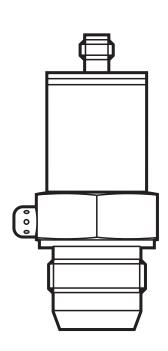


RU



Инструкция по эксплуатации для электронного датчика давления

efectorsod

PL265x

Содержание

1 Введение	2
1.1 Используемые символы	
2 Инструкции по технике безопасности	3
3 Применение в соответствии с назначением	
4 Функция4 4.1 Обработка измеренных сигналов	
5 Установка	6
6 Электрическое подключение	8
7 Эксплуатация	
 8 Программирование / Использование интерфейса EPS RS232 8.1 Схема подключения датчика и EPS интерфейса 8.2 Программирование 8.3 Регулируемые параметры 	10
9 Типовые размеры	12
10 Технические характеристики	
10.1 Диапазоны настройки	15

1 Введение

1.1 Используемые символы

- Инструкция
- > Реакция, результат
- [...] Обозначение кнопок, переключателей и индикации
- → Ссылка на соответствующий раздел
- !

Примечание:

несоблюдение может привести к неправильному функционированию или помехам.

2 Инструкции по технике безопасности

- Внимательно прочитайте инструкцию перед началом установки прибора. Убедитесь в том, что прибор подходит для
- Вашего применения без каких-либо ограничений.
- Несоблюдение данной инструкции по эксплуатации или пренебрежительное отношение к техническим данным может привести к травмам обслуживающего персонала и / или повреждению оборудования.
- Обязательно проверьте совместимость материалов датчика (→ 10 Технические данные) с измеряемой средой.
- Применение в газообразных средах при давлении > 25 бар только после консультации с производителем ifm.

Для соблюдения требований сертификата cULus: Прибор должен питаться от разделительного трансформатора, имеющего плавкий предохранитель на вторичной обмотке.

Защита от сверхтоков				
Площадь сечения кабелей регулируе- мого контура		Максимальная степень защиты прибора		
AWG	(MM ²)	Ампер		
26	(0.13)	1		
24	(0.20)	2		
22	(0.32)	3		
20	(0.52)	5		
18	(0.82)	7		
16	(1.3)	10		

Датчик должен подключаться только при помощи подходящего по своим характеристикам кабеля R/C (CYJV2).

3 Применение в соответствии с назначением

Датчик давления предназначен для измерения давления в системах контроля и управления технологическими процессами и оборудованием.

3.1 Применение

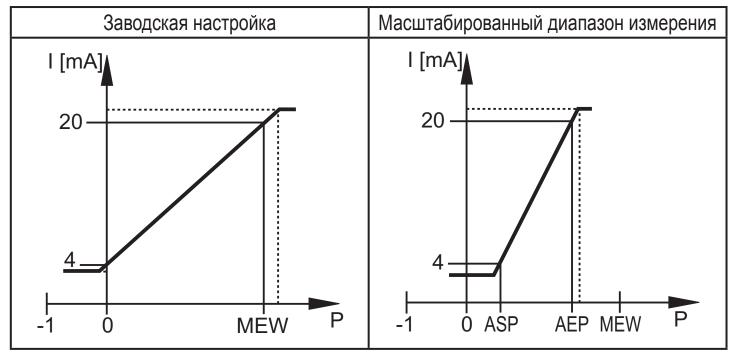
Тип давления: относительное давление

Номер для заказа	Диапазон измерения		Допустимое давление перегрузки		Давление разрушения мембраны	
	bar	PSI	bar	PSI	bar	PSI
PL2652	-1100	-101450	200	2 900	650	9 425
PL2653	-125	-15363	100	1 450	350	5 070
PL2654	-0.510	-7145	50	725	150	2 175
PL2656	-0.132.5	-1.836.3	20	290	50	725
	mbar	PSI	bar	PSI	bar	PSI
PL2657	-501 000	-0.714.5	10	145	30	450
	mbar	inH2O	bar	inH2O	bar	inH2O
PL2658	-12.5250	-5.0100.4	10	4 000	30	12 000

МПа =бар ÷ 10 / кПа= бар × 100

Примите соответствующие меры во избежание возникновения избыточного статического и динамического давления, превышающих давление перегрузки.

Не превышайте указанного разрывного давления. Прибор может быть разрушен даже при кратковременном превышении разрывного давления. ПРИМЕЧАНИЕ: Опасность поражения электрическим током!


4 Функция

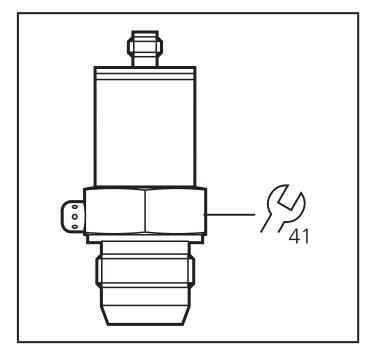
4.1 Обработка измеренных сигналов

Прибор преобразует давление в системе в аналоговый выходной сигнал (4...20 мА).

Диапазон измерения можно масштабировать до 25 % от верхнего предела измерения.

- При помощи настройки параметра ASP задается значение, при котором выходной сигнал будет равен 4 мА.
- При помощи настройки параметра АЕР задается значение, при котором выходной сигнал будет равен 20 мА.

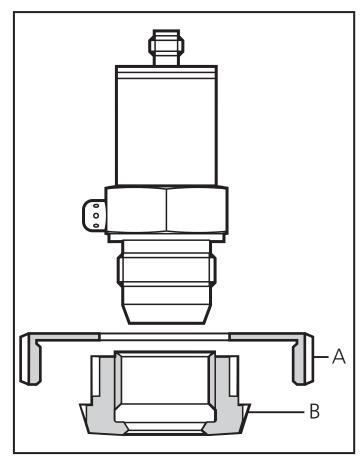
P = давление в системе, MEW = предельное значение диапазона измерения


Выходной сигнал между 4 и 20 мА. Также отображается:

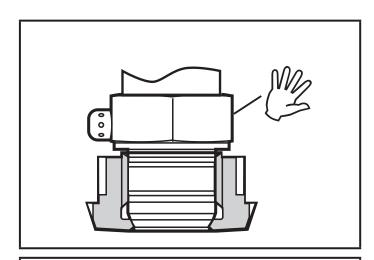
- Давление в системе выше диапазона измерения: выходной сигнал > 20 мА
- Давление в системе ниже диапазона измерения: выходной сигнал между 4 и 3.2 мА.

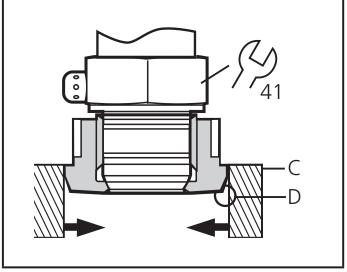
Прибор готов к эксплуатации. Заводская настройка: без масштабирования (ASP = 0 бар; AEP = 100% от конечной величины диапазона измерения).

5 Установка


- Перед началом работ по установке и снятию прибора убедитесь, что в системе отсутствует давление.
- Слегка смажьте резьбу датчика смазкой, подходящей и одобренной для применения.
- ▶ Вкрутите датчик в присоединительный фитинг G 1.
- Затяните датчик с помощью гаечного ключа.
 Момент затяжки: 20 Нм.

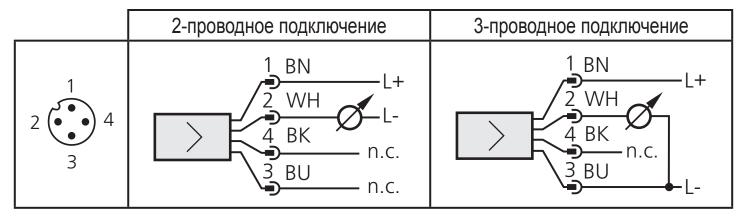
Установка приборов осуществляется с помощью различных присоединительных фитингов G 1. Присоединительные фитинги G 1 можо заказать отдельно (см. принадлежности).


- Смонтируйте адаптер (В) к датчику.
- Закрепите датчик + адаптер с помощью накидной гайки, зажимного фланца или другого крепления (А) к резьбовому соединению.


Если элемент крепления (A) невозможно продеть через верх датчика, то наденьте его через низ датчика до начала установки адаптера.

Установка адаптера

- Слегка смажьте область контакта и адаптера смазкой, подходящей и одобренной для Вашего применения.
- ▶ Вверните прибор в адаптер до упора. Будьте осторожны и не повредите уплотняющую поверхность.
- Скрепите датчик и адаптер в зажимном устройстве (С). Слегка затяните зажимное устройство так, чтобы адаптер не деформировался. При этом уплотняющие поверхности (D) не должны быть повреждены.
- ▶ Затяните датчик с помощью гаечного ключа . Момент затяжки: 20 Нм.


ПРИМЕЧАНИЕ: Гарантия долгосрочной и стабильной герметичности гигиенического металлического уплотнителя (соединение Aseptoflex) действительна только для однократной установки.

Вварной адаптер

Сначала вварите адаптер, затем установите датчик. Соблюдайте инструкции по установке датчика с адаптером.

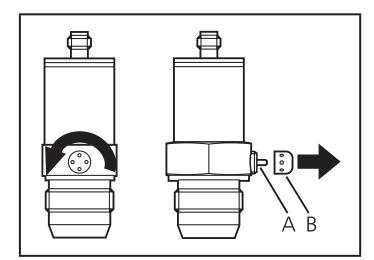
6 Электрическое подключение

- !
- К работам по установке и вводу в эксплуатацию допускаются только квалифицированные специалисты электрики.
- Придерживайтесь действующих государственных и международных норм и правил по монтажу электротехнического оборудования. Напряжение питания соответствует EN50178, SELV, PELV.
- ▶ Отключите электропитание.
- Подключайте прибор согласно данной схеме:

Цвета жил ifm:

1 = BN (коричневый), 2 = WH (белый), 3 = BU (синий), 4 = BK (черный)

7 Эксплуатация

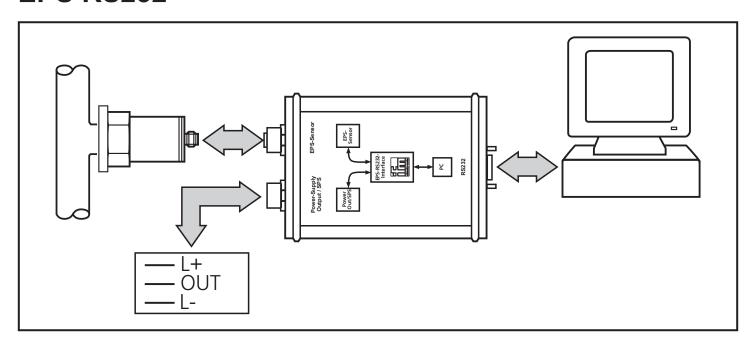

После подачи напряжения питания прибор находится в Режиме измерения (= нормальный режим эксплуатации). Он выполняет измерения и обработку результатов измерений и выдаёт аналоговый сигнал, пропорциональный давлению в системе.

7.1 Очистка крышки фильтра

Если на крышке фильтра датчика образуются вязкие отложения (которые приводят к ухудшению абсолютной точности измерений), то необходимо ее почистить.

- Отверните крышку фильтра (В) (ипользуйте для этого плоскогубцы с изоляцией).
- ► Тщательно очистите крышку.

К работам по очистке воздушного клапана (А) допускается только квалифицированный персонал, необходима особая осторожность.



Возможные остатки отложений (загрязнений) не должны уплотняться и вдавливаться в воздушный клапан. Они могут привести к засорению системы фильтрации и понизить точность измерения датчика.

▶ Плотно заверните крышку фильтра в исходное положение.

Датчик имеет высокую степень защиты и подходит для использования даже в сложных условиях внешней среды (степень защиты IP 67). С помощью специальных принадлежностей можно повысить степень защиты (номер заказа E30043).

8 Программирование / Использование интерфейса EPS RS232

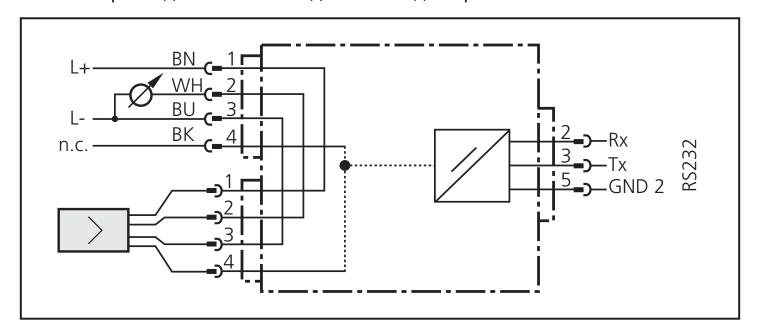
- ► Соединить датчик с ПК при помощи интерфейса EPS-RS232 (номер заказа E30066).
- > Питание датчика напряжением осуществляется через интерфейс.
- > Он обеспечивает непрерывную передачу данных (измеренные значения, аналоговый сигнал и настройки параметров).

Благодаря этому возможно следующее:

- Удаленная индикация{Индикация текущего давления на дисплее прибора или на ПК.
- Удаленная оценка { Вывод токового аналогового сигнала.
- Программирование / дистанционное программирование датчика { Масштабирование диапазона измерения, демпфирование аналогового выхода, калибровка датчика. Параметры задаются перед установкой и настройкой датчика или во время его работы.

Если Вы вносите изменения параметров во время эксплуатации, то возможны нарушения в работе оборудования. Убедитесь в том, что такая возможность предотвращена.

8.1 Схема подключения датчика и EPS интерфейса


Перед установкой датчика с использованием EPS интерфейса необходимо обеспечить соответствующее питающее напряжение (блок питания 24B; ifm номер заказа E30080).

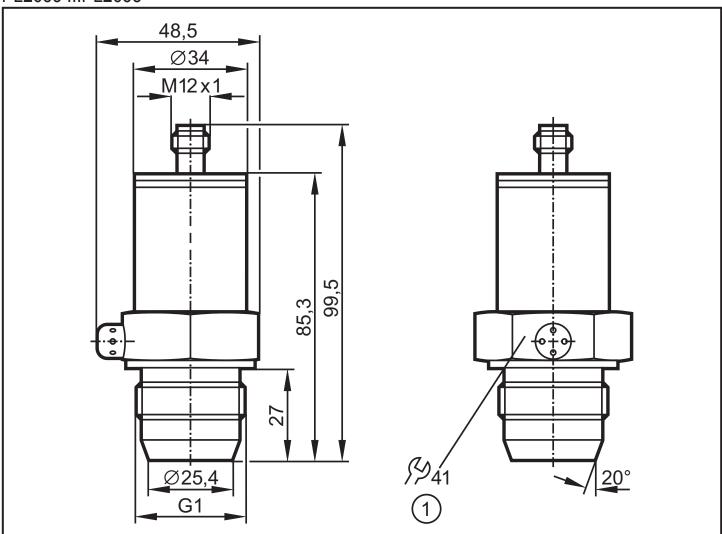
Для мобильного использования интерфейса после установки датчика необходимо:

Отключите питание перед подключением устройства.

Не разъединяйте эти соединения под напряжением.

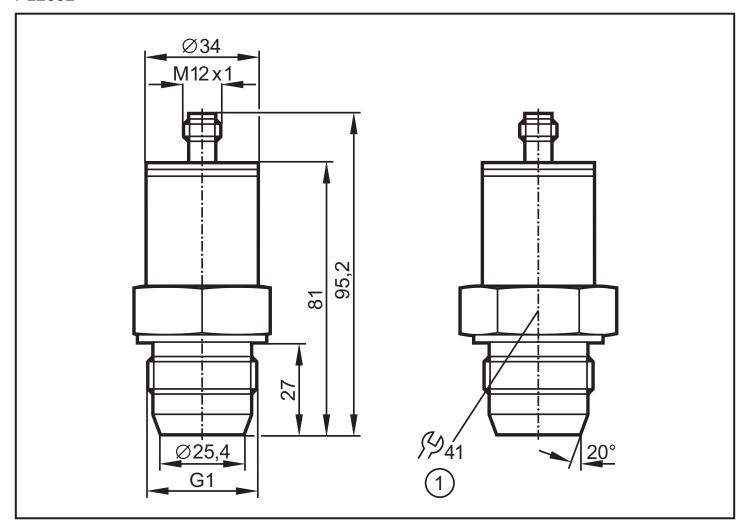
8.2 Программирование

Используйте, пожалуйста, сервисную программу FDT для программирования датчика (номер для заказа E30110).


Интерфейс EPS RS-232, сервисная программа FDT, блок питания и соединительный кабель предлагаются в комплекте (номер для заказа ZZ0050).

8.3 Регулируемые параметры

ASP	Аналоговая пусковая точка Измеренное значение, при котором выдается ток 20 мА.
AEP	Аналоговая конечная точка Измеренное значение, при котором выдается ток 4 мА. Минимальное расстояние между ASP и AEP = 25% верхнего предела измерения.
HI LO	Память для максимального и минимального значений давления • HI: индикация максимального измеренного значения давления. • LO: индикация минимального измеренного значения давления.
COF	Сдвиг калибровки Измеренное датчиком значение (рабочее значение датчика) смещается относительно реального значения. • Диапазон настройки: -5 +5% значение верхнего предела измерения (с масштабированием согласно заводской настройке (ASP = 0 бар и AEP = предельное значение диапазона измерения) с шагом в 0.1% верхнего предела измерения.
CAr	Сброс калибровки Сброс заданной калибровки СОF.
dAA	Демпфирование для аналогового выхода Эта функция позволяет отфильтровать кратковременные или высокочастотные пики колебания давления. dAA-значение = времени реагирования между изменением давления и изменением статуса переключения в миллисекундах (мс). • Диапазон настройки: 0 (= функция dAA не активна) / 0.1 c / 0.5 c / 2 c
Uni	Дисплей Измеренные значения и значения параметров ASP / AEP могут отображаться в следующих единицах измерения: бар, миллибар, фунт/на кв.дюйм, МПа, кПа, дюймы вод.ст.(только PL2658), мм вод.ст. (только PL2658).
diS	Настройка дисплея d1 / d2 / d3 = обновление измеренного значения каждые 50 мс/ 200 мс / 600 мс. Интервал обновления относится только к дисплею. ph = кратковременная индикация пикового значения давления (peak hold).


9 Типовые размеры

PL2653 ...PL2658

Размеры в мм

1: Момент затяжки 20 Нм

Размеры в мм

1: Момент затяжки 20 Нм

10 Технические характеристики

Рабочее напряжение [B]		14 30 DC
Рабочее напряжение для интерфейса EPS с	датчиком [В]1	5.530 DC
защита от переполюсовки / перегрузок по ток		
Аналоговый выход		420 мА
Макс. нагрузка [Ω]		
Миним. время срабатывания аналогового вы		
Точность /погрешность (в % верхнего предел	а измерения) ¹⁾	
- Отклонение от характеристики (линейность		
повторяемость)2)	•	< ± 0.6
- Линейность		
- Гистерезис		
- Повторяемость (с колебаниями температур		
- Долговременная стабильность (в % верхне	го предела измерения за год	$< \pm 0.1$
Температурный коэффициент в компенсиров	занном температурном диапа:	зоне 0
80°С в % верхнего предела измерения 10 K)		
	PL2652PL2657	PL2658
Макс. темпер. коэффициент нулевой точки	< ± 0.1	< ± 0.1
Макс. темпер. коэффициент диапазона	< ± 0.2	< ± 0.4
измерения	\ ± 0.2	\ \ \ \ U.4
Материалы корпуса в контакте с изм. средой		
нержавеющая сталь 316L / 1.4435; хара		< 0 4 / R7 4
пержавеющая оталь отост т. 4400, харс	керамика (99.9 % АІ2	
Материалы корпуса не	рж. сталь 316L / 1.4404; PEI; F	, .
Степень защиты		
Класс защиты		
Сопротивление изоляции [МΩ]	> 100	(500 V DC)
Ударопрочность [g]	50 (DIN / IEC 68-	2-27, 11мс)
Виброустойчивость [g]	20 (DIN / ÎEC 68-2-6, 10) - 2000 Гц)
Мин. кол-во циклов		
Рабочая температура [°C] 2580		
Температура измеряемой среды [°С]		2580
Температура хранения [°C]		
EMC EN 61000-4-2 ESD:		
EN 61000-4-3 ВЧ излучение:		
EN 61000-4-4 Всплеск:		
EN 61000-4-6 ВЧ проводимость:		10 B

¹⁾ все данные указаны в масштабе 1:1 2) настройка порогового значения согласно DIN 16086

10.1 Диапазоны настройки

		AS	ASP		AEP		
		min	max	min	max	ΔΡ	
PL2652	bar	-1.0	75.0	24.0	100.0	0.1	
	PSI	-10	1090	350	1450	10	
PI	MPa	-0.10	7.50	2.40	10.00	0.01	
53	bar	-1.0	18.8	5.3	25.0	0.1	
PL2653	PSI	-15	272	76	363	1	
<u></u>	MPa	-0.10	1.88	0.53	2.50	0.01	
54	bar	-0.50	7.49	2.00	9.99	0.01	
PL2654	PSI	-7	109	29	145	1	
	kPa	-50	749	200	999	1	
26	bar	-0.13	1.88	0.50	2.50	0.01	
PL2656	PSI	-1.8	27.2	7.3	36.3	0.1	
<u></u>	kPa	-13	188	50	250	1	
22	mbar	-50	749	200	999	1	
PL2657	PSI	-0.7	10.9	2.9	14.5	0.1	
	kPa	-5.0	74.9	20.0	99.9	0.1	
	mbar	-12.5	100.0	50.0	250.0	0.5	
PL2658	kPa	-1.25	10.00	5.00	25.00	0.05	
	inH₂O	-5.0	40.2	20.2	100.4	0.2	
	mmWS	-125	1020	515	2550	5	

ΔР = шаг приращения

Подробная информация на сайте: www.ifm.com