ausgangssignal 4 mA ([ou2] = [I]) oder 20 mA ([ou2] = [InEG]) beträgt (→ 11.4.4).
- Analogendpunkt [AEP2] legt fest, bei welchem Messwert das Ausgangssignal 20 mA ([ou2] = [I]) oder 4 mA ([ou2] = [InEG]) beträgt (→ 11.4.4).

Mindestabstand zwischen [ASP2] und [AEP2] = 20 % des aktiven Bereichs.

Verlauf des Analogsignals (Werkseinstellung):



Verlauf des Analogsignals (Messbereich skaliert):



([ou2] = [I]) oder 20...4 mA ([ou2] = [InEG]).

DE

Zusätzliche Informationen des Ausgangssignals:

- Füllstand oberhalb des Messbereichs:
  - Ausgangssignal 20...20,5 mA bei [ou2] = [I]
  - Ausgangssignal 4...3,8 mA bei [ou2] = [InEG]
- Füllstand unterhalb des Messbereichs:
  - Ausgangssignal 4...3,8 mA bei [ou2] = [I]
  - Ausgangssignal 20...20,5 mA bei [ou2] = [InEG]
- Im Fehlerfall, gemäß der Einstellung [FOUx]:
  - Ausgangssignal < 3,6 mA bei [FOUx] = [OFF] (Werkseinstellung)
  - Ausgangssignal > 21 mA bei [FOUx] = [On]

Beachten Sie bei der Auswertung des Analogsignals die Toleranzen und Genauigkeitsgrenzen ( $\rightarrow$  Technisches Datenblatt).

# 6.2.3 Schaltfunktionen

Das Gerät signalisiert das Erreichen oder Unterschreiten eingestellter Füllstand-Grenzwerte durch den Schaltausgang OUT1 (Werkseinstellung) oder zusätzlich durch OUT2 (einstellbar). Folgende Schaltfunktionen sind wählbar:

- Hysteresefunktion / Schließer (Abb. 6-3): [oux] = [Hno].
- Hysteresefunktion / Öffner (Abb. 6-3): [oux] = [Hnc].



Zuerst wird der Schaltpunkt (SPx) festgelegt, dann im gewünschten Abstand der Rückschaltpunkt (rPx).

- Fensterfunktion / Schließer (Abb. 6-4): [oux] = [Fno].
- Fensterfunktion / Öffner (Abb. 6-4): [oux] = [Fnc].



Die Breite des Fensters ist einstellbar durch den Abstand von FHx zu FLx. FHx = oberer Wert, FLx = unterer Wert.



- HY: Hysterese FE: Fenster
- Für den Schaltausgang kann eine Rückschaltverzögerung von maximal 60 s eingestellt werden (z. B. für besonders lange Pumpzyklen).

# 6.2.4 Dämpfungsfunktion

Bei unruhigem Füllstandsverlauf (z. B. Turbulenzen, Wellenbewegungen...) können Anzeige und Ausgangsverhalten gedämpft werden. Bei der Dämpfung werden die ermittelten Füllstandwerte anhand eines Mittelwertfilters "geglättet", es entsteht ein beruhigter Kurvenverlauf. Die Dämpfungskonstante T<sup>\*</sup> ist einstellbar mit Hilfe des Parameters [dAP] ( $\rightarrow$  11.4.10).

\*) T gibt an, nach welcher Zeit bei einem plötzlichen Sprung 63% des Endwertes erreicht werden. Nach 5 T sind nahezu 100% erreicht.

# 6.2.5 Definierter Zustand im Fehlerfall

- Für jeden Ausgang ist ein Zustand im Fehlerfall definierbar.
- Wird ein Gerätefehler erkannt oder unterschreitet die Signalgüte einen Mindestwert, wechseln die Ausgänge in einen definierten Zustand gemäß Namur-Empfehlung (NE43). Das Verhalten der Ausgänge für diesen Fall ist einstellbar mit Hilfe der Parameter [FOU1], [FOU2] (→ 11.4.8).
- Vorübergehender Signalverlust, verursacht z. B. durch Turbulenz oder Schaumbildung, kann durch eine Verzögerungszeit ausgeblendet werden (→ 11.4.11 [dFo]). Während der Verzögerungszeit wird der letzte Messwert eingefroren. Wird das Messsignal innerhalb der Verzögerungszeit wieder mit

ausreichender Stärke empfangen, arbeitet das Gerät weiter im Normalbetrieb. Wird es dagegen innerhalb der Verzögerungszeit nicht wieder mit ausreichender Stärke empfangen, wechseln die Ausgänge in den definierten Zustand.

## 6.2.6 IO-Link

Dieses Gerät verfügt über eine IO-Link-Kommunikationsschnittstelle, die den direkten Zugriff auf Prozess- und Diagnosedaten ermöglicht.

Zusätzlich besteht die Möglichkeit, das Gerät im laufenden Betrieb zu parametrieren. Der Betrieb des Gerätes über die IO-Link-Schnittstelle setzt eine IO-Link-fähige Baugruppe (IO-Link-Master) voraus.

Mit einem PC, passender IO-Link-Software und einem IO-Link Adapterkabel ist eine Kommunikation außerhalb des laufenden Betriebs möglich.

Die zur Konfiguration des Gerätes notwendigen IODDs, detaillierte Informationen über Prozessdatenaufbau, Diagnoseinformationen und Parameteradressen sowie alle notwendigen Informationen zur benötigten IO-Link-Hardware und Software finden Sie unter www.ifm.com.

# 6.2.7 Simulationsfunktionen

Für Inbetriebnahme, Wartungsarbeiten oder zur Störungseingrenzung können verschiedene Füllstände und Fehler simuliert werden. Die Dauer der Simulation ist wählbar (1 min...1 h). Die Simulation lässt sich manuell starten und läuft, bis manuell gestoppt wird oder die eingestellte Zeitspanne abläuft. Während der Simulation verhalten sich die Ausgänge gemäß den simulierten Prozesswerten ( $\rightarrow$  11.7.1.. $\rightarrow$  11.7.3).

# 7 Montage

# 7.1 Einbauort / Einbauumgebung

- Einbau des Gerätes vorzugsweise senkrecht von oben.
- Einbau vorzugsweise in geschlossenen, metallischen Behältern oder Bypassrohren.
- Bei Einbau in offenen Behältern ( $\rightarrow$  7.4.2) oder Kunststoffbehältern ( $\rightarrow$  7.4.3).

### Einbauabstände:

- ► Hinweise zum Behälterabgleich beachten ( $\rightarrow$  7.1.1).
- Einbau in Stutzen möglich.
  - Minimalen Stutzendurchmesser D gemäß nachfolgender Abbildung / Tabelle beachten.
- Der Sondenstab muss folgende Mindestabstände zu Behälterwänden, Objekten (B) im Behälter und Behälterboden einhalten:



- Bei stark bewegtem Medium (Strömung, Rührwerk ...) oder starker Verschmutzung:
  - Erhöhte Mindestabstände einhalten, um zu vermeiden, dass der Sondenstab die Behälterwand oder Einbauten berührt.

#### **Richtwerte:**

| Sondenlänge | Abstand zu Behälterwand oder Einbauten |
|-------------|----------------------------------------|
| 7001000 mm  | um 40 mm erhöhen                       |
| 10002000 mm | um 120 mm erhöhen                      |

- Bei Anwendungen mit pastösen oder stark strömenden Medien und / oder mit Rührwerken, bei denen die Sonde anhaltender und starker mechanischer Belastung ausgesetzt wird, ist die Sonde am unteren Ende elektrisch leitend zu fixieren. Die Fixierung am Behälterboden kann beispielsweise mit einer Hülse oder ähnlichem erfolgen.
  - ► Die Funktion ist durch einen Applikationstest sicherzustellen.
- Gerät nicht in unmittelbarer Nähe einer Befüllöffnung montieren (Abb. 7-3).



Starke Schaumbildung und Turbulenzen können zu Fehlmessungen führen. Um dieses zu vermeiden

Sensor in einem beruhigten Bereich montieren.

Beispiele zur Schaffung eines beruhigten Bereichs:

- Einbau in metallischen Bypass oder metallisches Schwallrohr (Abb. 7-4)
- Abtrennung des Einbauorts durch Bleche / Lochbleche (ohne Abb.)



#### Mindestdurchmesser von Bypass und Schwallrohr:

| Einbau      | mit Abgleich | ohne Abgleich |
|-------------|--------------|---------------|
| Durchmesser | ≥ DN 30      | ≥ DN 250      |

Der obere Zugang zum beruhigten Bereich (A, B) muss oberhalb des maximalen Füllstands liegen. Der untere Zugang (C, D) oder ein Bereich mit Lochblech muss unterhalb des minimalen Füllstands liegen. Damit wird verhindert, dass Schaum und Turbulenzen den Sensorbereich beeinträchtigen. Bei Verwendung von Lochblechen o. ä. kann darüber hinaus Verschmutzung (z. B. durch Feststoffe im Medium etc.) entgegengewirkt werden.



Bei erhöhter Schaumbildung empfiehlt sich die Einstellung [MEdI] = [MId]  $(\rightarrow 11.2.2)$ .



Abhängig von Umgebungsbedingungen und mechanischem Aufbau des Bypass- oder Schwallrohrs, wie z. B. Sondenstab läuft nicht mittig zentriert, Strömung lenkt Stab zur Rohrwandung, Verschmutzung..., empfiehlt sich der Einsatz von Zentrierstücken.

► Bei Bedarf ein oder mehrere Zentrierstücke zwischen Sondenstab und Rohr vorsehen (→ Zubehör → www. ifm.com).

### 7.1.1 Hinweise zum Behälter-Abgleich

Zur Verbesserung der Signalqualität kann ein Behälter-Abgleich durchgeführt werden ( $\rightarrow$  11.2.3). Beim Behälter-Abgleich muss zunächst eine sogenannte "Abgleichdistanz" eingegeben werden. Innerhalb dieser Distanz, beginnend vom Prozessanschluss, werden Störreflexionen kompensiert.

- Abgleichdistanz (a) so groß wählen, dass Stutzen (S) und Behältereinbauten (B) vollständig erfasst werden.
- ► Sicherheitsabstand (b) zu Füllstand oder zum Stabende einhalten b ≥ 250 mm.



- a: Abgleichdistanz (min: 10 mm; max: L 250 mm)
- b: Sicherheitsabstand zu Füllstand oder Sondenstabende: b ≥ 250 mm
- S: Stutzen
- B: Behältereinbauten
- ĩ
- Behälter-Abgleich nach Möglichkeit bei leerem Behälter durchführen, um alle eventuellen Störquellen zu erfassen. In diesem Fall:
  - ► Maximale Abgleichdistanz wählen (L 250 mm).
- Bei Sondenlängen L < 250 mm ist kein Behälter-Abgleich möglich. In diesem Fall:
  - Angegebene Einbauabstände  $\rightarrow$  7.1 einhalten.

- Bei Sondenlängen L > 250 mm:
  - Der Füllstand oder das Stabende muss sich mindestens 250 mm unterhalb der Abgleichdistanz befinden.
- Bei zu geringem Abstand:
  - Füllstand absenken oder Einbauabstände einhalten ( $\rightarrow$  7.1).



Ein Behälter-Abgleich kann generell zur Verbesserung der Signalgüte beitragen und schafft bei schwierigen Anwendungsbedingungen (Schaum, Turbulenzen etc.) eine höhere Betriebsreserve.

.

Zusätzlich verschafft ein Behälter-Abgleich auch Anwendungssicherheit. Bei zu hohen Störeinflüssen wird der Behälter-Abgleich vom Gerät abgelehnt, Fehlermeldung: [FAIL]. In solchen Fällen:

Einbaubedingungen pr
üfen; Einbauabst
ände / Rohrdurchmesser vergr
ößern.

### 7.2 Montage der Sonde

Die Sonde ist nicht im Lieferumfang enthalten. Sie muss separat bestellt werden ( $\rightarrow$  3 Lieferumfang).

Zum Befestigen des Sondenstabs:

Sondenstab an das Gerät anschrauben und festziehen.



Empfohlenes Anzugsmoment: 4 Nm.

Zur leichteren Montage und Demontage ist der Stabanschluss uneingeschränkt drehbar. Auch bei mehrfacher Drehung wird das Gerät nicht beschädigt.



Bei hoher mechanischer Beanspruchung (starke Vibration, bewegte pastöse Medien) kann eine Sicherung der Schraubverbindung notwendig sein, z. B. durch Schraubensicherungslack.



Stoffe wie Schraubensicherungslack können ins Medium übergehen. Die Unbedenklichkeit ist zu prüfen!

## 7.3 Kürzen der Sonde, Bestimmen der Sondenlänge

Der Sondenstab kann zur Anpassung an unterschiedliche Behälterhöhen gekürzt werden.



Nicht die minimal zulässige Sondenlänge  $(L_{min})$  von 150 mm unterschreiten! Sondenlängen unter 150 mm werden vom Gerät nicht unterstützt. Wird dennoch eine kürzere Sondenlänge verwendet, können Fehlfunktionen auftreten.



Bei Sondenlängen < 250 mm ist kein Behälter-Abgleich möglich ( $\rightarrow$  7.1.1 Hinweise zum Behälter-Abgleich).

Gehen Sie folgendermaßen vor:

- Sondenstab an das Gerät schrauben.
- Gewünschte Länge (L) auf dem Stab markieren. Bezugspunkt ist die Unterkante des Prozessanschlusses.
- Sondenstab vom Gerät abschrauben.
- Sondenstab kürzen.
- ► Alle Grate und scharfen Kanten entfernen.



- Sondenstab wieder an das Gerät anschrauben und festziehen. Empfohlenes Anzugsmoment: 4 Nm.
- Sondenlänge L genau messen, Wert notieren. Dieser wird beim Parametrieren des Geräts benötigt.

Bei hoher mechanischer Beanspruchung (starke Vibration, bewegte pastöse Medien) kann es notwendig sein, die Schraubverbindung zu sichern, z. B. durch Schraubensicherungslack.



Stoffe wie Schraubensicherungslack können ins Medium übergehen. Deren Unbedenklichkeit ist zu prüfen!

# 7.4 Einbau des Geräts



Vor Ein- und Ausbau des Geräts: Sicherstellen, dass die Anlage druckfrei ist und sich kein Medium im Behälter befindet, das austreten kann. Zudem immer die möglichen Gefahren beachten, die von extremen Anlagen- und Medientemperaturen ausgehen können.

### 7.4.1 Einbau in geschlossene Behälter

Bei Einbau in geschlossene Metallbehälter dient der Behälterdeckel als Einkoppelplatte ( $\rightarrow$  5).

Es bestehen folgende Möglichkeiten:

- Einschrauben in einen Prozessanschluss 3/4" NPT direkt im Behälterdeckel (bei dickwandigen Behältern).
- Einbau in den Behälterdeckel mit Hilfe einer Flanschplatte (bei dünnwandigen Behältern), oder mit Hilfe eines Einschweißadapters.



Bei der Montage des behälterseitigen Prozessanschlusses die spätere Ausrichtung des Gehäuses (Displayorientierung, Kabelabgang) berücksichtigen. Das Sensorgehäuse ist gegenüber dem Einschraubgewinde nicht verdrehbar! Ein späteres Ausrichten des Sensorgehäuses ist daher nicht möglich!

Weiterhin ist der Einbau in offene Behälter ( $\rightarrow$  7.4.2) und in Kunststoffbehälter

möglich ( $\rightarrow$  7.4.3).

### Montagevorgang

- Gewinde des Sensors mit geeignetem Dichtungsmaterial (z. B. PTFE-Band) versehen.
- ► Gerät in den Prozessanschluss einsetzen.
- ► Mit einem Schraubenschlüssel festziehen.

### 7.4.2 Einbau in offene Behälter

- ▶ Bei Einbau in offene Behälter das Gerät mit Hilfe einer metallischen Halterung montieren, sie dient als Einkoppelplatte (R); Mindestgröße: 150 x 150 mm bei einer quadratischen Halterung, 150 mm Durchmesser bei einer kreisförmigen Halterung.
- ► Gerät möglichst mittig auf der Halterung montieren. Der Abstand D2 darf die angegebenen Mindestabstände ( $\rightarrow$  7.1) nicht unterschreiten.



- D2: Erforderliche Mindestabstände  $\rightarrow$  7.1 sind zu beachten.
- R: Einkoppelplatte

### 7.4.3 Einbau in Kunststoffbehälter



- D1: Mind. 150 mm. Erforderliche Mindestabstände  $\rightarrow$  7.1 sind zu beachten.
- R: Einkoppelplatte

Um eine ausreichende Einkopplung des Messsignals zu ermöglichen, bei Einbau in Kunststoffbehälter oder Metallbehälter mit Kunststoffdeckel beachten:

- Im Kunststoffdeckel muss eine Bohrung mit einem Mindestdurchmesser von 150 mm vorhanden sein.
- Zur Montage des Geräts muss eine metallische Flanschplatte (= Einkoppelplatte, R) verwendet werden, die die Bohrung ausreichend überdeckt.



Bei Einbau in Kunststoffbehälter kann es zur Beeinträchtigung durch elektromagnetische Störungen kommen. Abhilfe:

- Aufkleben einer Metallfolie an der Außenseite des Behälters.
- Anbringen eines Abschirmbleches zwischen dem Füllstandsensor und anderen elektronischen Geräten.

# 8 Elektrischer Anschluss

Das Gerät darf nur von einer Elektrofachkraft installiert werden.

Befolgen Sie die nationalen und internationalen Vorschriften zur Errichtung elektrotechnischer Anlagen.

Spannungsversorgung nach EN 50178, SELV, PELV.

- ► Anlage spannungsfrei schalten.
- Gerät folgendermaßen anschließen:



# 9 Bedien- und Anzeigeelemente



| 1 bis 8: Indikator-LEDs                                                                                                  |                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| LED 1 - 3                                                                                                                | Gewählte Maßeinheit.                                               |  |
| LED 4 - 6                                                                                                                | Nicht belegt                                                       |  |
| LED 7                                                                                                                    | Schaltzustand OUT2 (leuchtet, wenn Ausgang 2 durchgeschaltet ist). |  |
| LED 8                                                                                                                    | Schaltzustand OUT1 (leuchtet, wenn Ausgang 1 durchgeschaltet ist). |  |
| 9: Taste [Enter]                                                                                                         |                                                                    |  |
| - Öffnen des Bedienmenüs, Editieren und Bestätigen der Parameterwerte.                                                   |                                                                    |  |
| 10 bis 11: Pfeiltasten hoch [▲] und runter [▼]                                                                           |                                                                    |  |
| <ul> <li>Einstellen der Parameterwerte (kontinuierlich durch Dauerdruck; schrittweise durch<br/>Einzeldruck).</li> </ul> |                                                                    |  |
|                                                                                                                          |                                                                    |  |

#### 12: Alphanumerische Anzeige, 4-stellig

- Anzeige des aktuellen Füllstand.
- Anzeige der Parameter und Parameterwerte.

### 10 Menü 10.1 Menüstruktur



I: Hauptmenü ( $\rightarrow$  10.2.1)

II: Ebene EF ( $\rightarrow$  10.2.2)



- III : Ebene CFG ( $\rightarrow$  10.2.3)
- IV: Ebene ENV ( $\rightarrow$  10.2.4)
- V: Ebene SIM ( $\rightarrow$  10.2.5)

# 10.2 Erläuterung zum Menü

### 10.2.1 Hauptmenü [I]

| tREF                                                                                                                                                   | Behälterabgleich durchführen.                                                                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SP1 / rP1                                                                                                                                              | Oberer / unterer Grenzwert für Füllstand, bei dem OUT1 schaltet.                                                                                            |  |
| FH1 / FL1*                                                                                                                                             | Obere / untere Grenze für den Gutbereich (überwacht von OUT1).                                                                                              |  |
| ASP2                                                                                                                                                   | Analogstartpunkt für Füllstand: Messwert, bei dem der analoge Startwert<br>ausgegeben wird. Der analoge Startwert<br>wird durch Parameter [ou2] festgelegt. |  |
| AEP2                                                                                                                                                   | Analogendpunkt für Füllstand: Messwert, bei dem der analoge Endwert<br>ausgegeben wird. Der analoge Endwert wird<br>durch Parameter [ou2] festgelegt.       |  |
| SP2 / rP2**                                                                                                                                            | Oberer / unterer Grenzwert für Füllstand, bei dem OUT2 schaltet.                                                                                            |  |
| FH2 / FL2*                                                                                                                                             | Obere / untere Grenze für den Gutbereich (überwacht von OUT2).                                                                                              |  |
| EF」                                                                                                                                                    | Erweiterte Funktionen / Öffnen der Menü-Ebene 2.                                                                                                            |  |
| * Menüpunkt nur sichtbar bei Auswahl der Fensterfunktion ([ou.] = [F]).<br>** Menüpunkt nur sichtbar bei Auswahl OUT2 = binärer Ausgang ([ou2] = [H]). |                                                                                                                                                             |  |

### 10.2.2 Ebene EF (Erweiterte Funktionen) [II]

| rES  | Werkseinstellung wieder herstellen (alle Parameter incl. Behälter-Abgleich) |
|------|-----------------------------------------------------------------------------|
| CFGJ | Öffnen des Untermenüs CFG (Konfiguration)                                   |
| ENVJ | Öffnen des Untermenüs ENV (Umgebungsparameter)                              |
| SIMJ | Öffnen des Untermenüs SIM (Simulation)                                      |

### 10.2.3 Ebene CFG (Konfiguration) [III]

| ou1         | Ausgangsfunktion für OUT1:                                                                                                                                                                                                             |    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| ou2         | <ul> <li>Ausgangsfunktion für OUT2:</li> <li>Analogsignal für aktuellen Füllstand, 420 mA oder 204 mA oder</li> <li>Schaltsignal für Füllstand-Grenzwert. Hysterese oder Fensterfunktion, jeweils als Öffner oder Schließer</li> </ul> | DE |
| dS1         | Schaltverzögerung für OUT1                                                                                                                                                                                                             |    |
| dr1         | Rückschaltverzögerung für OUT1                                                                                                                                                                                                         |    |
| dS2*        | Schaltverzögerung für OUT2                                                                                                                                                                                                             |    |
| dr2*        | Rückschaltverzögerung für OUT2                                                                                                                                                                                                         |    |
| uni         | Maßeinheit (mm oder inch)                                                                                                                                                                                                              |    |
| P-n         | Schaltlogik für die Ausgänge (pnp oder npn)                                                                                                                                                                                            |    |
| FOU1        | Verhalten von OUT1 im Fehlerfall                                                                                                                                                                                                       |    |
| FOU2        | Verhalten von OUT2 im Fehlerfall                                                                                                                                                                                                       |    |
| SELd        | Art der Anzeige                                                                                                                                                                                                                        |    |
| dAP         | Dämpfung des Messsignals (Mittelwert-Filter)                                                                                                                                                                                           |    |
| dFo         | Verzögerungszeit für den Wechsel der Ausgänge in den mit [FOUx] definierten Zustand; wirkt nur im Fehlerfall.                                                                                                                          |    |
| * Menüpunkt | nur sichtbar bei Hysterese- oder Fensterfunktion ([ou2] = [H] oder [F]).                                                                                                                                                               |    |
|             |                                                                                                                                                                                                                                        |    |

### 10.2.4 Ebene ENV (Environment (Umgebung)) [IV]

| LEnG | Länge der Sonde       |
|------|-----------------------|
| MEdI | Zu erfassendes Medium |

### 10.2.5 Ebene SIM (Simulation) [V]

| S.LvL | Simulation eines Füllstands / eines Fehlerzustands |
|-------|----------------------------------------------------|
| S.Tim | Simulationszeit 160 min                            |
| S.On  | Simulation Start/Stopp                             |

# 11 Parametrieren

Während des Parametriervorgangs bleibt das Gerät im Arbeitsbetrieb. Es führt seine Überwachungsfunktionen mit den bestehenden Parametern weiter aus, bis die Parametrierung abgeschlossen ist.

# 11.1 Parametriervorgang allgemein

Jede Parametereinstellung benötigt 3 Schritte:

| 1        | <ul> <li>Parameter wählen</li> <li>[Enter] drücken, um in das Menü zu gelangen.</li> <li>[▲] oder [▼] drücken bis gewünschter Parameter angezeigt wird.</li> </ul>                                                                                                                                 | $Finter \bigcirc \bigcirc$ |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2        | <ul> <li>Parameterwert einstellen</li> <li>[Enter] drücken um den gewählten<br/>Parameter zu editieren.</li> <li>[▲] oder [♥] für mindestens 1 s<br/>drücken.</li> <li>Nach 1 s: Einstellwert wird verändert:<br/>Schrittweise durch Einzeldruck oder<br/>fortlaufend durch Dauerdruck.</li> </ul> |                                                                                                                                                                                     |  |  |
|          | Zahlenwerte werden fortlaufend erhöht mi                                                                                                                                                                                                                                                           | t [▲] oder herunter gesetzt mit [▼].                                                                                                                                                |  |  |
| 3        | <ul> <li>Parameterwert bestätigen</li> <li>Kurz [Enter] drücken.</li> <li>Der Parameter wird wieder<br/>angezeigt. Der neue Einstellwert ist<br/>gespeichert.</li> </ul>                                                                                                                           |                                                                                                                                                                                     |  |  |
| Wei<br>▶ | tere Parameter einstellen<br>▲] oder [♥] drücken bis gewünschter Para                                                                                                                                                                                                                              | ameter angezeigt wird.                                                                                                                                                              |  |  |
| Par      | Parametrierung beenden                                                                                                                                                                                                                                                                             |                                                                                                                                                                                     |  |  |
| ▶  <br>> | <ul> <li>[A] oder [V] so oft drücken, bis der aktuelle Messwert angezeigt wird oder 30 s warten.</li> <li>&gt; Das Gerät kehrt in die Prozesswertanzeige zurück.</li> </ul>                                                                                                                        |                                                                                                                                                                                     |  |  |



Wird [C.Loc] angezeigt beim Versuch, einen Parameterwert zu ändern, ist ein Parametriervorgang über IO-Link aktiv (vorübergehende Sperrung).



Wird [S.Loc] angezeigt, ist der Sensor per Software dauerhaft verriegelt. Diese Verriegelung kann nur mit einer Parametriersoftware aufgehoben werden.

• Wechsel von Menü-Ebene 1 zu Menü-Ebene 2:



 Verriegeln / entriegeln Das Gerät lässt sich elektronisch verriegeln, so dass unbeabsichtigte Fehleingaben verhindert werden.



Zum Entriegeln:

- ▶  $[\blacktriangle] + [\lor]$  gleichzeitig 10 s drücken.
- > [uLoc] wird angezeigt.



Auslieferungszustand: Nicht verriegelt.

• Timeout:

Wird während der Einstellung eines Parameters 30 s lang keine Taste gedrückt, geht das Gerät mit unverändertem Wert in den Arbeitsbetrieb zurück.

# 11.2 Erstinbetriebnahme (Gerät im Auslieferungszustand)

Befindet sich das Gerät im Auslieferungszustand, müssen zunächst die Grundeinstellungen eingegeben werden. Das vollständige Parametriermenü ist erst nach diesem Vorgang zugänglich.



Werden falsche Grundeinstellungen eingegeben, kann es zu Fehlfunktionen kommen.

### 11.2.1 Sondenlänge einstellen

|   | V                                                                       |  |
|---|-------------------------------------------------------------------------|--|
|   | [LEnG] wählen.                                                          |  |
|   | [Enter] drücken.                                                        |  |
| > | [nonE] wird angezeigt.                                                  |  |
|   | [▲] oder [▼] für mindestens 1 s drücken.                                |  |
| > | Nach 1 s wird die vom Gerät selbstständig erkannte Sondenlänge          |  |
|   | (Vorwahlfunktion) angezeigt.                                            |  |
|   | Mit [▲] oder [▼] Sondenlänge bei Bedarf korrigieren, schrittweise durch |  |
|   | Einzeldruck oder fortlaufend durch Dauerdruck. Sondenlänge in inch      |  |
|   | eingeben!                                                               |  |
|   | Kurz [Enter] drücken.                                                   |  |
|   |                                                                         |  |

- Automatische Sondenlängenerkennung nur möglich bei leerem Behälter und ausreichend großer Einkoppelplatte.
  - Manuelle Bestimmung der Sondenlänge  $\rightarrow$  7.3.

### 11.2.2 Einstellen auf das Medium

| ► [MEdI]   | wählen und einstellen:                                                                                                                                                                                              | MF rd T |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| [HIGH] =   | Für Wasser und wasserbasierte Medien.<br>Betriebsmodus optimiert auf die Unterdrückung von Anhaftungen<br>am Sensorstab.                                                                                            |         |
| [MId] =    | Für wasserbasierte Medien und Medien mit mittlerem DK-Wert<br>(DK= Dielektrizitätskonstante), z. B. Wasser-in-Öl-Emulsionen.<br>Betriebsmodus optimiert auf die Erfassung von Medien mit<br>erhöhter Schaumbildung. |         |
| Hinweis: I | m Zweifelsfall einen Applikationstest durchführen, um die für das<br>Medium am besten geeignete Einstellung sicherzustellen.                                                                                        |         |

Anschließend geht das Gerät in den Betriebsmodus.

Bei Bedarf (z. B. bei Montage in Stutzen) einen Behälterabgleich (Parameter [tREF]) durchführen und Einstellungen zur Anpassung an die Anwendung vornehmen!

### 11.2.3 Behälter-Abgleich durchführen

|   | Hinweise ( $\rightarrow$ 7.1.1) beachten!                          |  |
|---|--------------------------------------------------------------------|--|
|   | [tREF] wählen.                                                     |  |
|   | [Enter] drücken.                                                   |  |
| > | [nonE] oder der vom letzten Behälter-Abgleich gespeicherte Wert    |  |
|   | (Abgleichdistanz) wird angezeigt.                                  |  |
|   | [▲] oder [▼] für mindestens 1 s drücken.                           |  |
| > | Die Abgleichdistanz wird angezeigt (Defaultwert: 0,4 inch).        |  |
|   | Mit [▲] oder [▼] Wert bei Bedarf korrigieren, Schrittweise durch   |  |
|   | Einzeldruck oder fortlaufend durch Dauerdruck.                     |  |
|   | Kurz [Enter] drücken.                                              |  |
| > | [donE] wird angezeigt.                                             |  |
|   | Erneut kurz [Enter] drücken.                                       |  |
| > | Das Gerät startet neu und geht danach wieder in den Betriebsmodus. |  |

31

)E

# 11.3 Anzeige konfigurieren (optional)

| [uni] was<br>Werkse | ählen und Maßeinheit festlegen: [mm], [inch].<br>einstellung: inch.                                                                                                                                        | יריש |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ► [SELd]            | wählen und Art der Anzeige einstellen:                                                                                                                                                                     | 5660 |
| [L] =               | Der Füllstand wird in mm oder inch angezeigt.                                                                                                                                                              |      |
| [%] =               | Der Füllstand wird in Prozent des Messbereichs / des skalierten Messbereichs angezeigt.                                                                                                                    |      |
|                     | Der Füllstand in Prozent ist abhängig von den Parametern:                                                                                                                                                  |      |
|                     | [ASP2]: Eingestellter Wert entspricht 0 %                                                                                                                                                                  |      |
|                     | [AEP2]: Eingestellter Wert entspricht 100%                                                                                                                                                                 |      |
|                     | Die Einstellung dieser Parameter über ein IO-Link-Device-Tool ist nur möglich, wenn Parameter [ou2] auf Einstellung [I] oder [InEG] steht.                                                                 |      |
| [OFF] =             | Die Anzeige ist im Arbeitsbetrieb ausgeschaltet. Bei Druck auf<br>eine der Tasten wird 30 s lang der aktuelle Messwert angezeigt.<br>Die Indikator-LEDs bleiben auch bei ausgeschalteter Anzeige<br>aktiv. |      |

### 11.4 Ausgangssignale einstellen

### 11.4.1 Ausgangsfunktion für OUT1 festlegen

| [ou1] wählen und Schaltfunktion einstellen:                                                                                                                                                                                                                     |                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| [Hno] =                                                                                                                                                                                                                                                         | Hysteresefunktion/Schließer |  |
| [Hnc] =                                                                                                                                                                                                                                                         | Hysteresefunktion/Öffner    |  |
| [Fno] =                                                                                                                                                                                                                                                         | Fensterfunktion/Schließer   |  |
| [Fnc] =                                                                                                                                                                                                                                                         | Fensterfunktion/Öffner      |  |
| <ul> <li>Hinweis: Wird der Schaltpunkt als Überfüllsicherung verwendet, wird die<br/>Einstellung ou1 = Hnc (Öffnerfunktion) empfohlen. Durch das<br/>Ruhestromprinzip wird sichergestellt, dass auch Drahtbruch oder<br/>Kabelabriss erkannt werden.</li> </ul> |                             |  |

# 11.4.2 Ausgangsfunktion für OUT2 festlegen

| ▶ [ou2]  | wählen und Schaltfunktion einstellen:                                                                                                                                                                                           |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [ ] =    | Stromausgang 420 mA                                                                                                                                                                                                             |  |
| [InEG] = | Stromausgang 204 mA                                                                                                                                                                                                             |  |
| [Hno] =  | Hysteresefunktion/Schließer                                                                                                                                                                                                     |  |
| [Hnc] =  | Hysteresefunktion/Öffner                                                                                                                                                                                                        |  |
| [Fno] =  | Fensterfunktion/Schließer                                                                                                                                                                                                       |  |
| [Fnc] =  | Fensterfunktion/Öffner                                                                                                                                                                                                          |  |
| Hinweis: | Wird der Schaltpunkt als Überfüllsicherung verwendet, wird die<br>Einstellung ou2 = Hnc (Öffnerfunktion) empfohlen. Durch das<br>Ruhestromprinzip wird sichergestellt, dass auch Drahtbruch oder<br>Kabelabriss erkannt werden. |  |

### 11.4.3 Schaltgrenzen festlegen (Hysteresefunktion)

| Sicherstellen, dass für [oux] die Funktion [Hno] oder [Hnc] eingestellt ist.<br>Hinweis: Für [ou2] ist werkseitig [I] voreingestellt, SP / rP sind in diesem<br>Fall nicht verfügbar.<br>[SPx] wählen und Wert einstellen, bei dem der Ausgang schaltet. | SP I<br>SP2    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| [rPx] wählen und Wert einstellen, bei dem der Ausgang zurückschaltet.<br>rPx ist stets kleiner als SPx. Es können nur Werte eingegeben werden,<br>die unter dem Wert für SPx liegen.                                                                     | r-P- <br>r-P-2 |

### 11.4.4 Analogsignal skalieren

| [ASP2] wählen und analogen Startpunkt festlegen ( $\rightarrow$ 6.2.2<br>Analogfunktion) | ASP2 |
|------------------------------------------------------------------------------------------|------|
| [AEP2] wählen und analogen Endpunkt festlegen ( $\rightarrow$ 6.2.2 Analogfunktion)      | AEP2 |

### 11.4.5 Schaltgrenzen festlegen (Fensterfunktion)

| <ul> <li>Sicherstellen, dass für [oux] die Funktion [Fno] oder [Fnc] eingestellt ist.</li> <li>[FHx] wählen und obere Grenze des Gutbereichs einstellen.</li> </ul> | FH 1<br>FH2 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <ul> <li>[FLx] wählen und untere Grenze des Gutbereichs einstellen.</li> <li>FLx ist stets kleiner als FHx. Es können nur Werte eingegeben werden, die</li></ul>    | FL I        |
| unter dem Wert für FHx liegen.                                                                                                                                      | FL2         |

### 11.4.6 Schaltverzögerung für Schaltausgänge einstellen

| <ul> <li>[dSx] wählen und Wert zwischen 060 s einstellen.<br/>Bei 0,0 (= Werkseinstellung) ist die Verzögerungszeit nicht aktiv.</li> <li>Die Schaltverzögerung ist nur wirksam, wenn als Schaltfunktion Hysterese-<br/>oder Fensterfunktion eingestellt wurde (oux = H oder F).</li> </ul>                                                                                                                                                                                                                                          | d5 1<br>d52  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 11.4.7 Rückschaltverzögerung für Schaltausgänge einstellen                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| <ul> <li>[drx] wählen und Wert zwischen 060 s einstellen.<br/>Bei 0,0 (= Werkseinstellung) ist die Verzögerungszeit nicht aktiv.</li> <li>Die Rückschaltverzögerung ist nur wirksam, wenn als Schaltfunktion<br/>Hysterese- oder Fensterfunktion eingestellt wurde (oux = H oder F).</li> </ul>                                                                                                                                                                                                                                      | dr I<br>dr2  |
| 11.4.8 Verhalten der Ausgänge im Fehlerfall festlegen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| <ul> <li>[FOU1] / [FOU2] wählen und Wert festlegen:         <ul> <li>[On] = Schaltausgang schaltet im Fehlerfall EIN.</li> <li>Analogausgang schaltet im Fehlerfall auf einen Wert &gt; 21 mA.</li> <li>[OFF] = Schaltausgang schaltet im Fehlerfall AUS.</li> <li>Analogausgang schaltet im Fehlerfall auf einen Wert &lt; 3,6 mA.</li> </ul> </li> <li>Werkseinstellung: [FOU1] und [FOU2] = [OFF].</li> <li>Als Fehlerfall gilt z. B.: Hardwaredefekt, zu geringe Signalgüte.</li> <li>Übervoll gilt nicht als Fehler!</li> </ul> | F0U1<br>F0U2 |

### 11.4.9 Schaltlogik für die Schaltausgänge festlegen

| <ul> <li>[P-n] wählen und [PnP] oder [nPn] einstellen.</li> </ul> |
|-------------------------------------------------------------------|
|-------------------------------------------------------------------|

### 11.4.10 Dämpfung für das Messsignal festlegen

|  | [dAP] wählen und Dämpfungskonstante T in Sekunden einstellen;<br>Einstellbereich 0,060,0 s ( $\rightarrow$ 6.2.4). | dAP |
|--|--------------------------------------------------------------------------------------------------------------------|-----|
|--|--------------------------------------------------------------------------------------------------------------------|-----|

P---

### 11.4.11 Verzögerungszeit für den Fehlerfall einstellen

| <ul> <li>[dFo] wählen und Wert zwischen 010,0 s einstellen.</li> </ul>         |  |
|--------------------------------------------------------------------------------|--|
| Werkseinstellung: [dFo] = [3.0]. Die Verzögerungszeit wirkt nur im Fehlerfall. |  |
| Beachten Sie die Dynamik Ihrer Anwendung. Bei schnellen                        |  |
| Füllstandsänderungen empfiehlt sich eine schrittweise Anpassung des            |  |
| Wertes ( $\rightarrow$ 6.2.5).                                                 |  |

# 11.5 Alle Parameter auf Werkseinstellung zurücksetzen

[rES] wählen.
 [Enter] drücken, bis [rES] rechtsbündig angezeigt wird.
 [▲] oder [♥] drücken und festhalten, bis [----] angezeigt wird.
 Kurz [Enter] drücken.
 Das Gerät startet neu und befindet sich wieder im Auslieferungszustand.
 Achtung: Im Auslieferungszustand ist das Gerät nicht betriebsbereit. Es muss zunächst die Erstinbetriebnahme durchgeführt werden (→ 11.2).

# 11.6 Grundeinstellungen ändern

Notwendig nach Werksreset [rES] und nach oder Änderung des Einsatzbereichs.

### 11.6.1 Sondenlänge neu eingeben

|    | [LEnG] wählen.                                                     |  |
|----|--------------------------------------------------------------------|--|
|    | Sondenlänge L auf ± 2 mm (± 0,1 inch) genau messen. Bestimmung der |  |
|    | Sondenlänge $\rightarrow$ 7.3.                                     |  |
|    | Gemessenen Wert aufrunden (Schrittweite 5 mm / 0,2 inch).          |  |
|    | [LEnG] wählen und Wert einstellen                                  |  |
|    | (Einstellbereich: 150 2000 mm / 6,078,8 inch).                     |  |
| Ac | htung: Nach Änderung der Sondenlänge müssen auch die Werte für die |  |
| Sc | haltgrenzen überprüft / neu eingegeben werden.                     |  |



Nach Änderung der Sondenlänge wird ein bereits durchgeführter Behälter-Abgleich gelöscht / auf Werkseinstellung zurückgesetzt.



In der Werkseinstellung ist das Gerät möglicherweise nicht funktionsfähig, z. B. bei Nichteinhaltung der Einbaubedingungen.

In diesem Fall:

▶ Behälter-Abgleich durchführen  $\rightarrow$  11.2.33.



Bei Sondenlängen < 250 mm ist kein Behälterabgleich möglich. In diesem Fall:

Einbaubedingungen ( $\rightarrow$  7.1) einhalten.

### 11.6.2 Einstellen auf anderes Medium

| ► [MEdI]   | wählen und einstellen:                                                                                                                                                                                              | MF r-1 T |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| [HIGH] =   | Für Wasser und wasserbasierte Medien.<br>Betriebsmodus optimiert auf die Unterdrückung von Anhaftungen<br>am Sensorstab.                                                                                            |          |
| [MId] =    | Für wasserbasierte Medien und Medien mit mittlerem DK-Wert<br>(DK= Dielektrizitätskonstante), z. B. Wasser-in-Öl-Emulsionen.<br>Betriebsmodus optimiert auf die Erfassung von Medien mit<br>erhöhter Schaumbildung. |          |
| Hinweis: I | m Zweifelsfall einen Applikationstest durchführen, um die für das<br>ledium am besten geeignete Einstellung sicherzustellen.                                                                                        |          |

### 11.7 Simulation

### 11.7.1 Simulationswert einstellen

| <ul> <li>[S.LvL] wählen</li> <li>Den zu simulierenden Prozesswert einstellen:</li> </ul> |                          | SLul |
|------------------------------------------------------------------------------------------|--------------------------|------|
| [Zahlenwert] = Füllstand in mm / inch (abhängig von Grundeinstellung)                    |                          |      |
| [FULL] =                                                                                 | Vollzustand              |      |
| [SEnS] =                                                                                 | Schwaches Messsignal     |      |
| [Err] =                                                                                  | Elektronikfehler erkannt |      |
| [EPTY] =                                                                                 | Leerzustand              |      |

### 11.7.2 Simulationszeit einstellen

| ► [S.Tim] wählen.                                           | $\Box T_{im}$ |
|-------------------------------------------------------------|---------------|
| <ul> <li>Zeitspanne f ür Simulation einstellen.</li> </ul>  |               |
| Einstellbereich: 1, 2, 3, 4, 5, 10, 15, 20, 30, 45, 60 min. |               |
| Werkseinstellung: 3 min.                                    |               |

#### 11.7.3 Simulation ein- / ausschalten

| [S.On] wählen und einstellen: |                                  | $\Box \Box \Box$ |
|-------------------------------|----------------------------------|------------------|
| [OFF] = Simulation aus        |                                  | J.U 1 1          |
| [On] =                        | Simulation ein                   |                  |
| ▶ [Enter] bet                 | ätigen zum Start der Simulation. |                  |



Die Simulation läuft, bis erneut [Enter] gedrückt wird oder die über [S.Tim] eingestellte Zeit abläuft. Während der Simulation wird alle 3 s [SIM] angezeigt. Nach Simulationsende wird [S.On] angezeigt.

Die Ausgänge verhalten sich gemäß den simulierten Prozesswerten.



Wird die Simulation über IO-Link gestartet, kann diese nur über IO-Link wieder beendet werden. Beim Versuch die Simulation über die Bedientasten zu beenden wird C.Loc angezeigt.

# 12 Betrieb

Nach Einschalten der Versorgungsspannung befindet sich das Gerät im Betriebsmodus. Es führt seine Mess- und Auswertefunktionen aus und erzeugt Ausgangssignale entsprechend den eingestellten Parametern.

▶ Prüfen, ob das Gerät sicher funktioniert.

| Zahlenwert + LED 1                | Aktueller Füllstand in mm.                                                                                                             |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Zahlenwert + LED 2                | Aktueller Füllstand in inch.                                                                                                           |
| Zahlenwert + LED 3                | Aktueller Füllstand in % des skalierten Messbereichs.                                                                                  |
| LED 7 / LED 8                     | Schaltzustand OUT2 / OUT1.                                                                                                             |
| []                                | Füllstand unterhalb des aktiven Bereichs.                                                                                              |
| [FULL] + Zahlenwert im<br>Wechsel | Füllstand hat maximalen Messbereich erreicht oder<br>überschritten (= Warnanzeige Überfüllung).                                        |
| fortlaufend                       | Initialisierungsphase nach dem Einschalten.                                                                                            |
| ====                              | Gerät befindet sich im Auslieferungszustand und ist daher nicht betriebsbereit. Grundeinstellungen erforderlich ( $\rightarrow$ 11.2). |
| [Sim] + XXX im Wechsel            | Simulation aktiv. XXX = zu simulierender Zustand ( $\rightarrow$ 11.7.1).                                                              |
| [Loc]                             | Gerät per Bedientasten verriegelt; Parametrierung nicht möglich. Zum Entriegeln 10 s lang beide Einstelltasten drücken.                |
| [uLoc]                            | Gerät ist entriegelt / Parametrierung wieder möglich.                                                                                  |
| [C.Loc]                           | Gerät vorübergehend gesperrt. Parametriervorgang über IO-Link aktiv.                                                                   |
| [S.Loc]                           | Gerät ist per Software dauerhaft verriegelt. Diese<br>Verriegelung kann nur mit einer Parametriersoftware<br>aufgehoben werden.        |

### 12.1 Betriebsanzeigen

### 12.2 Einstellung der Parameter ablesen

- ► Kurzer Druck auf [Enter] öffnet das Menü.
- ▶ [▲] oder [▼] blättert durch die Parameter.
- Kurzer Druck auf [Enter] zeigt f
  ür ca. 30 s den zugehörigen Parameterwert. Danach geht das Ger
  ät zur
  ück in den Betriebsmodus.

### 12.3 Wechsel der Anzeigeeinheit im Betriebsmodus

(= Wechsel zwischen Längenanzeige (mm / inch) und Prozentwert).

- ► Im Betriebsmodus kurz [▲] oder [▼] drücken.
- > Die gewählte Anzeige wird für ca. 30 s angezeigt, die zugehörige LED leuchtet auf. Jeder Tastendruck wechselt die Art der Anzeige.

|                                | Mögliche Ursache                                                                                | Empfohlene Maßnahmen                                                                                                                |
|--------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| [Err]                          | Fehler in der Elektronik.                                                                       | Gerät ersetzen.                                                                                                                     |
| [nPrb]                         | Sonde vom Gerät gelöst;<br>möglicherweise Länge der<br>Sonde falsch eingestellt.                | Prüfen, ob Sonde am Gerät montiert ist. Parameter [LEnG] prüfen.                                                                    |
|                                | Messung durch starke<br>Schaumentwicklung oder starke<br>Turbulenzen gestört.                   | <ul> <li>Gerät in Schwallrohr oder Bypass<br/>montieren (→ 7.1).</li> <li>[dFo] einstellen oder erhöhen<br/>(→ 11.4.11).</li> </ul> |
|                                | Messung gestört durch<br>Trennschichten (z.B. Ölschicht<br>auf Wasser).                         | Ölschicht absaugen, Medium<br>durchmischen, Zusammensetzung<br>prüfen.                                                              |
| [SEnS]                         | Sondenstab oder<br>Prozessanschluss verschmutzt.                                                | Sondenstab und Prozessanschluss reinigen.                                                                                           |
|                                | Montagebedingungen nicht eingehalten.                                                           | Hinweise unter "Montage" ( $\rightarrow$ 7).<br>befolgen. Behälterabgleich ausführen<br>oder wiederholen ( $\rightarrow$ 7.1.1).    |
|                                | Sondenlänge oder<br>Empfindlichkeit (Einstellung auf<br>das Medium) falsch.                     | Einstellungen korrigieren (→<br>11.6), danach unter Umständen<br>Behälterabgleich durchführen (→<br>7.1.1).                         |
| [FAIL]                         | Behälter-Abgleich<br>fehlgeschlagen. Stablänge zu<br>kurz, Abgleich nicht möglich (→<br>7.1.1). | Abgleich wiederholen, ggf.<br>Einbaubedingungen überprüfen.                                                                         |
| [SCx] + LED 7<br>[SCx] + LED 8 | Blinkend: Kurzschluss in<br>Schaltausgang OUT1 oder<br>OUT2.                                    | Kurzschluss beseitigen.                                                                                                             |
| [SC] + LED 7<br>+ LED 8        | Blinkend: Kurzschluss in beiden Schaltausgängen                                                 | Kurzschluss beseitigen.                                                                                                             |
| [PArA]                         | Fehlerhafter Datensatz                                                                          | Auf Werkseinstellungen zurücksetzen $(\rightarrow 11.5)$ .                                                                          |

#### 12.4 Fehleranzeigen

### 12.5 Ausgangsverhalten in verschiedenen Betriebszuständen

|                             | OUT1                                     | OUT2*                                            |   |
|-----------------------------|------------------------------------------|--------------------------------------------------|---|
| Initialisierung             | AUS                                      | AUS                                              | ] |
| Normalbetrieb               | gemäß Füllstand und<br>Einstellung [ou1] | gemäß Füllstand (420 mA)                         |   |
| Fehlerfall                  | AUS bei FOU1 = OFF;<br>EIN bei FOU1 = On | < 3,6 mA bei FOU2 = OFF<br>> 21 mA bei FOU2 = On |   |
| * Bei Auswahl der Analogfur | nktion [ou2] = [I].                      |                                                  | D |

### **13 Technische Daten**

| 0  |   |
|----|---|
| 51 |   |
| JU |   |
|    | J |

Technische Daten und Maßzeichnung unter www.ifm.com  $\rightarrow$  Neue Suche  $\rightarrow$  Artikelnummer eingeben.

#### Einstellbereiche

| LEnG            | mm      | inch    |
|-----------------|---------|---------|
| Einstellbereich | 1502000 | 6,078,8 |
| Schrittweite    | 5       | 0,2     |

Die Einstellbereiche für die Schaltgrenzen (SPx, rPx, FHx, FLx) sind abhängig von der Sondenlänge (L). Generell gilt:

|              | mm  |        | inch |         |
|--------------|-----|--------|------|---------|
|              | min | max    | min  | max     |
| SPx / FHx    | 15  | L - 30 | 0,6  | L - 1,2 |
| rPx / FLx    | 10  | L - 35 | 0,4  | L - 1,4 |
| Schrittweite | 1   |        | 0,   | 05      |

 rPx / FLx ist stets kleiner als SPx / FHx. Beim Verschieben von SPx / FHx verschiebt sich auch rPx / FLx, sofern nicht das untere Ende des Einstellbereichs erreicht wird. Stets zuerst SPx / FHx einstellen, dann rPx / FLx.

Die Einstellbereiche für Analogstartpunkt (ASP2) und Analogendpunkt (AEP2) sind abhängig von der Sondenlänge (L). Generell gilt:

|              | mm  |        | inch |         |
|--------------|-----|--------|------|---------|
|              | min | max    | min  | max     |
| ASP2         | 0   |        | 0    |         |
| AEP2         |     | L - 30 |      | L - 1,2 |
| Schrittweite | 1   |        | 0,   | 05      |

• Mindestabstand zwischen [ASP2] und [AEP2] = 20 % des Aktiven Bereichs.

# 14 Wartung / Transport

- Prozessanschluss frei halten von Ablagerungen und Fremdkörpern.
- ► Bei starker Verschmutzung: Prozessanschluss und Sonde reinigen.



Zu Reinigungszwecken kann das Gerät aus dem Adapter

herausgeschraubt und die Sonde vom Gerät abgeschraubt werden.

Nach längerem Betrieb können sich Trennschichten im Medium bilden (z. B. Öl auf Wasser). Dies betrifft insbesondere Schwallrohre oder Bypasse:

Trennschichten in regelmäßigen Abständen entfernen (absaugen oder für Durchmischung sorgen). Zusammensetzung prüfen.



Bei Wechsel des Mediums ist möglicherweise eine Anpassung der Geräteeinstellungen erforderlich ( $\rightarrow$  11.2.2 Einstellen auf das Medium).

- Eine Instandsetzung des Geräts ist nicht möglich.
- Gerät nach Gebrauch umweltgerecht gemäß den gültigen nationalen Bestimmungen entsorgen.
- Bei Rücksendungen dafür sorgen, dass das Gerät frei ist von Verunreinigungen, insbesondere von gefährlichen und giftigen Stoffen.

# 14.1 Transport

Für den Transport nur geeignete Verpackungen verwenden, um Beschädigungen des Geräts zu vermeiden.

Ist das Gerät in einer Anlage montiert und wird mit der Anlage transportiert:

Anlage und Gerät gegen Schock und Vibrationen sichern. Sondenstab gegen Auslenkungen und Vibrationen sichern. Unter Umständen an mehreren Punkten fixieren, um ein Aufschwingen labiler Bereiche zu verhindern.

# **15 Werkseinstellung**

|       | Werkseinstellung   | Benutzer-Finstellung |
|-------|--------------------|----------------------|
| SD1   | 50 % MFW*          |                      |
|       |                    |                      |
|       | 0,2 inch unter SP1 |                      |
| ASP2  | 0 % MEW*           |                      |
| AEP2  | 100 % MEW*         |                      |
| tREF  | nonE               |                      |
| dS1   | 0.0                |                      |
| dr1   | 0.0                |                      |
| ou1   | Hno                |                      |
| ou2   | I                  |                      |
| uni   | inch               |                      |
| P-n   | PnP                |                      |
| FOU1  | OFF                |                      |
| FOU2  | OFF                |                      |
| SELd  | L                  |                      |
| dAP   | 0.0                |                      |
| dFo   | 3.0                |                      |
| LEnG  | nonE               |                      |
| MEdl  | nonE               |                      |
| S.LVL | 50 % LEnG          |                      |
| S.Tim | 3                  |                      |
| S.On  | OFF                |                      |

\* MEW = Messbereichsendwert = LEnG-Wert minus 1,2 (in inch).

Bei Eingabe des LEnG-Werts berechnet das Programm die Grundeinstellung.

Weitere Informationen unter www.ifm.com

)E