

사용 설명서 아날로그 디스플레이 DP2200

CE

목차

1	서문 1.1 심볼마크 및 경고	.5 .5
2	안전에 관한 안내사항 2.1 일반사항 2.2 타겟 그룹 2.3 전기적 연결	.6 .6 .6
3	기능 및 특징 3.1 블록 다이어그램 3.2 일반 어플리케이션 및 기능 3.3 IO Link가 없는 독립형 디바이스로 사용 3.4 IO Link 디바이스로서 어플리케이션 3.4.1 일반정보 3.4.2 기능 3.4.3 IO 디바이스 설명 (IODD)	.7 .7 .8 .9 .9
4	작동 및 디스플레이 부 4.1 누름 링 (버튼) 4.2 LEDs 4.3 디스플레이 4.3.1 측정된 전류 값의 표시	11 11 12 12 12
5	설치	13
6	전기적 연결 6.1 접속 케이블의 최대 길이	14 14
7	작동 7.1 기능 출력 1 7.2 기능 출력 2	15 15 15
8	파라메터 8.1 일반사항 8.2 메뉴 구조 8.3 메인 메뉴 파라메터 8.3.1 SP1/rP1 - 세트 포인트/리셋 포인트 OUT1 8.3.2 FH1/FL1 - 윈도 기능을 위한 최소/최대 스위칭 한계 8.3.3 EF - 확장된 기능.	16 16 17 18 18 19

8.4 확장된 기능의 파라메터화 (EF)	20
8.4.1 rES – 공장설정상태로의 복귀	20
8.4.2 A.trm – OUT2를 위한 아날로그 종단	20
8.4.3 ou1-OUT1을 위한 출력기능	20
8.4.4 dS1/dr1-OUT1을 위한 스위칭 지연 / switch-off 지연	20
8.4.5 ScAL-디스플레이된 값 스케일링	20
8.4.6 C.ASP/C.AEP - 고객 맞춤형 아날로그 시작/종료 포인트	21
8.4.7 coLr-디스플레이 색상 및 색상 변경	22
8.4.8 cFH/cFL – 색상 변경을 위한 상위/하위값	22
8.4.9 diS-표시된 값이 재생되는 빈도	23 _{KR}
8.4.10 Lo/Hi-최소/최대 측정된 입력값	23
8.4.11 dAP-댐핑	23
8.5 IO Link를 통한 파라메터	24
8.5.1 C.uni – 고객 맞춤혐 유닛	24
8.5.2 S.Loc – 소프트웨어 잠김	24
8.5.3 어플리케이션 맞춤형 태그	24
8.5.4 [Hi] 및 [Lo] 메모리 리셋	24
9 파라메터 세팅	25
9.1 일반 파라메터 세팅	25
9.2 프로그래밍 사례 [ou1] - OUT1을 위한 출력 기능	25
9.3 프로그래밍에 유희하십시오	26
9.3.1 잠금 / 잠금해제	26
9.3.2 Timeout	27
9.3.3 메인 메뉴에서 확장 기능 메뉴로 변경	27
9.3.4 [▼] 또는 [▲]	27
10 도면	28
11 기수 자리	28
11 1 10 Link CIHO人	20 20
11 2 인증 / 표준	29 20
11.2.1 UL에 대한 참조	
40 그자 스킈	04
니 보 ㅎ ㅜ 디	

13 유지보수, 수리 및 폐기	
13.1 유지보수	
13.2 하우징 표면 세척	
13.3 수리	
13.4 배치	
14 파라메터 목록 및 공장설정	33

1 서문

본 문서는 임계값 디스플레이 DP2200에 적용됩니다. 디바이스가 사용되는 한 본 문서는 보관되어야 합니다.

경고 Δ

본 사용 설명서의 경고 주의사항을 및 안전에 관한 안내사항을 준수하십시오 (→ 2 안전에 관한 안내사항).

1.1 심볼마크 및 경고

- 설명서
- 반응, 결과 >
- 누름버튼, 스위치 또는 표시 지정 [...]
- 참고사항 \rightarrow
- 주의사항 !
- 부주의한 사용은 오작동이나 장애를 초래합니다.

ſ	0	
	กั	
	JL	

정보 ┛ 추가 참고문

경고 Λ

심각한 인체 상해에 대한 경고사망 또는 중상 등 심각한 부상을 초래할 수 있습니다.

2 안전에 관한 안내사항

2.1 일반사항

안전사항을 준수하십시오. 다음의 참고문에 유의하지 않거나 사용에 관한 정해진 규정을 지키지 않은 사용, 잘못된 설치 또는 취급은 사람과 설비의 안전에 영향을 미칠 수 있습니다.

설치 및 연결은 해당되는 국내 및 해외의 표준을 준수하여야 합니다. 책임은 유닛을 설치하는 사람에게 있습니다.

시스템 설치자는 디바이스가 통합된 시스템의 안전을 담당합니다.

2.2 타겟 그룹

디바이스는 반드시 자격을 갖춘 전기 기술자에 의하여 설치, 접속 그리고 가동시켜야 합니다.

2.3 전기적 연결

유닛을 취급하기 전에 외부 장치의 연결을 차단하십시오. 이 전압은 연결된 센서에 추가 조치없이 공급되므로 SELV (safety extra-low voltage)가 준수된 외부 전압이 생성 및 공급되는지 확인하십시오. 디바이스의 SELV 회로와 연결된 모든 시그널의 배선은 SELV 기준 (안전 초 저전압, 다른 전기 회로와의 안전한 전기 절연)을 준수해야 합니다. 외부에서 공급되거나 내부에서 생성된 SELV 전압이 외부로 접지된 경우, 해당국가 설치규정에 따라 사용자에게 책임이 있습니다. 본 사용설명서의 모든 내용은 접지되지 않은 SELV 전압 유닛에 관한 내용입니다. 기술 데이터에 표시된 값을 초과하는 전류 사용은 허용되지 않습니다.

3 기능 및 특징

3.1 블록 다이어그램

디바이스 입력/출력

- 1: IN (아날로그 입력 I_N)
- 2: OUT1 (디지털 출력)
- 3: OUT2 (아날로그 출력 I_{out} = I_{IN})

A.trm = 아날로그 종단 OUT2 *) 선택 가능한 내부 부하

- **) 외부 부하 (옵션)
- ▶ 아날로그 입력의 전류 루프가 종료되어야 합니다 하나의 부하만 내부 또는

3.2 일반 어플리케이션 및 기능

본 디바이스는 연결된 센서 또는 아날로그 출력 (4 ... 20 mA)이 있는 다른 디바이스에서 아날로그 신호 (4 ... 20 mA)를 평가하는데 사용됩니다. 디스플레이는 하나의 전류 입력과 두개 출력을 보유합니다. 출력 1 (디지털)과 선택적으로 출력 2 (아날로그 전류 출력) I 디바이스는 실내 사용용도 입니다. 작동 조건을 준수하십시오 (→ 11 기술 자료). 기본적으로 디바이스를 작동할 수 있는 두 가지 모드가 있습니다:

 독립형 디바이스로서 디바이스는 측정된 현재 값을 설정된 파라메터와 비교하고 선택된 파라메터에 따라 출력을 전환합니다. 이 모드에는 IO Link 기능이 없습니다. 그러나 파라메터는 IO Link 툴을 사용하여 설정될 수도 있습니다. • IO Link 디바이스로서 디바이스는 "아날로그 / IO Link 변환기"로 작동합니다. 측정된 전류값의 평가는 IO Link 툴 또는 IO Link 통신을 통한 PLC로 설정되거나 디바이스에서 직접 설정되는 파라메터에 의존합니다.

Ŋ IO Link 툴 또는 PLC를 통한 파라메터 설정이 메뉴를 통한 파라메터 설정과 몇가지 포인트에 있어서 다릅니다 (→ 8 파라메터).

3.3 IO Link가 없는 독립형 디바이스로 사용

본 디바이스는 측정된 전류값을 설정된 파라메터와 비교하고 선택된 기능에 따라 출력을 전환합니다 (→ 7 작동).

측정값은 알파벳숫자 디스플레이에 표시됩니다. 표시된 값은 사용자가 조정할 수 있습니다 (2 포인트 스케일링).

IO Link 마스터가 없는 어플리케이션 사례

- 1: 아날로그 출력을 보유한 센서 (예: 압력 센서)
- 2: 임계값 디스플레이
- 3: 디지털 출력
- 4: 아날로그 입력 신호를 통한 루핑

- 5: 스위칭 앰프
- 6: 전기적 모터, 밸브 등을
 - 스위칭하기 위한 릴레이 출력

3.4 IO Link 디바이스로서 어플리케이션

3.4.1 일반정보

본 유닛은 작동을 위하여 IO Link 가능 모듈 (IO Link 마스터)을 요구하는 IO Link 커뮤니케이션 인터페이스를 보유합니다.

IO Link 인터페이스는 프로세스 및 진단 데이터에 직접 액세스를 가능하게 하고, 작동 진행중인 파라메터 세팅에 대한 가능성을 제공합니다.

포인트-투-포인트 접속을 통한 파라메터 세팅이 가능합니다. IO Link에 대한 추가 정보와 필요한 IO Link 하드웨어 및 소프트웨어에 대한 모든 필수정보는 다음에서 찾을 수 있습니다:www.ifm.com/kr/io-link.

IO Link 마스터를 보유한 어플리케이션 사례

- 1: 아날로그 센서 (예: 압력센서)
- 2: 임계값 디스플레이
- 3: 완전 양방향 IO Link 커뮤니케이션
 - 원격 디스플레이: 측정된 전류 읽기 및 디스플레이
 - 원격 파라메터 세팅: 현재 파라메터 설정값을 읽고 변경
- 4: 아날로그 입력 시그널을 통한 루핑
- 5: IO Link 마스터
- 6: 필드버스 (예: Profibus, Profinet 등)
- 7: PLC

3.4.2 기능

IO Link SIO 모드에서 디바이스는 독립형 디바이스와 동일한 기능을 보유합니다. 측정된 값 또한 표시됩니다.

또한, 측정된 전류를 변환하여 IO Link 연결을 통해 PLC로 전송합니다.

3.4.3 IO 디바이스 설명 (IODD)

IO Link 유닛 구성을 위하여 요구되는 IODDs와 프로세스 데이터 구조에 관한 상세정보, 진단정보 및 파라메터 어드레스 등은 www.ifm.com/kr/io-link에서 찾아 보실 수 있습니다:

www.ifm.com

4 작동 및 디스플레이 부

여기 그림은 예로써 눌려진 [•] 버튼을

보여줍니다.

- 1: 누름 링 (버튼)
- 2: LEDs
- 3: 디스플레이
- 4.1 누름 링 (버튼)
- ▶ [esc], [●], [▼] 또는 [▲]를 실행하기 위하여 상응하는 누름 링의 코너를 누르십시오.

버튼		기능
[esc]	Escape	메뉴로 돌아가십시오. 새 값을 저장하지 않고 파라메터 설정을 종료하십시오.
[•]	Enter	메뉴 모드 Enter (→ 8.2 메뉴 구조) 파라메터의 선택 및 파라메터 값 확인
[▼]	다운 (down)	파라메터의 선택 파라메터 값 설정 (누른 채로 스크롤, 반복적인 누름으로 증가)
[▲]	업 (up)	

동작모드에서 [▼] 또는 [▲]버튼을 1 초 동안 누르면 단위가 표시됩니다. 표시된 단위는 파라메터 C.uni 에 의존합니다 (→ 8.5).

4.2 LEDs

LED		색상	상태	설명	
1	OUT1	황색	On	출력 1 이 스위칭 됩니다.	
전원		녹색	On	전압 공급 OK동작모드에 있는 디바이스	
			Off	프로그래밍 모드에 있는 디바이스	
	-	-	-	NO 기능	

오류 신호 및 진단(→ 12 고장 수리)

4.3 디스플레이

색상	설명
적색 / 녹색	7 세그먼트 LED 디스플레이, 4 자릿수, 색상 전환

오류 신호 및 진단(→ 12 고장 수리)

동작모드에서 입력 전류 값이 표시됩니다. 스케일링은 파라메터 ScAL 에 의존합니다 (→ 8.4.5).

4.3.1 측정된 전류 값의 표시

- 1: 측정된 데이터 없음
- 2: 범위 미만의 입력 전류 (-)
- 3: 범위 이상의 입력 전류 (+)
- 4: 표시된 메시지 또는 표시된 값입력 전류는 스케일링 없이 여기에 표시됩니다.
- nPrb: 센서 없음
- UL: 프로세스 값이 너무
 - 낮음
- OL: 프로세스 값이 너무 높음
 - 음 ᄼᆐᆌᇧᄼᄢ
 - 💯 히스테리시스 범위

5 설치

필요한 경우, 디바이스를 마운팅 클립으로 고정시킬 수 있습니다.

마운팅 클립 (M4 나사 또는 케이블 타이로 조이십시오) 디스플레이가 부착된 마운팅 클립

마운팅 클립은 디바이스와 함께 제공되지 않습니다.

사용 가능한 액세서리에 대한 상세 정보: www.ifm.com

6 전기적 연결

🛕 경고

본 제품의 설치는 반드시 전문직업교육을 받은 전문가에 의해 이루어져야 합니다.국내 및 해외의 전기장비 연결 및 설치에 대한 규정을 준수하여야 합니다. SELV, PELV을 준수한 전압공급

▲ 경고 > 공급전압을 보호하십시오. <u>포텐셜</u> M12 커넥터 (1) 퓨즈 L+ / 공급 전압 Pin 1 ≤ 2 A 타임-태그 > 또는 IEC 61010-1에 따른 제한된 에너지 회로를 통하여 공급하십시오.

▶ 전원을 차단하십시오.
 ▶ 아래 도표에 따라 디바이스를 연결하십시오.

핀	4극 M12 커넥터 (1)
1	L+ / 공급 전압
2	OUT2: 아날로그 출력
3	L- / 공급 전압
4	OUT1: 디지털 출력 (SIO) / IO Link

핀	5극 M12 소켓 (2)
1	L+ / 센서 공급
2	아날로그 입력 (420 mA)
3	L- / 센서 공급
4	사용되지 않음
5	사용되지 않음

1: 평가 측면

2: 센서 측면

· 센서 또는 다른 디바이스를 본 제품에 연결하는 경우 항 상 예정된 연결 케이블을 사용하십시오.

어플리케이션 사례를 참고 하십시오 (→ 3 기능 및 특징).

【】 M12 커넥터를 단단히 조여 보호 등급을 확실히 하십시오. 보호 등급 (→ 11 기술 자료).

6.1 접속 케이블의 최대 길이

각 측면에 IO Link가 없는 경우: 30 m마스터 측면에 IO Link 커뮤니케이션: 20 m

▶ 모든 케이블에는 커넥터 뒷면에 최소 200mm의 스트레인 릴리프가

• 제공되어야 합니다.

7 작동

디바이스에 전원공급이 인가되면 동작모드가 시작됩니다 (SIO). 측정 및 평가 기능을 수행하고 설정 파라메터에 따라 출력 시그널을 생성합니다 (→ 8 파라메터).

7.1 기능 출력 1

OUT1 (커넥터, 핀 4):

- 디지털 출력 (설정된 스위칭 기능에 따른 상태)
- IO Link 인터페이스

선택 가능한 스위칭 기능:

- 히스테리시스 기능, normally open / normally closed (→ 8.3.1)
- 윈도 기능, normally open / normally closed (→ 8.3.2)

OUT1은 설정된 스위치 한계점이 초과 또는 미달되는 경우에 그의 상태를 변경합니다. 먼저 세트 포인트 SP1이 설정되고, 리셋 포인트 rP1이 설정됩니다 (→ 8.3.1).

● 이렇게 정의된 히스테리시스는 SP1이 변경되는 경우에도 여전히 남아 있습니다. 파라메터 rP1을 변경하면 히스테리시스도 변경됩니다. 윈도의 폭은 FH1과 FL1 사이의 간격에 의해 설정됩니다. FH1 = 상위값 FL1 = 하위값

7.2 기능 출력 2

OUT2 (커넥터, 핀 2):

• 아날로그 출력 (아날로그 입력 시그널을 통한 루핑)

8 파라메터

8.1 일반사항

동작모드 (독립형 디바이스 / SIO 또는 IO Link 디바이스)와 관계없이 디바이스의 파라메터를 설정하는 두 가지 옵션이 있습니다.

- 메뉴를 통해 디바이스에 직접
- 또는 IO Link 툴을 통함

IO Link 툴을 통한 액세스는 메뉴를 통한 파라메터 설정보다 우선순위가 높습니다.

- □ 일부 파라메터는 IO Link 인터페이스를 통해서만 설정될 수
- [] 월두 페니페리는 IQ Emme _ 있습니다 (→ 8.5 IO Link를 통한 파라메터).

IDLINK로 잠겨진 경우 IOLINK 인터페이스를 통해서만 잠금해제 될 수 있습니다(→ 8.5.2 S.Loc – 소프트웨어 잠김).

스케일링 파라메터인 ScAL은 디스플레이에만 영향을 미치며 프로세스 데이터 전송 또는 실제 스위칭 임계값에는 영향을 미치지 않습니다.

IO Link 전류값은 항상 μA (→ 4.3.1 측정된 전류 값의 표시). 스위칭 임계값은 0.01mA 단위로 설정될 수 있습니다.

① 스케일링이 설정된 경우 스위칭 임계값 (SP, rP 등)의 메뉴 설정 또한 조정됩니다. 그러나 IO Link를 통해 설정은 0.01mA 단위로 계속 표시되고 실행됩니다 (해상도 14 bits). 8.2 메뉴 구조

1: 동작 모드 (→ 7)

- 2: 메인메뉴 (→ 8.3)
- 3: 확장된 기능 (→ 8.4)

파라메터 목록 및 공장설정 (→ 14)

8.3 메인 메뉴 파라메터

8.3.1 SP1/rP1 – 세트 포인트/리셋 포인트 OUT1 OUT1이 히스테리시스 세팅으로 스위칭된 경우, 측정 전류의 상한값 / 하한값 히스테리시스 기능 [Hno] 또는 [Hnc]가 [ou1]에 설정된 경우에만 표시됩니다.

히스테리시스 기능

ງິ

- ▶ [SP1]을 선택하고 출력이 스위칭된 값을 설정합니다.
- ▶ [rP1]을 선택하고 출력이 리셋된 값을 설정합니다.
- [rP1]은 [SP1]보다 항상 낮습니다. 본 제품은 [SP1]보다 낮은 값만을 고 수용합니다.

[rP1]은 [SP1]의 변경 사항을 따르고 설정된 히스테리시스를 유지합니다.

8.3.2 FH1/FL1 – 윈도 기능을 위한 최소/최대 스위칭 한계 윈도 설정 내에서 OUT1이 스위칭 되는 전류를 측정하기 위한 상한값/하한값 윈도 기능 [Fno] 또는 [Fnc]가 [ou1]로 세팅된 경우에만 파라메터가 표시됩니다.

윈도 기능

- ▶ [FH1]을 선택하고, 상위 한계값을 세팅합니다.
- ▶ [FL1]을 선택하고, 하위 한계값을 세팅합니다.

〗 [FL1]은 [FH1]보다 항상 낮습니다. 〗 보 제품은 [EH1] 보다 나은 가마은

└ 본 제품은 [FH1] 보다 낮은 값만을 수용합니다.

이 [FL1]은 [FH1]의 변경에 따르고 설정된 히스테리시스를 유지합니다.

8.3.3 EF - 확장된 기능 파라메터는 확장된 기능 메뉴를 엽니다. (→ 9.3.3 메인 메뉴에서 확장 기능 메뉴로 변경)

8.4 확장된 기능의 파라메터화 (EF)

8.4.1 rES - 공장설정상태로의 복귀

모든 파라메터를 공장설정상태로 재설정합니다 (→ 14).

- ▶ [rES]을 선택합니다.
- ▶ [●] 버튼을 누르십시오.
- ▶ [▲] 또는 [▼] 버튼을 누르고 [----]가 표시될때까지 누른 상태를 유지합니다.
- ▶ [●] 버튼을 짧게 누르십시오.

8.4.2 A.trm - OUT2를 위한 아날로그 종단

- [OFF] = OUT2가 예를 들어 다른 디바이스의 아날로그 입력에 외부 연결되어 있습니다.
- [On] = OUT2가 연결되지 않고 전류 경로가 내부적으로 종료됩니다.
- ▲ 적절한 전류 측정 및 평가를 위하여 다음 사항에 유의하십시오. 내부 아난르ㄱ 조다이 10~10 글 서퍼드리 = ------

```
▶ 아날로그 종단이 [On]으로 설정되면 출력 OUT2는 연결되지 않아야합니다.
```

8.4.3 ou1 - OUT1을 위한 출력기능

전류 한계값을 위한 스위칭 시그널 (→ 8.3.1) 그리고 (→ 8.3.2)를 참조하십시오.

- [Hno] = 히스테리시스 기능 / normally open
- [Hnc] = 히스테리시스 기능 / normally closed
- [Fno] = 윈도 기능 / normally open
- [Fnc] = 윈도 기능 / normally closed

8.4.4 dS1/dr1 – OUT1을 위한 스위칭 지연 / switch-off 지연

값: 0.0...50.0 초 (0.0 = 지연시간이 활성화되지 않음)

8.4.5 ScAL - 디스플레이된 값 스케일링

세팅은 파라메터 [C.ASP/C.AEP]를 위한 승수와 같이 작용합니다.

- [OFF] = 측정된 전류값은 스케일링되지 않습니다.
- [cccc] = 소수점없는 스케일링 (x 0001)
- [ccc.c] = 1자리 소수점을 사용한 스케일링 (x 000.1)
- [cc.cc] = 2자리 소수점을 사용한 스케일링 (x 00.01)
- [c.ccc] = 3자리 소수점을 사용한 스케일링 (x 0.001)

8.4.6 C.ASP/C.AEP - 고객 맞춤형 아날로그 시작/종료 포인트 스케일링된 디스플레이 값에 대한 세팅 [ScAL]이 [ccc.c], [cc.cc] 또는 [c.ccc]로 세팅되는 경우에만, 파라메터가 디스플레이됩니다. C.ASP 값: 4 mA에 상응하는 -746 ... 9745 C.AEP 값: 20 mA에 상응하는 -366 ... 9366

표시된 모든 전류값이 2-포인트 근사치에 기초하여 삽입됩니다

([SP1]+[rP1], [FH1]+[FL1], [cFH]+[cFL], [Lo]+[Hi]). IO Link 프로세스 데이터 및 파라메터는 스케일링의 영향을받지 않습니다.

C.ASP = 최소값 C.AEP = 최대값

스케일링된 디스플레이 값을 가진 사례

C.ASP = 최대값 C.AEP = 최소값

메뉴 세팅 사례			
ScAL	CCC.C		
C.ASP	0.0		
C.AEP	100.0		
입력	10 mA		
디스플레이	37.5		

8.4.7 coLr - 디스플레이 색상 및 색상 변경 측정 범위 내에서 "적색" 및 "녹색" 디스플레이 색상 할당

- [rEd] = 지속적으로 적색 (측정값에 무관함)
- [GrEn] =지속적으로 녹색 (측정값에 무관함)
- [r1ou] = OUT1이 스위칭되면 적색
- [G1ou] = OUT1이 스위칭되면 녹색

[r1ou]을 가진 히스테리시스 기능

[r1ou]를 가진 윈도 기능

[G1ou]을 가진 히스테리시스 기능

[G1ou]를 가진 윈도 기능

- [r-cF] = 측정된 값이 [cFL]과 [cFH] 값 사이에 있는 경우 적색
- [G-cF] = 측정된 값이 [cFL]과 [cFH] 값 사이에 있는 경우 녹색

8.4.8 cFH/cFL - 색상 변경을 위한 상위/하위값 [coLr]가 [r-cF] 또는 [G-cF]로 세팅된 경우:

▶ [cFH]를 선택하고, 상한값을 세팅합니다. 세팅 범위는 측정된 값과 일치합니다. 가장 낮은 값은 [cFL]입니다.

▶ [cFL]를 선택하고, 하한값을 세팅합니다. 세팅 범위는 측정된 값과 일치합니다. 가장 높은 세팅 값은 [cFH] 입니다.

기능 [r-cF]

b/w 프린트아웃용: gn = 녹색, rd = 적색

8.4.9 diS - 표시된 값이 재생되는 빈도

- [OFF] = 측정값 디스플레이가 동작모드에서 비활성화됨
- [d1] = 50 ms 간격으로 측정값 업데이트
- [d2] = 200 ms 간격으로 측정값 업데이트
- [d3] = 600 ms 간격으로 측정값 업데이트

회 비정상적인 전류 값이 있는 경우에도, [d1]은 최적의 가독성을 제공합니다.

8.4.10 Lo/Hi – 최소/최대 측정된 입력값

- [Lo] = 최소 측정값
- [Hi] = 최대 측정값

메모리 삭제하기:

- ▶ [HI] 또는 [LO]를 선택합니다.
- ▶ [▲] 또는 [▼] 버튼을 누르고 [----]가 표시될때까지 누른 상태를 유지합니다.
- ▶ [●] 버튼을 짧게 누르십시오.

8.4.11 dAP - 댐핑

측정된 아날로그 값의 댐핑설정은 또한 세트 포인트, IO Link 프로세스 데이터 및 디스플레이에 영향을 줍니다.

값: 0.000...4.000 s (T 값: 63 %).0.000의 경우 댐핑은 비활성화 상태임

8.5 IO Link를 통한 파라메터

다음 기능 또는 파라메터는 IO Link 툴을 통해서만 사용할 수 있습니다.

8.5.1 C.uni – 고객 맞춤혐 유닛

최대 4 문자를 가진 고객 맞춤혐 유닛

8.5.2 S.Loc - 소프트웨어 잠김

값: ON/OFF

디바이스는 로컬 메뉴 세팅을 위하여 잠깁니다.

■ IO Link를 통해서만 잠금해제됨

8.5.3 어플리케이션 맞춤형 태그 고객 맞춤형 어플케이션 설명, 최대 32 문자 길이 값: "***" / 고객에 의하여 자유롭게 정의될 수 있습니다. 8.5.4 [Hi] 및 [Lo] 메모리 리셋 양쪽 메모리 리셋: [Hi] 그리고 [Lo]

9 파라메터 세팅

■ 파라메터 값이 설정되는 동안, 본 제품은 동작 모드 상태입니다.
보 제품은 파라메터 선정이 와저히 끝나기 저까지 형재이 파라메

본 제품은 파라메터 설정이 완전히 끝나기 전까지 현재의 파라메터를 가지고 감지기능을 계속 수행하게 됩니다.

9.1 일반 파라메터 세팅

각 파라메터 세팅은 6 단계로 구성됩니다:

단계		버튼	
1	동작모드에서 파라메터 모드로 변경	[•]	
2	요구된 파라메터 [SP1], [rP1]등의 선택	[▼] 또는 [▲]	KR
3	파라메터의 프로그래밍 모드에 대한 변경	[•]	
4	파라메터 값 선택 또는 변경	[▼] 또는 [▲] > 2 초	
5	파라메터 값 세팅 확인	[•]	
6	동작모드로 돌아가기	[esc]	

9.2 프로그래밍 사례 [ou1] - OUT1을 위한 출력 기능

단	계	디스플레이
1	동작모드에서 파라메터 세팅 모드로 변경	
► >	메뉴로 진입하기 위해 [●] 버튼을 누르십시오. 먼저 파라메터가 표시됩니다.	SP :
2	요청된 파라메터, 즉 이경우 [ou1]을 선택하십시오.	
	[EF]가 표시될 때까지 [▼] 버튼을 누르십시오.	CC
	[●] 버튼을 눌러 확장된 기능 메뉴로 이동하십시오.	73
>	확상된 기능의 첫번째 파라메터가 표시됩니다.	r85
•	요청된 파라메터 [ou1]이 표시될 때까지 [▼] 버튼을 누르십시오.	ou i
3	파라메터의 프로그래밍 모드에 대한 변경	
► >	[●] 버튼을 눌러 프로그래밍 모드로 변경하십시오. 현재 세팅값이 디스플레이 됩니다.	Xno

25

4	파라메터 값 (이 경우 [Fnc])을 선택하거나 변경하십시오.	
► >	최소한 2초동안 [▲] 또는 [▼] 버튼을 누르십시오. 현재 설정된 매개 변수 값이 점멸됩니다 (이 경우: [Hno]). 2초 후	
	- 버튼을 누른 상태로 유지하면 값이 지속적으로 변경됩니다. - 버튼을 한 번 누르면 값이 점진적으로 변경됩니다. 절대값 (→ 9.3.4)	۶nc
5	파라메터 값 세팅 확인	
► > >	[●] 버튼을 짧게 누르십시오. 파라메터가 다시 표시됩니다. 새로운 세팅값이 저장됩니다.	ou i
추 ▶	가 파라메터 세팅하기: 원하는 파라메터가 표시 될 때까지 [▲] 또는 [▼] 버튼을 누르십시오.	
6	동작모드로 돌아가기	
	[esc]버튼을 누르십시오. - 현재 측정된 값이 표시될 때까지 [▼] 또는 [▲] 버튼을 몇번 누릅니다. - 또는 타임아웃 기능 (약 30 초)을 기다리십시오.	15:34
> >	디바이스가 다시 동작모드가 됩니다. 현재값이 표시됩니다.	

9.3 프로그래밍에 유의하십시오.

9.3.1 잠금 / 잠금해제

유닛은 전자적 잠금기능으로 원치않는 작동을 방지합니다. 파라메터 값 및 세팅 값이 표시될 수는 있지만 변경될 수는 없습니다. 디바이스를 잠그려면:

- ▶ 본 제품이 일반 동작모드에 있는지 확인해 주십시오.
- ▶ [esc] + [▲] 버튼을 10초동안 동시에 누르십시오.
- > [Loc]이 표시됩니다.
- > 디바이스는 잠금상태가 됩니다.
- > 사용자가 파라메터값을 변경하려고 하면, [Loc]이 짧게 표시됩니다. 잠금해제:
- ▶ [esc] + [▲] 버튼을 10초동안 동시에 누르십시오.
- > [uLoc]이 표시됩니다.

판매시, 디바이스는 잠금이 해제된 상태입니다.

บี

고객 잠금

J 파라미터 값을 변경하고자 시도하는 경우 [C.Loc]가 표시되면, ⅠO Link 통신이 활성화됩니다 (임시 잠금).

- <u>1</u> 소프트웨어 잠금
 - [S.Loc]가 표시되면, 센서는 소프트웨어를 통하여 영구적으로 잠깁니다. 이러한 잠금상태는 파라메터 설정 소프트웨어로만 해제시킬수 있습니다.
- 9.3.2 Timeout

만일 파라메터 설정중에 30초 동안 아무런 버튼도 조작하지 않으면, 본 제품은 변화되지 않은채 동작모드로 되돌아 갑니다.

9.3.3 메인 메뉴에서 확장 기능 메뉴로 변경

- ▶ 메뉴로 진입하기 위해 [●]버튼을 누르십시오.
- ▶ EF가 표시될 때까지 [▲] 또는 [▼] 버튼을 누르십시오.
- ▶ [●] 버튼을 누르십시오.
- > 확장된 기능 메뉴의 첫번째 파라메터가 표시됩니다 ([rES]).

9.3.4 [*] 또는 [▲]

- ▶ 최소 2초동안 [▲] 또는 [▼] 버튼을 누르십시오.
- > 2초 후:
 - 버튼을 누른 상태로 유지하면 값이 지속적으로 변경됩니다.
 - 버튼을 한 번 누르면 값이 점진적으로 변경됩니다.

값은 [▼] 버튼과 함께 점진적으로 감소하고 [▲] 버튼으로 증가합니다

10 도면

치수[mm]

11 기술 자료

동작전압 DC	[V]	1830
정격전압 DC	[V]	24
전원 소모	[W]	≤ 1
센서용 보조 에너지	[V]	동작전압으로 부터
센서 전류	[mA]	≤ 800
센서 타입		아날로그 전류 출력 센서: 420 mA 2선식 또는 3선식 센서
정확성	[% FS]	0.5
보호등급		IP 67 *
주변온도	[°C]	-2560 **
저장온도	[°C]	-2570
최대 허용 상대습도	[%]	90 (31 °C) 선형적으로 50까지 감소 (40 °C) 비응축

최대 동작 고도	[m]	해발 2000
허용 공기 압력	[hPa]	7501060
커넥터		M12 커넥터, 4극 M12 소켓, 5극

*) 나사로 단단히 조여진 M12 커넥터

(→ 6 전기적 연결) **) IO Link 동작 모드에 유효하고 디스플레이가 꺼집니다: -25...70 °C

11.1 IO Link 디바이스

KR

변속기 타입		COM2 (38.4 kBaud)
IO Link 수정버전		1.1
SDCI 표준		IEC 61131-9
IO Link 디바이스 ID		610 d / 00 02 62 h
SIO 모드		Yes
입력 C/Q에서 V0에 대한 입력 부하 전류 (ILL)	[mA]	50
필수 마스터 포트 타입		А
프로세스 데이터 아날로그		IN: 1
프로세스 데이터 바이너리		IN: 1
최소 프로세스 주기시간	[ms]	3.2

11.2 인증 / 표준

EC 적합성 선언, 인증서등은 다음에서 다운로드 할 수 있습니다: www.ifm.com

11.2.1 UL에 대한 참조

전기 공급은 반드시 PELV 회로를 통해서 이루어져야 합니다. 제 9.4 장 UL 61010-1에 따라 제한된 에너지로 디바이스를 공급하십시오.외부 회로는 UL 61010-2-201의 그림 102에서 요구하는대로 절연되어야 합니다.

디바이스는 최소한 다음 조건에서 안전하도록 디자인되었습니다.

- 실내 사용
- 2000 m까지의 고도
- 최대 상대 습도 90 % RH, 비 응축
- 오염등급 3
- 디바이스와 IO Link 디바이스 연결을 위하여 CYJV 2/7/8 카테고리 등급에 적합한UL인증 케이블을 사용하십시오.
- IP 클래스는 UL에서 평가되지 않습니다.
- 디바이스를 세척하는 동안 특별한 처리가 요구되지 않습니다.

12 고장 수리

디스플레이	디스플레이 LED		l이 LED 오류		오류	고장 수리	
	Ι	전원					
OFF	0	0	공급전압이 너무 낮음	공급 전압 확인/수정 (→ 6) 그리고 (→ 11).			
SC1	×		스위칭 출력 OUT1에 대한 과전류	쇼트 및 과전류를 위한 스위칭 출력 OUT1 확인 오류 제거			
C.Loc			활성화된 IO Link 전송으로 잠겨진 누름 버튼을 통한 파레메터 설정	IO Link를 통하여 파라메터 설정이 완료 될 때까지 기다리십시오.	KR		
S.Loc			누름버튼을 통한 파라메터 세팅은 소프트웨어에 의해 비활성화됩니다.	IO Link 인터페이스 / IO Link 파라메터 세팅 소프트웨어를 통해서만 잠금해제가 가능합니다.			
Loc			누름버튼을 통한 파라메터 세팅	잠금 해제 버튼(→ 9.3.1)			
OL		•	프로세스 값이 너무 높음 (측정된 전류 > 21 mA)	연결된 센서 및 전류 범위 확인 (→ 4.3.1)			
UL			프로세스 값이 너무 낮음 (측정된 전류 < 3.6 mA)	OUT2에 대한 내부 또는 외부 아날로그 종단 설정 확인			
nPrb			모든 센서가 아날로그 입력에 연결되지 않았습니다.	(→ 8.4.2).			

리젠드:

O Off

● On ● 점멸됨

any ---

13 유지보수, 수리 및 폐기

13.1 유지보수

유닛은 정비보수를 필요로하지 않습니다.

13.2 하우징 표면 세척

- ▶ 디바이스 분리
- 화학 처리되지 않은 부드럽고 마른 천을 사용하여 디바이스의 먼지를 세척하십시오.

<u>회</u> 화학 첨가물이 없는 광학 섬유를 사용하는 것이 좋습니다.

13.3 수리

고장난 센서의 수리는 반드시 제조업체에 문의하십시오.

▶ 사용안전 설명서를 참조하십시오!

13.4 배치

▶ 국가 환경 규정에 따라 디바이스를 폐기하십시오.

14 파라메터 목록 및 공장설정

파라메터		공장설정	사용자 설정
SP1/FH1	세트 포인트 OUT1	6.00	
rP1/FL1	리셋 포인트 OUT1	5.00	
A.trm	아날로그 종료 OUT2	On	□ OFF □ On
ou1	출력 기능 OUT1	Hno	 ☐ Hno ☐ Hnc ☐ Fno ☐ Fnc
dS1	스위칭 지연 OUT1	0.0 s	
dr1	리셋 지연 OUT1	0.0 s	
ScAL	스케일링 값	OFF	 □ OFF □ cccc □ ccc.c □ cc.cc □ c.ccc
C.ASP	사용자 정의된 아날로그 시작 포인트		
C.AEP	사용자 정의된 아날로그 종료 포인트		
C.uni *	사용자 정의된 유닛	mA	
coLr	컬러 디스플레이	rEd	 □ rEd □ GrEn □ r1ou □ G1ou □ r-cF □ G-cF
cFH	색상 변경, 상한값	20.00	
cFL	색상 변경, 하한값	4.00	
diS	디스플레이 새로 기억되는 빈도	d2 (200 ms)	 □ OFF □ d1 (50 ms) □ d2 (200 ms) □ d3 (600 ms)
Lo	더 낮은 측정입력값		
Hi	더 높은 측정 입력값		
dAP	측정된 아날로그 값의 댐핑	0,060 s (= 60 ms)	

*) IO Link 및 파라메터 설정 소프트웨어를 통해서만 구성 가능 (→ 8.5)