

Digital display laser displacement/range sensor

Precautions

- Please do not use in the following environment
- O Direct sunlight
- O Places with high humidity or easy condensation
- O Places containing corrosive gases
- O Places subject to severe vibration or shock
- Connection and installation
- $\ensuremath{\mathbb{O}}$ Do not use the sensor in an unstable state immediately after the power is turned on, it is recommended to test after 30 minutes of power on to achieve desired accuracy
- © Be sure to carry out wiring with the power off. If a wrong wiring occurs, it will cause a
- O Please make sure that the power supply voltage is within the rated value before powering on
- O Please use rated load
- $\ensuremath{\mathbb{O}}$ The RS485 signal line cannot be short-circuited with the power supply, otherwise it may cause product failure or damage the product
- © When installing the sensor,do not subject the sensor to severe external forces(such as hammering, etc),as this may damage the sensor performance
- O Do not bend the lead out of the cable with excessive force, and avoid applying pressure such as pulling
- Cleaning
- © Thinner will corrode the surface of the filter, it is best to avoid using it
- O If there is dust on the surface, please wipe it gently with a dry dust-free cloth

Safety Warning

- Do not use in an environment with flammable, explosive or corrosive gases
- The RS485 communication line should not be too long
- Do not disassemble, repair or modify this product without authorization
- please do not look directly at the laser or observe the opticalystem through the lens

Scrap Treatment

• When the product is scrapped, please dispose of it as industrial waste

Laser description

• This sensor series are Class 2 laser products, please do not look directly at the laser or observe it through the laser wat (495)/450-48600 drift the series of lense use them according to label instructions.

■ Specification

	Digital	Display Laser Displacement Se	ensor	Digital	Digital display laser distance measuring sensor			
Series	PDB-CR30 series	PDB-CR50 series	PDB-CR85 series	PDB-CC10 series	PDB-CC50 series	PDB-CC100 series		
Measuring center distance	30mm	50mm	85mm	/	/	/		
Measuring range	±5mm	±15mm	±25mm	30100mm	80500mm	1501000mm		
Full range(F.S.)	10mm	30mm	50mm	70mm	420mm	850mm		
Supply voltage	RS-48	35:1030VDC;420mA:122	4VDC	RS	-485:1030VDC;420mA:1224	VDC		
Consumption power		≤700mW			≤700mW			
Load current		200mA			200mA			
Voltage drop		<2.5V			<2.5V			
Light source type	Re	d laser(650nm);Laser level:Clas	ss 2]	Red laser(650nm);Laser level:Clas	s 2		
Light spot size	Ф0.5mm@30mm	Ф0.5mm@50mm	Ф0.5mm@85mm	1mm*3mm@100mm	Ф2.5mm@500mm	Ф3mm@1000mm		
Dimension		65*51*23mm			65*51*23mm			
Resolution	2.5um@30mm	10um@50mm	30um@85mm	5um@30mm;50um@100mm	15um@80mm;500um@500mm	50um@150mm;2000um@1000mm		
Linear accuracy(1)(2)	Please ref	er to the specification of speci	fic models	Please	refer to the specification of specif	ic models		
Repeated accuracy①②③	5um	20um	60um	10um@30mm 30um@50mm 100um@100mm	30um@80mm 250um@250mm 1000um@500mm	100um@150mm 520um@500mm 4000um@1000mm		
Output 1	Digital value:RS-485(Support	ModBus protocol);Analog:42	0mA(Load resistance<390Ω)	Digital value:RS-485(Support ModBus protocol);Analog:420mA(Load resistance<390Ω)				
Output 2	Switch value:	PUSH-PULL/NPN/PNP And NO	/NC Settable	Switch valu	e:PUSH-PULL/NPN/PNP And NO/	NC Settable		
Distance setting	RS-485:keypres	s/RS-485 setting;420mA:keyp	ress setting	RS-485:key	press/RS-485 setting;420mA:key	ypress setting		
Temperature drift	±0.08%F.S./°C	±0.02%F.S./°C	±0.04%F.S./°C		±0.02%F.S./°C			
Response time		2ms, 16ms, 40ms Settable		2ms, 16ms, 40ms Settable				
Indicator	Power indicator:Green LED	;Motion indicator:Yellow LED;	Alarm indicator:Yellow LED	Power indicator:Green LED;Motion indicator:Yellow LED;Alarm indicator:Yellow LED				
Display		OLED Display(Size:14*10.7mm)		OLED Display(Size:14*10.7mm)				
Built-in function④	●Slave address&Baud rate setting ●Average setting ●Analog map se	g●Zero set ●Product self-check ● ettings ●Single point teach ●wind	Output setting •Parameter query ow teach •Factory default					
Protection circuit®	Short circ	cuit,reverse polarity,overload p	rotection	Short	ircuit,reverse polarity,overload p	rotection		
Service environment	Operating temper Environmen	ature:-10+50°C;Storage tempe nt humidity:3585%RH(No co	erature:-20+70°C ndensation)	Operating temperature:-10+50°C;Storage temperature:-20+70°C Environment humidity:3585%RH(No condensation)				
Anti ambient light		Incandescent light:<3,000 lux			Incandescent light:<3,000 lux			
Protection degree		IP67			IP67			
Material	Housing:ABS	Lens cover:PMMA Display par	nel:PC	Housing:A	BS;Lens cover:PMMA Display par	nel:PC		
Vibration resistant	1055Hz Double	e amplitude 1mm, 2hrs each fo	or X,Y,Z direction	1055Hz Dou	ble amplitude 1mm,2hrs each fo	r X,Y,Z direction		
Impulse withsand	500m/s²(Al	oout 50G), 3 times each for X,Y,	Z direction	500m/s²(About 50G),3 times each for X,Y,Z direction				
Connection way	2m 5pin/4pin PV0	C cable(5pin:RS-485 output;4pi	n:Analog output)	2m 5pin/4pin PVC cable(5pin:RS-485 output;4pin:Analog output)				
Accessory	Screw(M4×35mm)×2、Nu	it×2、Washer×2、Mounting b	racket、Operation manual	Screw(M4×35mm)×2, Nut×2, Washer×2, Mounting bracket, Operation manual				

■ Function Description

filtering;

"Aver" for filtering

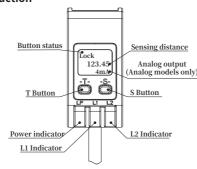
Reset

Zero

• Action point single point teaching TEACH A

• Action point window teaching TEACH A, TEACH B

1.Status query


2.Setting function

Button

etting functio

- ...(Test conditions:Standard data at 23 ± 5 °C;Supply voltage 24VDC;30 minutes' warmup before test;Sampling period 2ms;Average sampling times 100;Standard sensing object 90% white card ②The statistical data follows the 3σ criteria
- © Repeat accuracy:23 ± 5 °C environment,90% reflectivity white card,100 test data results @ Slave address, baud rate setting only for RS-485 series @ Protecion circuit only for switch output

Panel introduction

Used to set the switch output logic of the sensor, operating point, reset, unlock, address, baud rate query, data filtering and analog .

T	Toggle button	Switch button
S	Set button	Set button

2.Indicator

Used to power indicator, sensing indicator, alarm indicator

Name	Color	Always on / off	Flashing	
LP	Green LED	Power indicator	_	
L1	Yellow LED	Sensing indicator	Alarm	
L2	Yellow LED	Sensing mulcator	Alarin	

3.Display

Used to display key status, current measured value, current output value, current setting status,

ng menu.					
Display content	Description				
Button status	Button LOCK,Button UNLOCK,RUN				
Ci di-t	Real-time display of the distance value and displacement value				
Sensing distance	measured by current sensor				
Analog output	Real-time display of current sensor measurement value conversion				
	output current value				
NO DIS	Data transmission error,no measured value display(sensor failure)				
OutofRange	Out of sensing range				
Over Load	Switch output overload				
OK	Parameter setting successfully				
ERROR	Parameter setting failed(set point is outside the sensing range				

Self-lock:If there is no key press within 10 minutes after powering on, it will be self-locking.

After the keys are locked, the screen displays LOCK. The corresponding setting operation cannot be performed.

Unlock:When the button is in the self-locking state,press and hold the S button for 4s...6s.
When the screen displays UNLOCK,release the S button.
After the key is unlocked,the screen displays UNLOCK.At this time,you can perform key operations.

Analog output: "logic" for output logic, "Out" for output status, "Hold" for over limit hold value, "Aver" for

Functional category

Output logic: NO/NC selection

Analog mapping 4mA

Analog mapping 20mA

Overrun hold value

Action point single point teaching TEACH A

Operation point window teaching TEACH A, TEACH B

Output status out:NPN/PNP/PUSH-PULL(PP)selection

Within the sensing range, select one distance value as the operating point and fix the product and the target. On the main interface, short press S to enter "Teach A"Then long press the S key to start the sensing press the S key to start the sensing press the S key to start the sensing press the sensi

Actual operating point: Set value * 101%; Actual exit point: Less than set value * 102%. After teaching at specified position, output ON from the position to the near end of the detection range.

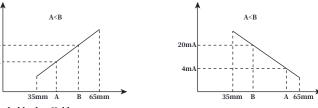
Within the sensing range, select the first distance value as the operating point and fix the product and

Within the sensing range, select the first distance value as the operating point and hx the product and the target. On the main interface, short press S to enter "Teach A"Then long press the S key to start teaching. After successful teaching, within the sensing range, select the second distance value as the operating point and fix the product and the target. Short press T to enter "Teach B" and then long press S to start teaching. If you want to return to single-point teaching after completing window teaching, only need to operate "single point teaching," the product will automatically clear the last window teaching value. Actual operating point: Set value * 101%; Actual exit point: Less than set value * 102%. After teaching at the specified 2 positions, the output is ON within the range between 2 positions.

Filter level Aver: FAST / MEDIUM / SLOW selection

RS-485 output: "logic" for output logic, "Out" for output status, "Addr" for slave address, "Baud" for baud rate,

PDB series


PDB-CC** Full series PDB-CR** Full series

PDB-CC** Analog output series

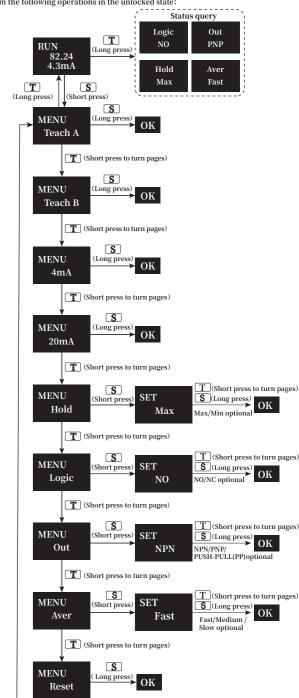
PDB-CR** 485 output series

• Analog mapping: 4mA or 20mA

Within the range, select the first distance value as the 4mA mapping point (or 20mA mapping point) and fix the product and the target. Within the effective range, the position of 4mA and 20mA (A,B) points can be set arbitrarily, and the distance between (A,B) points is greater than 0.5mm, it can be set successfully, otherwise the setting will fail, the default (A,B) is (4mA,20mA).

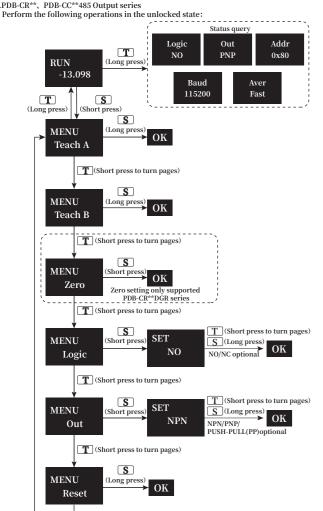
• Overrun hold value:Hold

 $When \ reaching \ the \ Hold \ interface, short \ press \ the \ S \ key \ to \ enter \ the \ Max \ setting \ interface, then \ short$ press T key to select Max or Min, then long press S key to set, there are two modes to hold overrun ouput: The maximum value (20mÅ) and the minimum value (4mA), and the default maximum value is


Max: When over range, the display shows 20mA.Analog output 20mA. Min: When over range, the display shows 4mA. Analog output 4mA.

• Zero
Select the first distance value as the zero point and fix the product and the target. On the main interfselect the first distance value as the zero point and fix the product and the target. On the main interfselect the first distance value as the zero point and fix the product and the target. On the main interfselect the first distance value as the zero point and fix the product and the target. On the main interfselect the first distance value as the zero point and fix the product and the target. On the main interfselect the first distance value as the zero point and fix the product and the target. On the main interfselect the first distance value as the zero point and fix the product and the target. On the main interfselect the first distance value as the zero point and fix the product and the target. On the main interfselect the first distance value as the zero point and fix the product and the target. On the main interfselect the first distance value as the zero point and the select the zero point and the select the zero point and zero point a ace, short press the S key to enter the "setting interface" and then short press the T key, when reaching the "Zero" interface, long press the S key to start the zero setting.

Analog output: ①PNP NO; ②Single point teaching mode (Range center point). RS-485 output: ①PNP NO; ②Baud rate: 115200; ③Address 0x80; ④Single point teaching mode (Range-center point); ③Zero reset (Displacement sensor only, default center point).


■ Instructions

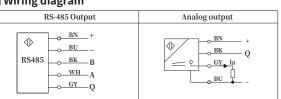
1.PDB-CR**、PDB-CC**Analog output series Perform the following operations in the unlocked state:

T (Short press to turn pages)

Sensoren

(Short press to turn pages)

3. Setting waiting interface: When long press S key to set, you will be prompted with three solid dots to indicate the setting progress (Take Teach A as an example):



*①Long press:4...6s,Short press:<2s; Successful teaching OK:L1 and L2 flash simultaneously at 4Hz for about 3 seconds;

Teaching failed ERROR:L1 and L2 flash asynchronously at a frequency of 4Hz for about 3 seconds; ②Status query:Each display content interval is 1s;Polling display twice automatically returns to the

main page; ③ Back to the main interface (RUN): When in the "MENU" and "SET" interface, long press the T key, you can return to the main interface

■ Wiring diagram

Remark: The sensors are equipped with shielded cables,Q is the switch output.

RS-485 output: The black and white lines A and B must not be reversed and A and B cannot

be short-circuited with the power line "+ \stacks". Analog output: The gray line Ia cannot be short-circuited with the power line " + \stacks", There is a small shielded wire, which shall not be in short-circuit connection with the analog output wire, but recommended to be grounded or not connected.

■ Data transmission (only for RS485)

◆Baud rate:115200(default)
◆Stop bit:1

◆Parity check:None
◆Slave default address:0x80

◆Data bits:8

02 MSB LSB LSB MSB

Note: The default address is 0x80. Different slave addresses or different baud rates will have different redundancy checks.

1.Master station request message format(Command to read distance information)

Slave address	Slave address Function code Data start address Data volume (Unit		(Unit: words)	Redundancy cl	neck CRC16-2			
80	03	9C	7d	MSB:00	LSB:01	LSB:24	MSB:53	
Slave station response message format:								
Slave address Function code Bytes Data Redundancy check CRC16-2]		

The host computer communicates through RS485, and the sensor data read out needs to be calculated by the following method to obtain actual measured value.

• PDB-CR(Displacement)series

30mm Disp=1um,50mm Disp=2um,85mm Disp=5um Actual measurement value of displacement sensor:Distance=Mid \pm X*Disp/1000

PDB-CR30:Distance=30±X*1/1000 PDB-CR50:Distance=50±X*2/1000

PDB-CR85:Distance=85±X*5/1000

(1)The 4th and 5th bytes in the slave response message are converted to decimal

03

(2)The decimal value of the 4th and 5th bytes is not greater than 32768,X=the decimal value of the 4th and 5th bytes,actual measurement value (2) 1000 (2) Sensoren.ru

(3)The decimal value of the 4th and 5th bytes is greater than 32768,X=the decimal value of the 4th and 5th bytes subtract 65536,actual measurement value=X*Disp/1000

(4)When MSB=7F and LSB=FF in the response message,it means that the measurement result is out of

range,namely out of range Example 1:For products with a range of 85mm(PDB-CR85**),the master request message:80 03 9C 7D 00 01 24 53;The slave response message:80 03 02 08 3C 83 8B The 4th and 5th bytes of the slave's response message are 08 3C,converted to decimal 2108,not greater

than 32768 that is,X is a positive value.
Actual measurement value=2108*5/1000=10.54mm
Actual distance value=Mid+10.540=85+10.540=95.540mm

Example 2:For products with a range of 85mm(PDB-CR85**), the master request message:80 03 9C 7D 00 01 24 53; The slave response message: 80 03 02 F7 AB 83 D5

The 4th and 5th bytes of the slave's response message are F7 AB, converted to decimal 63403, greater than 32768 that is,X is a negative. Actual measurement value=(63403-65536)*5/1000=-10.665mm Actual distance value=Mid-10.665=85-10.665=74.335mm

PDB-CC(Distance measuring)series

100mm Disp=10um,500mm Disp=10um,1000mm Disp=20um Distance measuring sensor:Distance=x*Disp/1000 PDB-CC10/50:Distance=x*10/1000

PDB-CC100:Distance=x*20/1000 (1)The 4th and 5th bytes in the slave's response message are converted to decimal

(2)Actual measurement value=the decimal value of the 4th and 5th bytes is multiplied by 10,and then divided by1000,unit is mm

(3) When the MSB and LSB in the response message are both FF, it indicates that the measurement resultis over range, that is out of range Example:For products with a range of 500 mm(PDB-CC50**), the master request message:80 03 9C 7D

00 01 24 53;The slave response message:80 03 02 46 6E 37 D6
The 4th and 5th bytes of the slave's response message are 46 6E.Converted to decimal 18030
Actual measur ement value=18030*10/1000=180.30mm

2. The master request message format(The address broadcast call command):								
Slave address	Slave address Function code Address where data is stored Data volume (Unit: words) Re				Redundancy ch	eck CRC16-		
00	06	9C	7E	00	81	06	33	
The address h	roadcast call	command is u	sed when the	address origi	nally set by	the sensor is u	nclear.Mod	

fy any current address value to the required value through broadcast command. Address modification range:0x80~0xF4 For example: The address originally set by the sensor is unknown, and you want to set the address to 0x81

Then send instructions via RS485 bus:00 06 9C 7E 00 81 06 33

The address originally set by the sensor is unknown, and you want to set the address to 0x82

Then send instructions via RS485 bus:00 06 9C 7E 00 82 46 32

Return:There is no return no matter the setting is successfully or fails

3.Master station request message format(Modified address command):								
Slave address	Function code Address where data is stored M				fy value	Redundancy check CRC16-2		
80	06	9C	7E	00	85	LSB:18	MSB:30	

slave station r	ave station response message format:							
Slave address Function code Address where data is stored Modify value					fy value	Redundancy ch	eck CRC16-2	
80	06	9C	7E	00	85	LSB:18	MSB:30	

The modificati	modification is invalid if the modified address is out of range.Return error instruction: re address Function code Error code Redundancy check CRC16-2 80 06 02 LSR MCR					
Slave address	Function code	Error code	Redundancy	check CR	C16-2	
80	06	02	LSB	MSB		

The address modification instruction is used to modify any current address value to the required value when the address originally set by the sensor is known. Modify any current address value to the required value

Address modification range:0x80~0xF4.The effective range of the address setting is 0x80 ~ 0xF4, and the modification of address takes effect after the power is turned on again

For example:The address originally set by the sensor is known, and you want to set the address to 0x81

Then send instructions via RS485 bus:80 06 9C 7E 00 81 19 F3

The address originally set by the sensor is known, and you want to set the address to 0x82

Then send instructions via RS 485 bus:81 06 9C 7E 00 82 58 23

Return:If the setting is successful, the original instruction will be returned; If it fails, an error instruction will be returned

4. Master station request message format(Modify the baud rate):

Slave address	Function code	Address where data is stored		Modify value		Redundancy check CRC16-2		
80	80 06 9C 7F MSB:00 LSB:02				LSB:09	MSB:92		
MSB defaults to 00;The LSB bit of the modified value:Baud rate setting,as follows:								
115200 57600 38400 19200 9600								
01	02	03	03 04		05			

Slave address	Function code	Address whe	re data is stored	Modify	value	Redundancy of	check CRC16-2
80	06	9C	7F	MSB	LSB	LSB	MSB

If it is not within this range, this operation is invalid. The return operation error command:

	0 ,				
Slave address	Function code	code Error code Redundancy che			
80	86	02	LSB	MSB	

The baud rate modification command is used when the baud rate originally set by the sensor is known. Modify any current baud rate value to the required value through the baud rate modification instruction. Address modification range:115200, 57600, 38400, 19200, 9600(Level 5). The default baud rate of the slave is 0x01(115200). The effective range of the baud rate setting is 0x01~0x05

For example: The baud rate originally set by the sensor is known to be 115200, at this time, you want to set

the baud rate to 57600 Then send instructions via RS485 bus:80 06 9C 7F 00 02 09 92

The baud rate originally set by the sensor is known to be 115200, at this time, you want to set

the baud rate to 9600 Then send instructions via RS485 bus:80 06 9C 7F 00 05 48 50

Return: If the setting is successful, the original instruction will be returned; If it fails, an error instruction will be returned

 $5. Master \ station \ request \ message \ format (Switching \ logic \ setting) \ :$ Slave address Function code Address where data is stored Modify value Redundancy check CRC16-2

biave address	i unction code	riddi coo wiici	mounty value		neutridancy check choro					
80	06	9C	74	MSB:00	LSB:00	LSB:F9	MSB:91			
After setting successfully, slave station response message format:										
Slave address	Function code	Addrose whor	Modify value		Redundancy check CRC1					
orare address	runction code	Address when	e data is stored	Modif	y varue	medundancy c	Heck ChC10-2			

The switch logic setting instruction is used to modify any current output logic to the required logic value Modification range: NPN,PNP,PUSH-PULL(Three types)

For example: If you need set the sensor switch value to NPN Then send commands via RS485 bus:80 06 9C 74 00 00 F9 91

If you need set the sensor switch value to PNP Then send commands via RS485 bus:80 06 9C 74 00 01 38 51 If you need set the sensor switch value to PUSH-PULL

Then send commands via RS485 bus:80 06 9C 74 00 02 78 50

Return:If the setting is successful, the original instruction will be returned; If it fails, an error instruction will be returned

6.Master station request message format(Switch state setting):

Slave address	Function code	Address where	Modify	value	Redundancy check CRC16-2		
80	06	9C	73	MSB:00	LSB:00	LSB:48	MSB:50
After setting	successfully,sla	ve station res	ponse message	format:			

S	lave address	ess Function code Address where data is stored		Modify value		Redundancy check CRC16-2		
	80	06	9C	73	MSB:00	LSB:00	LSB:48	MSB:50

The switch status setting instruction is used to modify any current output status to the required logic value. Modification range: NO, NC(Two types)
For example:If you need set the sensor switch value to NO
Then send commands via RS485 bus:80 06 9C 73 00 00 48 50

If you need set the sensor switch value to NC Then send commands via RS485 bus:80 06 9C 73 00 01 89 90

Return:If the setting is successful,the original instruction will be returned;If it fails,an error instruction will be returned

7.Master station request message format(Filter times setting)

Slave address	Function code	Address where data is stored		Modify value		Redundancy check CRC16-2		2					
80	06	9C	77	MSB:00	LSB:00	LSB:09	MSB:91						
After setting suc	ccessfully,Slave st	tation respons	e message for	mat:				MSB:91					

Slave address | Function code | Address where data is stored | Modify value | Redundancy check CRC16-2 9C 77 MSB:00 LSB:00 LSB:09 MSB:91 06 The order of filter times is used to set any current filter times as the required filter value

Modification range:Fast, Medium, Slow(Three types)

For example:If you need to set the filter times of the sensor to Fast(1 time Filtering)

Then send instructions via RS485 bus:80 06 9C 77 00 00 09 91

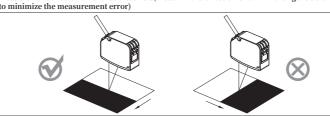
If you need to set the filter times of the sensor to Medium(8 time Filtering)

Then send instructions via RS485 bus:80 06 9C 77 00 01 C8 51
If you need to set the filter times of the sensor to Slow(20 time Filtering)
Then send instructions via RS485 bus:80 06 9C 77 00 02 88 50

Return:If the setting is successful, the original instruction will be returned;If it fails,an error If it fails,an error instruction will be returned 8.Master station request message format(Zero setting, only the displacement sensor with RS485 output has

	this function):								
:	Slave address	ss Function code Address where data is stored			Modify value		Redundancy check CRC16-2		
	80	06	9C	73	MSB:00	LSB:00	LSB:48	MSB:50	
A	After setting successfully, slave station response message format:								
:	Slave address	Function code	Address where	Modify value		Redundancy check CRC16-2			
	80	06	9C	73	MSB:00	LSB:00	LSB:48	MSB:50	

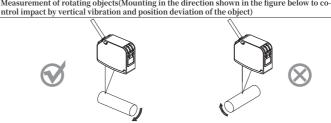
The zero setting command is used to take any position within the current sensor range as the zero position. Or cancel the current zero position


Modification range;00,01(Two types)
For example: If you need to use the current sensor position as the zero position
Then send instructions via RS485 bus:80 06 9C 76 00 00 58 51

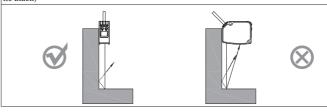
If you need to cancel the zero position of the current sensor Then send instructions via RS485 bus:80 06 9C 76 00 01 99 91


Return: If the setting is successful, the original instruction will be returned; If it fails, an error instruction will be returned

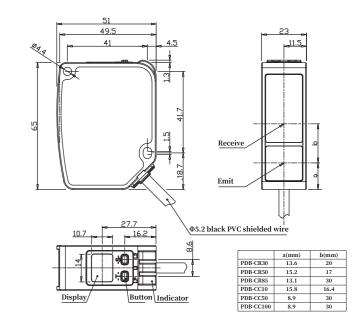
■ Installation precautions


Measurement of color difference materials(Install in the direction shown in the figure below

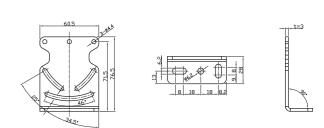
Step surface or segment gap measurement(Install in the direction shown in the figure below


Measurement of rotating objects(Mounting in the direction shown in the figure below to co-

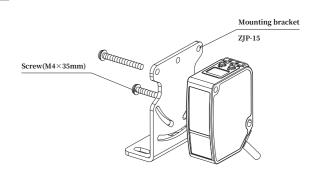
Measurement in narrow places and recessed parts(For installation and measurement in narrow places and holes, take care to avoid blocking the light path from the light-emitting part


Measurement for wall surface mounting(Install in the direction shown in the figure below to reduce the multiple reflected light from the wall surface, since the reflected light will enter the receiving surface. In case of wall surface high reflection rate, it is better to change to ma

■ Installation precautions


Measurement of shiny objects(Or shiny surface, as shown in the figure below, install the sensor after tilting the sensor at a certain angle)

Dimensions



Accessory Dimensions

Mounting bracket ZJP-15

■ Installation

*For mounting, please keep tightening torque < 0.5N·m

PS-PDB-2020LB V2.0

This specification doesn't relate to patent responsibility. Moreover, our company is always devoting to improving product quality, and reserves the right to improve products by changing pattern or size without prior notice. We have considered all the notes when compiling this specification, but for the wrong or clipped parts, and any loss caused by using this manual information,we bear no responsibility

Shanghai Lanbao Sensing Technology Co.,Ltd. Address:No 228,Jinbi Road,Jinhui Industrial Park,Fengxian Area,Shanghai,China

Zip code:201404 TEL:021-57486188 57486181 FAX:021-57486199 Email:market@shlanbao.cn Hotline:800-820-8259

